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Abstract. We introduce a new flavor of commitment schemes, which
we call mercurial commitments. Informally, mercurial commitments are
standard commitments that have been extended to allow for soft decom-
mitment. Soft decommitments, on the one hand, are not binding but, on
the other hand, cannot be in conflict with true decommitments.

We then demonstrate that a particular instantiation of mercurial com-
mitments has been implicitly used by Micali, Rabin and Kilian to con-
struct zero-knowledge sets. (A zero-knowledge set scheme allows a Prover
to (1) commit to a set S in a way that reveals nothing about S and (2)
prove to a Verifier, in zero-knowledge, statements of the form x ∈ S and
x /∈ S.) The rather complicated construction of Micali et al. becomes
easy to understand when viewed as a more general construction with
mercurial commitments as an underlying building block.

By providing mercurial commitments based on various assumptions,
we obtain several different new zero-knowledge set constructions.

1 Introduction

1.1 Mercurial Commitments

A traditional cryptographic commitment is often compared to a safe. The sender
places a particular value in the safe, locks it and gives it to the recipient. The
recipient cannot see the value, but is assured that it will not change while inside
the safe. Then, whenever the sender chooses to, he can reveal the secret code
needed to open the safe, enabling the recipient to retrieve the hidden value.
The two usual properties of commitments are therefore hiding and binding : the
sender is bound to the message, but the message is hidden from the recipient.

We propose a variant of traditional commitments, where the opening protocol
is two-tiered. Partial opening, which we call “teasing”, is not truly binding: it
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is possible for the sender to come up with a commitment that can be teased to
any value of the sender’s choice. True opening, on the other hand, is binding in
the traditional (computational) sense: it is infeasible for the sender to come up
with a commitment that he can open to two different values.

Despite the fact that a commitment can potentially be teased to any value, a
tease is not merely a meaningless assertion. A tease of a commitment to a value
m is a guarantee that the commitment cannot be opened to any value other than
m. In other words, the recipient of a tease knows that if the commitment can be
opened at all, then it will be to the same value. It is infeasible for the sender to
come up with a commitment that can be teased to m1 and opened to m2 �= m1.

This immediately implies, of course, that if the sender can open a commitment
at all, then it can be teased to only one value. Thus, the sender must choose,
at the time of commitment, whether to “soft-commit,” so as to be able to tease
to multiple values but not open at all, or to “hard-commit,” so as to be able to
tease and to open to only one particular value. The recipient, however, cannot
tell which of the two options the sender has chosen (this is ensured by the hiding
property).

We call this new primitive mercurial commitment.
Mercurial commitments are different from trapdoor or chameleon commit-

ments of [BCC88]. All chameleon commitments are equivocal whenever the
sender knows a trapdoor for the commitment scheme. In mercurial commit-
ments, on the other hand, the sender is given the choice, at the time of com-
mitment, whether to make the commitment equivocal or binding. Furthermore,
in chameleon commitments, equivocated and regular decommitments look the
same to the recipient; whereas in mercurial commitments, the recipient may be
content with the decommitment that may have been equivocated (tease), or may
require the stronger full decommitment (open).

Note that mercurial commitments directly imply conventional commitments
as a special case, when only hard-commit and open are used (and the soft-commit
and tease functionalities are ignored).

We have not yet addressed the hiding property of mercurial commitments.
For our application, we need a very strong hiding property, namely, simulata-
bility (which we can provide in the shared-random-string or trusted-parameters
model1, or else interactively). However, such strong hiding does not seem to be
an essential property of mercurial commitments, and it is conceivable that, if
mercurial commitments find other applications, weaker hiding properties will
suffice.

We formally define mercurial commitments in Section 2.1. We provide four
constructions in Section 2.2: based on general (possibly noninteractive) zero-

1 The shared-random-string model assumes that a uniform random string is available
for all parties to use. The trusted-parameters model assumes that a public string
from some (possibly complex) distribution has been produced and is available for
all parties to use; furthermore the (uniform) coins used to produce that string are
unknown to the parties (for instance, such a string could be a product n of two large
primes p and q, where the primes themselves are unknown to the parties).
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knowledge, claw-free permutations, discrete logarithms, and factoring respec-
tively. The last two constructions are efficient enough to be useable in practice.

We distilled the notion of mercurial commitments out of the zero-knowledge
set construction of [MRK03], where a particular construction (namely, the one
based on discrete logarithms) of mercurial commitments is implicitly used. We
believe that abstracting this notion and separating its construction from the
construction of zero-knowledge sets themselves is beneficial. First, as we demon-
strate in Section 3.2, the [MRK03] construction of zero-knowledge sets becomes
conceptually simpler when mercurial commitments are used as a building block.
Second, when mercurial commitments can be studied in isolation, it is much
easier to come up with novel constructions for them, and therefore also for zero-
knowledge sets. Finally, mercurial commitments are interesting independently of
this specific application because of their potentially broader applicability.

1.2 Zero-Knowledge Sets

Zero-knowledge sets (ZKS) were recently introduced by Micali, Rabin, and Kil-
ian [MRK03]. ZKS allow a prover to commit to an arbitrary finite set S in such
a way that for any string x he can provide an efficient sound proof of whether
x ∈ S or x /∈ S, without revealing any knowledge beyond this membership as-
sertion. That is, the recipient (verifier) of the proof learns nothing else about
the set S, not even the size of S. We elaborate on the formal definition of ZKS
in Section 3.1.

As pointed out by [MRK03], the notion of zero-knowledge sets can be ex-
tended to zero-knowledge elementary databases, where each element x ∈ S has
a value v(x) associated with it. After committing to S, the prover can provide
an efficient proof for each x of either “x ∈ S and v(x) = v”, or “x /∈ S”, with-
out revealing any further information. Sets, of course, are a special case of this,
where the value associated with each x ∈ S is 1. Throughout this paper, we use
ZKS to refer also to the more general zero-knowledge elementary databases.

Micali, Rabin, and Kilian give a construction of zero-knowledge sets under
the discrete logarithm assumption in the shared random string model. This con-
struction is noninteractive (i.e., both the initial commitment and query answers
require a single message from the prover to the verifier) with O(k2)-bit proofs
for security parameter k. They do not show how to remove the number-theoretic
details of their construction, and leave open whether constructions not based on
the discrete logarithm assumption are possible at all.

It is an interesting problem to consider what alternative constructions are
possible, and under what assumptions these constructions can be realized.

Ostrovsky, Rackoff and Smith [ORS04] provide constructions for consistent
database queries, which allow the prover to commit to a database, and then pro-
vide query answers that are provably consistent with the commitment. They also
consider the problem of adding privacy to such protocols. Their constructions can
handle queries much more general than just membership queries; they yield two
constructions of ZKS as special cases. The first construction is a feasibility result,
showing that interactive ZKS can be built out of (public) collision-resistant hash
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functions (CRHF) and zero-knowledge proofs of NP statements (which require
only one-way functions, which are implied by CRHF); noninteractive ZKS can be
built in the shared random string model out of CRHF and noninteractive zero-
knowledge. The second construction is more efficient, based on the assumptions
of CRHF and homomorphic commitments. Unfortunately, it requires interaction
(which can be removed in the random oracle model) and requires the prover to
keep a counter t of the number of queries asked so far. (For security parameter
k, the proofs are of size O(tk4) and, in particular, grow with t.2)

We provide an alternative proof of the same feasibility result, as well as more
efficient constructions based on different assumptions, as detailed next.

1.3 Zero-Knowledge Sets from Mercurial Commitments

We describe the work of [MRK03] in light of our new primitive, thus showing how
to construct zero-knowledge sets based on mercurial commitments and collision-
resistant hash functions. Different instantiations of mercurial commitments will
result in different ZKS constructions with different security assumptions and
efficiency.

Instantiating our ZKS construction with mercurial commitments based on
general zero-knowledge gives an alternative proof of the feasibility of ZKS from
general assumptions (as mentioned above, another such proof was given inde-
pendently by [ORS04]). It shows that (noninteractive) ZKS can be constructed
in the shared random string model by using as building blocks noninteractive
zero-knowledge (NIZK) proofs [BDMP91, FLS99], (conventional) commitment
schemes (which are anyway implied by NIZK), and CRHF.3 If one is willing
to add interaction to the revealing (membership proof) phase of ZKS, our con-
struction shows that CRHF and interactive ZKS are equivalent (because NIZK
can be replaced with regular zero-knowledge proofs, which can be based on one-
way functions, which are implied by CRHF; on the other hand, it is quite clear
that CRHF is necessary for ZKS, because the initial commitment to the set
must be collision-resistant). Unfortunately, the above discussion applies merely
to feasibility results; none of these constructions is practical.

Instantiating our ZKS construction with mercurial commitments based on
claw-free permutations gives ZKS in the trusted parameters model with proof
length O(k3). The construction based on factoring further improves the effi-
ciency, giving ZKS with proof length O(k2) and verification time O(k4), suitable
for practical implementation in the trusted parameters model.

2 The proof size given in [ORS04] is O(tdsk2), where s is a bound on the length of
each key x, and d is a bound on logarithm of the set size. However, in order to hide
the set size, we must first hash each key to a k-bit value, and set d = k.

3 It is known how to construct NIZK proofs based on the existence of trapdoor per-
mutations (TDP) [FLS99, BY96], or based on the existence of verifiable random
functions (VRF) [GO92,MRV99]. TDP and VRF are, as far as we currently know,
incomparable assumptions. Indeed, VRFs can be constructed based on gap-Diffie-
Hellman groups [Lys02], while no trapdoor permutation is known based on such
groups.
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For the case of ZKS from discrete-logarithm-based mercurial commitments
(which are the ones implicitly used in [MRK03]), we provide a constant-factor
improvement over the [MRK03] construction by utilizing a hash function better
suited for such commitments. The resulting construction is within the realm of
practical implementation in the shared random string model, requiring proofs of
length O(k2) and verification time O(k4) (constants hidden by O here are fairly
small and are further analyzed in Section 5).

2 The New Primitive: Mercurial Commitments

2.1 Definition

As we describe in the introduction, a mercurial commitment is a commitment
scheme with additional features. The first feature is that, in addition to the usual
algorithm for opening a commitment, there is also an algorithm to partially open,
or tease. The partial decommitment of a commitment C to a value x means, in
essence, that if C can be opened at all, then it can be opened only to x. The
second feature of a mercurial commitment scheme is that a commitment C can
be formed in two ways: it may be a hard commitment, that is, a commitment
that can be opened (and teased) in only one way; or a soft commitment that
cannot be opened at all, but can be teased to any value. Let us now describe
this more formally.

A mercurial commitment scheme consists of the following algorithms:

Setup This is a randomized algorithm run by a trusted third party that sets
up the public key for the commitment. We write PK ← Setup(1k). The
chosen public key PK defines the (efficiently samplable) domain of possible
committed values. Let us denote this domain DPK . If this algorithm merely
outputs its random coins, then the mercurial commitment scheme is in the
shared random string model. Else it is in the stronger trusted parameters
model.

Hard-Comm This is the deterministic algorithm used to commit to a value. It
takes as input the public key PK, a value x ∈ DPK , and a random string r,
and outputs the commitment C. We write C = Hard-Comm(PK,x, r).

Soft-Comm This is the deterministic algorithm used to soft-commit. That is
to say, a value produced by this algorithm is not really a commitment be-
cause it can never be opened. But it can be partially opened (teased) to
any value of the committer’s choice. This algorithm takes as input the pub-
lic key PK and the random string r, and outputs a value C. We write
C = Soft-Comm(PK, r).

Tease This is the randomized algorithm for partially opening (teasing) a hard
or soft commitment. On input (PK,x, r, C), where C is either a hard com-
mitment to x with string r, or a soft commitment with string r, Tease
outputs the partial decommitment τ for teaser value x. We write τ ←
Tease(PK,x, r, C).
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Ver-Tease This is the algorithm that either accepts or rejects the partial de-
commitment τ to teaser value x. It takes as input the public key PK, the
commitment C, and the values x and τ .

Open This algorithm opens the commitment C. If C = Hard-Comm(PK,x, r),
then on input (PK,x, r, C), Open will output the decommitment π for the
committed value x. We write π ← Open(PK,x, r, C).

Ver-Open This is the algorithm that either accepts or rejects the decommit-
ment π to the value x. It takes as input the public key PK, the commitment
C, and the values x and π.

As usual for commitment schemes, we require three properties: (1) correct-
ness: Ver-Tease will always accept the correctly formed partial decommitment
τ of C for the correct teaser value x, and Ver-Open will always accept the cor-
rectly formed decommitment π of C for the correct x; (2) binding: no adversary
can create C such that it can be opened to two different values, and no adversary
can create C such that it can be opened to one value but partially decommitted
(teased) to another value; (3) hiding: no adversary can learn whether C is a
soft commitment or hard commitment, and in case it is a hard commitment, no
adversary can learn the committed value x; moreover, we require that there be a
simulator that will be able to form C in such a way that it can not only partially
decommit (tease) it to any teaser value, but also open it to any value, such that
the view of the receiver will be the same whether it is talking to the committer
or to the simulator.

More precisely:

Definition 1. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease,
Open, Ver-Tease and Ver-Open satisfies the correctness property of mercu-
rial commitments if for all PK ∈ Setup(1k)

– Correctness for Hard-Comm: For all x ∈ DPK , for all strings r, if C =
Hard-Comm(PK,x, r), then
• for all τ ∈ Tease(PK,x, r, C), Ver-Tease(PK,C, x, τ) = OK;
• for all π ∈ Open(PK,x, r), Ver-Open(PK,C, x, π) = OK;

– Correctness for Soft-Comm: For all r, if C = Soft-Comm(PK, r), then
for all x ∈ DPK , for all τ ∈ Tease(PK,x, r, C), Ver-Tease(PK,C, x, τ) =
OK.

Definition 2. A set of algorithms Setup, Ver-Tease and Ver-Open sat-
isfies the binding property of mercurial commitments if for all probabilistic
polynomial-time nonuniform adversaries {Ak} there exists a negligible function
ν such that

Pr[PK ← Setup(1k); (C, x, x′, π, τ) ← Ak(PK) :
Ver-Open(PK,C, x, π) = OK ∧

(Ver-Open(PK,C, x′, τ) = OK ∨ Ver-Tease(PK,C, x′, τ) = OK) ∧
x �= x′ ∈ DPK ] = ν(k)
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Definition 3. A set of algorithms Setup, Hard-Comm, Soft-Comm, Tease,
Open satisfies the hiding (simulatability) property of mercurial commitment if

1. There exists a set of algorithms Sim-Setup, Sim-Commit, Sim-Tease,
Sim-Open with the following specifications:
Sim-Setup This is a randomized algorithm that, in addition to creating the

commitment public key PK, also outputs a trapdoor key TK that allows
the simulator some extra power that the legitimate committer does not
have. We write (PK,TK) ← Sim-Setup(1k).

Sim-Commit This is the deterministic algorithm that the simulator uses to
compute a commitment. Besides (PK,TK), it takes a random string r
as input. We write C = Sim-Commit(PK,TK, r).

Sim-Tease This is the algorithm that the simulator uses to compute a par-
tial decommitment for any value x ∈ DPK . On input (PK,TK, r, x), it
gives the partial decommitment τ for the commitment C = Sim-Commit
(PK,TK, r). We write τ ← Sim-Tease(PK,TK, r, x).

Sim-Open This is the algorithm that the simulator uses to compute a decom-
mitment for any value x ∈ DPK . On input (PK,TK, r, x), it outputs the
decommitment π for the commitment C = Sim-Commit(PK,TK, r).
We write π ← Sim-Open(PK,TK, r, x).

2. Let the following algorithms be defined as follows:
CommitterPK The committer algorithm CPK is a stateful algorithm that

responds to requests to hard- and soft-commit to specific values by run-
ning Hard-Comm and Soft-Comm, and then, on request runs the
Tease and Open algorithms on the corresponding commitments. It also
maintains a list L of commitments issued so far. Initially, list L is empty.
Here is how CPK responds to various inputs:
– On input (Hard-Comm, x), choose a random string r. Compute C =

Hard-Comm(PK,x, r). Store (Hard-Comm, C, x, r) in the list L.
Output C.

– On input (Soft-Comm), choose a random string r. Compute C =
Soft-Comm(PK, r). Store (Soft-Comm, C, r) in the list L. Output
C.

– On input (Tease, C, x′):
• Check if C ∈ L. If it is not, output “fail.” Else, retrieve the

record corresponding to C.
• If C’s entry on the list is of the form (Hard-Comm, C, x, r): if

x �= x′, output “fail.” Otherwise, output τ = Tease(PK,x, r, C).
• Else if C’s entry on the list is of the form (Soft-Comm, C, r):

output τ = Tease(PK,x′, r, C).
– On input (Open, C, x), check if for some r, (Hard-Comm, C, x, r)

is on the list. If it is not, output “fail.” Else, output Open(PK,x, r).
Simulator(PK,TK) The simulator S(PK,TK) answers the same types of

queries as the Committer CPK , but by running different algorithms. It
also maintains the same list L, initialized to empty.
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– On input (Hard-Comm, x), choose a random string r. Compute C =
Sim-Commit(PK,TK, r). Store (Hard-Comm, C, x, r) in the list L.
Output C.

– On input (Soft-Comm), choose a random string r. Compute C =
Sim-Commit(PK,TK, r). Store (Soft-Comm, C, r) in the list L.
Output C.

– On input (Tease, C, x′):
• Check if C ∈ L. If it is not, output “fail.” Else, retrieve the

record corresponding to C.
• If C’s entry on the list is of the form (Hard-Comm, C, x, r): if

x �= x′, output “fail.” Otherwise, output τ ← Sim-Tease(PK,
TK,x, r, C).

• Else if C’s entry on the list is of the form (Soft-Comm, C, r):
output τ ← Sim-Tease(PK,TK,x′, r, C).

– On input (Open, C, x), check if for some r, (Hard-Comm, C, x, r)
is on the list. If it is not, output “fail.” Otherwise, output Sim-Open
(PK,TK,x, r).

Then no polynomial-time distinguisher can tell whether he is talking to a
Committer or to a Simulator. Namely, for all probabilistic polynomial-time
families of oracle Turing machines {D?

k}, there exists a negligible function
ν(k) such that

Pr[PK0 ← Setup(1k); (PK1,TK) ← Sim-Setup(1k);
O0 = CPK0 ;O1 = S(PK1,TK);

b ← {0, 1}; b′ ← DOb

k (pkb) : b = b′] = 1/2 + ν(k)

(In this definition, we create two oracles: O0 is a Committer, and O1 is a
Simulator. Then the distinguisher interacts with a randomly chosen oracle,
and has to guess which oracle it is talking to.)

Remarks. Note that the notion of simulatability can be defined in three flavors:
perfect, statistical, and computational, corresponding to the strength of the dis-
tinguisher D. Above, we gave the definition for the computational flavor since it
is the least restrictive. Also note that the definition above is noninteractive. The
definition can be extended to an interactive setting, where the decommitment
(opening or teasing) is interactive. Throughout the paper, in order to keep the
presentation clean, we continue by default to consider noninteractive mercurial
commitments (and noninteractive ZKS), and only mention the interactive case
in side remarks.

Definition 4 (Mercurial commitment scheme).
Algorithms Setup, Hard-Comm, Soft-Comm, Tease, Open, Ver-Tease

and Ver-Open constitute a mercurial commitment scheme if they satisfy the
correctness, binding, and hiding (simulatability) properties.
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2.2 Constructions

From General Assumptions. We construct mercurial commitments based on
a many-theorem noninteractive zero-knowledge proof system [BDMP91, FLS99].
Such a proof system can be constructed from any trapdoor permutation
(TDP) [BDMP91, BY96], or from a verifiable random function (VRF) [GO92,
MRV99]. Existence of TDPs and existence of VRFs are, as far as we know,
incomparable assumptions, since VRFs can be constructed based on gap-Diffie-
Hellman groups [Lys02], while no trapdoor permutation is known based on such
groups. This construction is in the shared random string model (not in the
trusted parameters model).

Suppose that we are given a many-theorem noninteractive zero-knowledge
(NIZK) proof system for an NP-complete language L. This proof system oper-
ates in the public random string model, and consists of polynomial-time algo-
rithms Prove and Verify. Further suppose that we are given a conventional
noninteractive unconditionally binding commitment scheme, consisting of algo-
rithms (Comm-Setup,Commit). Note that such a commitment scheme is al-
ready implied by the existence of NIZK, because NIZK implies OWFs, and in
the public-random-string model, OWFs imply setup-free unconditionally bind-
ing bit commitment [Nao91, HILL99]. More detailed definitions of these standard
building blocks, NIZK and commitment schemes, are given in the full version of
the paper.

We now describe a (noninteractive) mercurial commitment scheme based on
a NIZK proof system and any noninteractive commitment scheme. The idea of
this construction is simple: a mercurial commitment will consist of two conven-
tional commitments. The first one determines whether it is a hard-commit or
soft-commit. The second one determines the value itself in case of hard-commit.
To tease, simply prove (using NIZK) that “either this is a soft-commit, or the
committed value is x.” To open, prove (using NIZK) that “this is a hard-commit
to x.” Correctness will follow from the correctness properties of the NIZK and of
the commitment scheme. The binding property will follow from the fact that the
commitment scheme is unconditionally binding, and from the soundness of the
NIZK. Simulatability will follow from the security of the commitment scheme
and from the zero-knowledge property (i.e., existence of the zero-knowledge sim-
ulator) of the NIZK.

An (easily produced) more formal description of the above scheme is con-
tained in the full version of the paper. We thus obtain the following theorem.

Theorem 1. The construction above is a mercurial commitment scheme, as-
suming the underlying primitives satisfy the definitions of NIZK proofs for NP
and unconditionally binding commitment schemes.

As noted in the introduction, the same construction can be used to achieve in-
teractive mercurial commitments, from standard commitments and (interactive)
zero knowledge proofs. Since both these building blocks are implied by OWF,
the construction yields interactive mercurial commitments based on OWF.
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From Claw-Free Trapdoor Bijections. We now construct a mercurial bit-
commitment scheme under the assumption that there exist claw-free trapdoor
bijections.4 Specifically, slightly generalizing the notion of claw-free permuta-
tions of [GMR88], we assume that there exist indexed families of bijections
{fi}i∈I⊆{0,1}n , fi : Dfi

→ Ri and {gi}i∈I⊆{0,1}n , gi : Dgi
→ Ri, and an effi-

ciently computable distribution ∆ on pairs (i, ti) ∈ {0, 1}n × {0, 1}poly(n) such
that:

– ti is trapdoor information that allows fi to be inverted efficiently.
– fi and gi are claw-free. That is, when given i sampled according to ∆, no

efficient algorithm can, with nonnegligible probability, find s ∈ Dfi
and

s′ ∈ Dgi
such that fi(s) = gi(s′).

Employing this assumption, we construct mercurial bit-commitmens:

– PK = Setup(1n) = i where (i, ti) is sampled from ∆
– Using randomness (r0, r1) ∈ Dfi

× Dgi
, Hard-Comm(i, 0, (r0, r1)) =

(fi(r0), gi(r1)) and Hard-Comm(i, 1, (r0, r1)) = (gi(r1), fi(r0))
– Using randomness (r0, r1) ∈ Dfi

× Dfi
, Soft-Comm(i, (r0, r1)) =

(fi(r0), fi(r1))
– For hard commitment C = (C0, C1), τ = Tease(i, x, (r0, r1), (C0, C1)) = r0.
– For soft commitment C = (C0, C1), τ = Tease(i, x, (r0, r1), (C0, C1)) = rx.
– Ver-Tease(i, x, τ, (C0, C1)) checks that Cx = fi(τ).
– To open a hard commitment C = (C0, C1) to x, created using the random

string (r0, r1), π = Open(i, x, (r0, r1), (C0, C1)) = (x, r0, r1).
– Given a decommitment π = (x, r0, r1), Ver-Open(i, x, π, (C0, C1))

checks Cx = fi(r0) and C1−x = gi(r1).

The correctness of this commitment scheme is immediate from the above de-
scriptions. Furthermore, it is clear that these commitments are hiding since all
commitments are pairs of completely random elements of Ri. That hard com-
mitments are binding follows from the assumption that fi and gi are claw-free.

It remains to show that this commitment scheme is simulatable. The key step
in showing simulatability is to note that if ti (i.e. the trapdoor for fi) is known,
then one can easily compute f−1

i (s) for any given s ∈ Ri, and in particular, one
can produce an r′ such that s = fi(r′), even if s was chosen to be gi(r) for some
random r ← Dgi

. The details are provided in the full version of the paper.
Claw-free trapdoor bijections are an established cryptographic primi-

tive [GMR88]. They are commonly realized under the assumption that factoring
is hard. However, under the factoring assumption one can construct much more
efficient mercurial commitments, as we do later in this section. Nonetheless, the
above construction based on a claw-free pair is valuable because the existence
of a claw-free pair may be viewed as a generic assumption independent of the
difficulty of factoring. Indeed, the assumption seems reasonable generically: the

4 Note that in contrast to the construction of the previous section, here we construct
a bit-commitment scheme, i.e. we commit only to values x ∈ {0, 1}.
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less the functions fi and gi have to do with each other, the more plausible the
assumption. Note that only fi requires a trapdoor, so gi may be some, com-
pletely unrelated, one-way bijection. It may be reasonable to assume that it is
infeasible to find a claw in such a case.

From the Discrete Logarithm Assumption. The following mercurial com-
mitment scheme relies on the intractability of the discrete logarithm problem in a
group G of prime order. When G is taken to be the subgroup of size q of Z

∗
p where

q|(p−1) (i.e., G is the group of d-th order residues in Z
∗
p for a prime p = dq+1),

this mercurial commitment scheme is implicit in the Zero-Knowledge Sets con-
struction of [MRK03]. Indeed, combining this mercurial commitment with the
Zero-Knowledge Set construction of the next section yields essentially the same
construction as [MRK03].

Recall that the Pedersen commitment scheme [Ped92] employs two randomly
chosen generators, g, h ← G, and a commitment to a message m ∈ {0, 1, . . . , |G|−
1} is computed by selecting a random r ← {0, 1, . . . , |G| − 1} and letting the
commitment be gmhr. The commitment is opened by revealing the message m
and the random exponent r. It is not hard to show that if the committer can
open this commitment in more than one way, then he can easily compute logg(h),
a task which is presumed to be intractable. On the other hand, if the committer
knows logg(h), then he can easily open a supposed commitment c = gk ∈ G
to any message m by producing the pair (m, (k − m)/ logg(h) mod |G|). This
observation is essential to the following mercurial commitment scheme which is
based on the Pedersen commitment.

– Setup(1k) selects G and (g, h) ← G × G.
– The hard commitment (with random string (r0, r1) ← {0, 1, . . . , |G| − 1}2)

is simply the Pedersen commitment using the generator pair (g, hr1):
Hard-Comm((g, h), x, (r0, r1)) = (gx(hr1)r0 , hr1)

– The soft commitment (with (r0, r1) ← {0, 1, . . . , |G| − 1}2) is
Soft-Comm((g, h), (r0, r1)) = (gr0 , gr1).

– If C = (C0, C1) is hard, then τ = Tease((g, h), x, (r0, r1), (C0, C1)) = r0.
– If C = (C0, C1) is soft, then τ = Tease((g, h), x, (r1, r2), (C0, C1)) = (r0 −

x)/r1 mod |G|.
– In either case, Ver-Tease((g, h), (C0, C1), x, τ) checks that C0 = gx · Cτ

1 .
– Open computes (π0, π1) as Open((g, h), x, (r0, r1), (C0, C1)) = (r0, r1).
– Finally, verification is similar to Pedersen’s, with an additional step to en-

sure that the second generator C1 was chosen as a known power of h,
and hence that logg(C1) is not known to the committer: Ver-Open((g, h),
(C0, C1), x, (π0, π1)) checks that C0 = gx · Cπ0

1 and that C1 = hπ1 .

The correctness of the above algorithms is easily verified. The proof that hard
commitments are binding is just as with the Pedersen commitment; indeed, the
ability to open a commitment C = (C0, C1) in two ways implies knowledge of
logg(h). This scheme is clearly hiding because all commitments consist of random
elements from G×G. As for simulatability, the simulator simply needs to set up
g, h and TK as g ← G, TK ← {0, 1, . . . , |G|−1} and h = gTK . A more detailed
description is contained in the full version of the paper.
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From the Hardness of Factoring. Our final construction is based on the hard-
ness of factoring. Like the discrete logarithm construction, this scheme commits
to many bits simultaneously. This is a modification of the trapdoor commitment
construction implicit in the GMR signature scheme [GMR88]. We note that a
similar mercurial commitment scheme (based on RSA rather than factoring, but
allowing for interesting extensions based on the Strong RSA assumption) was
independently discovered by Gennaro and Micali [GM05].

The mercurial commitment scheme runs as follows:

– Let the message space be {0, 1}�.
– Setup(1n) chooses an RSA modulus N = pq, where p ≡ q ≡ 3 (mod 4),

and a random element y ∈ Z
∗
N . Let U = y2. PK = (N,U).

– Using randomness (r0, r1) ∈ Z
∗
N × Z

∗
N , Hard-Comm((N,U),m, (r0, r1)) =

(Ur2
0, r

2�

1 (Ur2
0)

m).
– Using randomness (r0, r1) ∈ Z

∗
N × Z

∗
N , Soft-Comm((N,U), (r0, r1)) =

(r2�

0 , r2�

1 ).
– If C = (C0, C1) is hard, then τ = Tease((N,U),m, (r0, r1), (C0, C1)) = r1.
– If C = (C0, C1) is soft, then τ = Tease((N,U),m, (r0, r1), (C0, C1)) =

r1r
−m
0 .

– Ver-Tease((N,U),m, τ, (C0, C1)) checks that C1 = Cm
0 (τ)2

�

.
– Open computes π as π = Open((N,U),m, (r0, r1), (C0, C1)) = (m, r0, r1).
– Given a decommitment π = (m, r0, r1), Ver-Open((N,U, �),m, π, (C0, C1))

checks C0 = Ur2
0 and C1 = Cm

0 r2�

1 .

The correctness of this commitment scheme follows directly from the above defi-
nitions. Simulatability follows if we simply let the simulator set up U as U = y2�

.
The details of the simulator are in the full version of the paper.

We have only to show that this scheme is binding. Suppose there exists a hard
commitment (C0, C1) which can be opened as (m, r0, r1), and (m′, r′0, r

′
1), where

m = b1 . . . b�, and m′ = b′1 . . . b′�. Both openings can be successfully verified, thus
we have C0 = Ur2

0 = Ur′20 , and C1 = Cm
0 r2�

1 = Cm′
0 r′2

�

1 . Given that m �= m′,
this means that r1 �= r′1. Let f0(x) = x2, f1(x) = C0x

2. Note that finding a
claw (i.e. x0, x1 such that f0(x0) = f1(x1)) would give a square root of U : (U =
(x0x

−1
1 r0)2). This would then allow us to factor N . Thus, this is a claw-free pair.

Note also that Cm
0 r2�

1 = fb�
(fb�−1(. . . (fb1(r1)))). Since there are two verifiable

openings, this must be equal to Cm′
0 r′2

�

1 = fb′�(fb′�−1
(. . . (fb′1(r

′
1)))). Let i be the

smallest index such that fbi
(fbi−1(. . . (fb1(r1)))) = fb′i(fb′i−1

(. . . (fb′1(r
′
1)))). Such

an i must clearly exist, and as long as r′1 �= r1 we also have bi �= b′i. Thus we
have found a claw between f0 and f1 which will allow us to factor N .

A similar proof shows that we cannot tease-open to one value and hard open
to another.

Note that a similar scheme using an arbitrary RSA modulus N can be created
using a modified version of the commitment described in [Fis01].
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3 Constructing Zero-Knowledge Sets

3.1 Definition of Zero-Knowledge Sets

Let us start with an informal definition. A zero-knowledge set scheme (more
generally, an elementary database scheme) [MRK03] consists of three algorithms,
ZKS-Setup, P (the Prover) and V (the Verifier) such that three properties hold:
(1) completeness: for any database D, for any x such that D(x) = v (where v
can be a value if x ∈ D or ⊥ if x /∈ D) an honest Prover who correctly commits
to D can always convince the verifier that D(x) = v; (2) soundness: once a
commitment to the database D has been formed (even by a malicious Prover),
no P ′ can, for the same x, convince the Verifier that D(x) = v1 and D(x) = v2

for v1 �= v2; (3) zero-knowledge: there exists a simulator S such that even for
adversarially chosen D, no adversarial verifier can tell whether he is (a) talking
to an honest prover P committed to D, or (b) talking to S who only has oracle
access to the data set D.

The formalization of this definition, which is a slight revision of the original
definition of [MRK03] (in particular, it extends the original definition to allow
computational zero-knowledge), is given in the full version of the paper.

3.2 ZKS from Mercurial Commitments

In this section we show how, given a mercurial commitment scheme and a
collision-resistant hash function, we can construct a zero-knowledge set. As al-
ready mentioned, this construction is essentially the same as the construction
of [MRK03] with the mercurial commitments abstracted as a building block.

On the Role of Collision-Resistant Hashing. In order to construct
ZKS from mercurial commitments, we need an additional property: that
an ordered pair of commitments produced by Hard-Comm(PK, ·, ·) and/or
Soft-Comm(PK, ·) is in the domain DPK of the commitment scheme (this
property is needed because we will build trees of commitments, with the par-
ent committing to its two children). This can be accomplished for any mercurial
commitment scheme with sufficiently large DPK by combining it with a collision-
resistant hash function H that maps pairs of commitments into DPK . Then, to
commit to a pair of commitments, one would simply commit to its hash value in-
stead. This approach was already used by [MRK03] with the DL-based mercurial
commitment scheme implicitly constructed there.

The key for the hash function can be included as part of the commitment
scheme’s public key. The security of the resulting construction is easy to prove
(we will not do so here for lack of space and because the arguments are standard).
From now on, in describing the ZKS construction from mercurial commitments,
we will assume that domain of a mercurial commitment scheme includes pairs
of commitments.

We note that it is necessary to assume collision-resistant hash functions
(CRHFs) because they are implied by ZKS: to build CRHF from ZKS, sim-
ply run the prover algorithm on the database D to produce a commitment C,
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fixing the prover-randomness to an all-0 string. We can view an arbitrary-length
string b1b2 . . . b� as an elementary database D where D(i) = bi for 1 ≤ i ≤ �,
and i > � is not in the database. It is easy to see that the resulting algorithm is
collision-resistant: an adversary who could produce two strings (databases) that
hash to the same commitment C would contradicts the soundness property of
ZKS.

Building ZKS. Below, we construct ZKS for a database D with keys of length5

l given

– a mercurial commitment scheme (Setup,Hard-Comm,Soft-Comm,
Tease,Open,Ver-Tease,Ver-Open) whose domain includes the values
v contained in the database, as well as pairs of commitments (produced by
Hard-Comm and/or Soft-Comm);

– a pseudorandom function family {Fs}s∈S that maps binary string of
length up to l to binary strings of length needed for random inputs r to
Hard-Comm and Soft-Comm.6

Our construction will be in the shared random string model if the mercurial
commitment scheme (and the collision-resistant hash function, if separate from
the mercurial commitment scheme) both require no more than a shared random
string for their parameters. Otherwise, it will be in the trusted parameters model.

Intuition Informally, to generate a commitment com to the database D, the
prover views each key x as an integer numbering a leaf of a height-l binary tree,
and places a commitment to the information v = D(x) into leaf number x. Each
internal node of the tree is generated to contain the commitment to the contents
of its two children. The result is thus a Merkle tree, except that each internal
node is a commitment to, rather than a hash of, its two children. The value com
is then the value contained in the root of the tree.

To respond to a query about x, the prover simply decommits the correspond-
ing leaf and provides the authenticating path (together with all the decommit-
ments) to the root.

The only problem with the just-described approach is that it requires expo-
nential time (in l) to compute the tree, because the tree has 2l leaves. This is
where mercurial commitments help. Our exponential-size Merkle-like tree will
have large subtrees where every leaf is a commitment to ⊥, because the cor-
responding keys are not in the database. Instead of actually computing such a
subtree ahead of time, the prover simply forms the root of this subtree as a soft-
commitment, and does not do anything for other nodes of the subtree. Thus,

5 As suggested in [MRK03], we can apply collision-resistant hashing to the keys if they
are longer, although we will give up perfect completeness if two keys x1 and x2 such
D(x1) �= D(x2) hash to the same result.

6 The pseudorandom function family is needed only to save prover storage and make
the prover stateless; if the prover is willing to store the amount of randomness
proportional to l(|D|+ q), where q is the number of queries, then it is not necessary.
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Fig. 1. A commitment tree before and after a query for key 11, whose value is not the

database. The parts built in response to the query are shown in the second tree. Hard

commitments are denoted by ‘H’ and soft commitments by ‘S’. Each leaf contains a

commitment to the value shown rather than the value itself

the resulting Merkle tree gets “pruned” to size at most 2l|D|, because the only
nodes in the tree are ancestors of leaves in D and their siblings. (This is because
if a node is neither an ancestor of a leaf in D nor a sibling of such an ancestor,
then both its and its sibling’s subtrees are empty.)

Answering queries about x ∈ D is still done the same way. In response to
queries about x /∈ D the prover generates the portion of the subtree that is
missing (from x to the root of the empty subtree). The value at the root of the
empty subtree is then teased (soft-decommitted) to its two (newly generated)
children, and the entire authenticating path from x to com is provided using
teasers, rather than hard decommitments. This is illustrated in Figure 1.

To save the prover from the expense of having to remember all the choices it
made when generating the tree (both initially and in response to x /∈ D queries),
we generate all random strings used in the commitments pseudorandomly rather
than randomly.

Soundness follows from the fact that soft decommitments always have the
same semantics, namely that x /∈ D, and that soft decommitments cannot, by
the binding property, disagree with hard decommitments. Zero-knowledgeness
follows from the simulatability of commitments and from the fact that decom-
mitments are consistent: a given node will never be (hard- or soft-) decommit-
ted in two different ways. Note that zero-knowledge will be perfect, statistical,
or computational, depending on the simulatability of mercurial commitments
(however, for perfect and statistical zero-knowledge, the prover must use truly
random, rather than pseudorandom, strings; hence, it must be stateful in order
to remember the random strings it used when responding to queries.)

We formalize the above description in the full version of the paper.

Improving the Efficiency of DL-Based Construction. While in general
any collision-resistant hash function can be used with our DL-based mercurial
commitments, Pedersen’s hash function [Ped92] is suggested by [MRK03] be-
cause it is also based on the discrete logarithm assumption and its parameters
can be selected from a shared random string. Given a group G of prime order q
and two generators g and h, Pedersen’s hash function HG,g,h hashes two integers
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0 ≤ a, b < q into a single element h ∈ G via h = gahb. It is easy to see that this
hash function is collision-resistant if discrete logarithms in G are hard.

It may seem that Pedersen’s hash function is well suited for use with DL-
based mercurial commitments over the same group G. This, however, is not true,
because the range of hash function is G, while the domain of the commitments
is {0, 1, . . . , q−1}. In particular, if G is the subgroup of size q of Z

∗
p for q|(p−1),

one would need to choose two separate sets of parameters: (q1, p1) for the hash
function and (q2, p2) for the commitment scheme, with q2 ≥ p1. This seems to be
necessary for the construction of [MRK03] to work (although it is not explicitly
stated there).

In addition, to hash two commitments (which consist of two elements of
Z
∗
p2

each), multiple iterations of the hash function are needed, because a single
iteration can handle only a pair of elements of Zq1 .

Here, we point out two minor modifications the Pedersen’s hash function
that eliminate the need for a second set of parameters and minimize the number
of iterations necessary to hash two commitments. Both modifications rely on
folklore results.

First, we will modify the hash function to take four inputs instead of two by
using four generators (all in the shared random string), g1, g2, g3, g4, and out-
putting, on input (a, b, c, d), the value ga

1gb
2g

c
3g

d
4 . The proof of collision-resistance

of this function is a simple exercise and is omitted here.
Our second modification relies (in addition to the DL assumption) on the

assumption that Sophie Germain primes are sufficiently dense (recall that a q is
a Sophie Germain prime if p = 2q + 1 is prime). We let q be a Sophie Germain
prime. Then the subgroup G of order q of Z

∗
p is QRp. Consider the following

efficient bijection φ′ between QRp and {1, 2, . . . , q}: if x ≤ q, φ′(x) = x; else
φ′(x) = p − x (this is a bijection because exactly one of (x,−x) is in QRp,
because p ≡ 3 (mod 4) since q is odd). Now let φ(x) = φ′(x) − 1 to make the
range of the bijection {0, 1, . . . , q − 1}.

The bijection φ allows us to view G = QRp and {0, 1, . . . , q−1} as essentially
the same.7 Thus, we will simply modify Pedersen’s hash function to output φ(h)
instead of h, and to take inputs in QRp instead of {0, 1, . . . , q − 1} by applying
φ−1 to them first.

The resulting ZKS scheme takes seven values and seven exponentiations per
level of the hash tree to verify (four for the hash function and three for the
mercurial commitment). Note that two of the generators can be shared between
the hash function and the mercurial commitment scheme. Because verifications
require only products of fixed-base exponentiations with four bases (except in
the case of tease verification, when a single exponentiation with a random base
is required), much precomputation can be done to speed up verification (see,
e.g., [LL94], which can be extended to multiple bases).

7 We remark that, obviously, a bijection between G and {0, 1, . . . , q − 1} always exists
because |G| = q; the reason for using Sophie Germain primes is that we do not know
how construct a simple efficient bijection otherwise.
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