
Compact E-Cash

Jan Camenisch1, Susan Hohenberger2,�, and Anna Lysyanskaya3,��

1 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
jca@zurich.ibm.com

2 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
srhohen@mit.edu

3 Computer Science Department, Brown University, Providence, RI 02912, USA
anna@cs.brown.edu

Abstract. This paper presents efficient off-line anonymous e-cash
schemes where a user can withdraw a wallet containing 2� coins each
of which she can spend unlinkably. Our first result is a scheme, secure
under the strong RSA and the y-DDHI assumptions, where the complex-
ity of the withdrawal and spend operations is O(� + k) and the user’s
wallet can be stored using O(�+k) bits, where k is a security parameter.
The best previously known schemes require at least one of these com-
plexities to be O(2� · k). In fact, compared to previous e-cash schemes,
our whole wallet of 2� coins has about the same size as one coin in these
schemes. Our scheme also offers exculpability of users, that is, the bank
can prove to third parties that a user has double-spent. We then extend
our scheme to our second result, the first e-cash scheme that provides
traceable coins without a trusted third party. That is, once a user has
double spent one of the 2� coins in her wallet, all her spendings of these
coins can be traced. However, the price for this is that the complexity
of the spending and of the withdrawal protocols becomes O(� · k) and
O(� · k + k2) bits, respectively, and wallets take O(� · k) bits of storage.
All our schemes are secure in the random oracle model.

1 Introduction

Electronic cash was invented by Chaum [22, 23], and extensively studied since,
e.g., [24, 26, 37, 7, 41, 20, 21]. The main idea is that, even though the same party
(a bank B) is responsible for giving out electronic coins, and for later accepting
them for deposit, the withdrawal and the spending protocols are designed in
such a way that it is impossible to identify when a particular coin was spent.
I.e., the withdrawal protocol does not reveal any information to the bank that
would later enable it to trace how a coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic
cash scheme requires a mechanism that prevents a user from spending the same

� Research performed while at IBM Research, Zurich Research Laboratory, CH-8803
Rüschlikon, Switzerland.

�� Supported by NSF Career Grant CNS-0347661.

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 302–321, 2005.
c© International Association for Cryptologic Research 2005

Compact E-Cash 303

coin twice (double-spending). There are two scenarios. In the on-line scenario [23,
24, 25], the bank is on-line in each transaction to ensure that no coin is spent
twice, and each merchant must consult the bank before accepting a payment. In
the off-line [26] scenario, the merchant accepts a payment autonomously, and
later submits the payment to the bank; the merchant is guaranteed that such
a payment will be either honored by the bank, or will lead to the identification
(and therefore punishment) of the double-spender.

In this paper, we give an off-line 2�-spendable unlinkable electronic cash
scheme. Namely, our scheme allows a user to withdraw a wallet with 2� coins,
such that the space required to store these coins, and the complexity of the with-
drawal protocol, are proportional to �, rather than to 2�. We achieve this with-
out compromising the anonymity and unlinkability properties usually required
of electronic cash schemes. This problem is well-motivated: (1) communication
with the bank is a bottleneck in most electronic cash schemes and needs to be
minimized; (2) it is desirable to store many electronic coins compactly, as one
can imagine that they may be stored on a dedicated device such as a smartcard
that cannot store too much data. This problem has also proved quite elusive:
no one has offered a compact e-cash solution (even for a weaker security model)
since the introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders
to outside third parties in an undeniable fashion. I.e., assuming a PKI, if a
user U with public key pkU spent a coin more times than he is allowed (in our
case, spent 2� + 1 coins from a wallet containing 2� coins), then this fact can
be proven to anyone in a sound fashion. This property of an e-cash scheme is
satisfied by numerous schemes in the literature. Our solution has this property
as well.

Finally, it may often be desirable that an e-cash scheme should allow one
to trace all coins of a cheating user. It was known that this property can be
implemented using a trusted third party (TTP) [40, 10], by requiring that: (1)
in each withdrawal protocol a user gives to the bank an encryption under the
TTP’s public key of a serial number S which will be revealed during the spending
protocol; and (2) in each spending protocol, the user submits to the merchant
an encryption of the user’s public key under the TTP’s public key. Then, should
a coin with serial number S ever be double-spent, the TTP can get involved
and decrypt the serial number of all of this user’s coins. But the existence of
such a TTP contradicts the very definition of electronic cash: to the TTP, the
user is not anonymous! Therefore, another desirable and elusive property of an
electronic cash scheme was traceability without a TTP. Our scheme achieves this
property as well.

Recently, Jarecki and Shmatikov [34] also made a step in this direction. Al-
though their work is not explicitly about electronic cash, it can be thought of in
this way. Their scheme allows to withdraw and linkably (linkability is actually a
feature for them) but anonymously spend a coin K times; but should a user wish
to spend the coin K+1 times, his identity gets revealed. As far as electronic cash
is concerned, our solution is better for two reasons: (1) their scheme does not

304 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

achieve unlinkability; and (2) in their protocol, each time a user spends a coin
he has to run a protocol whose communication complexity is proportional to
K, rather than log K, as we achieve. In 1989, Okamoto and Ohta [37] proposed
an e-cash scheme with similar functionality, without achieving unlinkability or
compact wallets.

Our work can also be viewed as improving on the recent traceable group
signatures by Kiayias, Tsiounis, and Yung [35]. In their scheme, once a special
piece of tracing information is released, it is possible to trace all group signatures
issued by a particular group member; otherwise this member’s signatures are
guaranteed to remain anonymous. Normally, in a group signature setting, this
piece of information must be released by a TTP, as there is no equivalent of a
double-spender whose misbehavior may automatically lead to the release of the
tracing information; however, if a limit is placed on how many signatures a group
member may issue, then our e-cash scheme can be viewed as a bounded group
signature scheme, where a group member can sign a message by incorporating
it into the signature proof of a coin’s validity. A group manager may allocate
signing rights by acting as a bank allocating coins; and if any member exceeds
their allocation, the special tracing information is revealed automatically, and all
signatures produced by that group member may be traced. Our tracing algorithm
is more efficient than that of Kiayias et al. [35]; in our scheme, signatures can
be tracked by a serial number (that appears to be random until the user double-
spends), while in theirs, all existing signatures must be tested, one-by-one, using
the special tracing information provided by the TTP, to determine if a certain
signer created it or not.

Our results. Let us summarize our results. We give a compact e-cash scheme with
all the features described above in the random-oracle model, under the Strong
RSA assumption in combination with the decisional Diffie-Hellman inversion (y-
DDHI) [4, 31] and sum-free DDH [30] assumptions for groups with bilinear maps.
The communication complexity of the spending and of the withdrawal protocol
is O(� · k) and O(� · k + k2) bits, respectively; it takes O(� · k) bits to store all
the coins. This scheme is presented in Section 4.2.

We also give a scheme where the withdrawal and the spending protocols have
complexity only O(� + k), and it also takes only O(� + k) bits to store all the
coins, based on the Strong RSA [33, 3] and the y-DDHI [31] assumptions in the
random-oracle model. This less expensive scheme does not allow traceability,
however. This scheme is presented in Section 4.1.

Furthermore, in the model where the bank completely trusts the merchant
(this applies to, for example, a subscription service where the entity creating and
verifying the coins is one and the same), we have solutions based on the same
set of assumptions but in the standard model. Sections 4.1 and 4.2 containing
our random-oracle-based schemes also explain how these security properties are
obtained once the random oracle is removed.

Overview of our construction. Our schemes are based on the signature schemes
with protocols due to Camenisch and Lysyanskaya [14, 15]. These schemes allow

Compact E-Cash 305

a user to efficiently obtain a signature on committed messages from the signer.
They further allow the user to convince a verifier that she possesses a signature
by the signer on a committed message. Both of these protocols rely on the
Pedersen commitment scheme.

To explain our result, let us describe how single-use electronic cash can be
obtained with CL-signatures, drawing on a variety of previously known tech-
niques [9, 14].

Let G = 〈g〉 be a group of prime order q where the discrete logarithm problem
is hard. Suppose that a user U has a secret key skU ∈ Zq and a public key
pkU = gskU . An electronic coin is a signature under the bank B’s public key
pkB on the set of values (skU , s, t), where s, t ∈ Zq are random values. The
value s is the serial number of the coin, while t is the value blinding of this
coin. A protocol whereby a user obtains such a signature is called the withdrawal
protocol.

In the spending protocol, the user sends the merchant a Pedersen commit-
ment C to the values (skU , s, t), and computes a non-interactive proof π1 that
they have been signed by the bank. The merchant verifies π1 and then picks
a random value R ∈ Zq. Finally, the user reveals the serial number s, and the
value T = skU + R · t mod q. Let us refer to T as a double-spending equation
for the coin. The user must also compute a proof π2 that the values s and T
correspond to commitment C. Finally, the merchant submits (s,R, T, π1, π2) for
payment.

Note that one double-spending equation reveals nothing about skU because
t is random, but using two double-spending equations, we can solve for skU . So
if the same serial number s is submitted for payment twice, the secret key skU
and therefore the identity of the double-spender pkU = gskU can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin
can be used at most 2� times. The trivial solution would be to obtain 2� coins.
For our purposes, however, it is unacceptable, as 2� may be quite large (e.g.,
1000) and we want each protocol to be efficient.

The idea underlying our system is that the values s and t implicitly define
several (pseudorandom) serial numbers Si and blinding values Bi, respectively.
In other words, we need a pseudorandom function F(·) such that we can set
Si = Fs(i), and Bi = Ft(i), 0 ≤ i ≤ 2� − 1. Then the user gets 2� pseudoran-
dom serial numbers with the corresponding double-spending equations defined
by (s, t). Here, the double-spending equation for coin i is Ti = gskU (Bi)R, where
R is chosen by the merchant. This leaves us with a very specific technical prob-
lem. The challenge is to find a pseudorandom function such that, given (1) a
commitment to (skU , s, t); (2) a commitment to i; and (3) the values Si and Ti,
the user can efficiently prove that she derived the values Si and Ti correctly from
skU , s, and t, i.e., Si = Fs(i) and Ti = gskU (Ft(i))Ri for some 0 ≤ i ≤ 2� −1 and
public value Ri provided by the merchant.

Recently, Dodis and Yampolsky [31] proposed the following discrete-logarithm-
based pseudorandom function (PRF): Fs(x) = g1/(s+x+1), where s, x ∈ Zq, and
g is a generator of a group G of order q in which the decisional Diffie-Hellman

306 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

inversion problem is hard.1 (In the sequel, we denote this PRF as FDY
(·) (·).) Using

standard methods for proving statements about discrete-logarithm representa-
tions, we obtain a zero-knowledge argument system for showing that a pair of
values (Si, Ti) is of the form Si = FDY

s (i) and Ti = gskU (FDY
t (i))Ri correspond-

ing to the seeds s and t signed by bank B and to some index i ∈ [0, 2� − 1].
Note that if Si and Ti are computed this way, then they are elements of G

rather than of Zq. So this leaves us with the following protocol: to withdraw
a coin, a user obtains a signature on (skU , s, t). During the spending protocol,
the user reveals Si and the double-spending equation Ti = gskU (Bi)Ri , where
skU is the user’s secret key and pkU = gskU the corresponding public key. Now,
with two double-spending equations T1 = gskU BR1

i and T2 = gskU BR2
i we can

infer the value (TR2
1 /TR1

2)(R2−R1)
−1

= (pkR2
U BR1R2

i /pkR1
U BR1R2

i)(R2−R1)
−1

=
(pkR2−R1

U)(R2−R1)
−1

= pkU . This is sufficient to detect and identify double
spenders. We describe this construction in more depth in Section 4.1.

However, the above scheme does not allow the bank to identify the other
spendings of the coin, i.e., to generate all the serial numbers that the user can
derive from s. Let us now describe how we achieve this. For the moment, let
us assume that the technique described above allows us to infer skU rather
than pkU . If this were the case, we could require that the user, as part of the
withdrawal protocol, should verifiably encrypt [1, 11, 18] the value s under her
own pkU , to form a ciphertext c. The record (pkU , c) is stored by the bank. Now,
suppose that at a future point, the user spends too many coins and thus her skU
is discovered. From this, her pkU can be inferred and the record (pkU , c) can be
located. Now that skU is known, c can be decrypted, the seed s discovered, the
values Si computed for all 0 ≤ i < 2�, and hence the database of transactions
can be searched for records with these serial numbers.

Let us now redefine the way a user’s keys are picked such that we can recover
skU rather than pkU . Suppose that G is a group with a non-degenerate bilinear
map e : G × G �→ G′. Let skU be an element of Zq. Let pkU = e(g, gskU).
Recently, Ateniese, Fu, Green, and Hohenberger [2] exhibited a cryptosystem
that uses pkU as a public key, such that in order to decrypt it is sufficient to
know the value gskU . So, in our scheme, the user U would encrypt s under
pkU using the cryptosystem due to Ateniese et al. From the double-spending
equations, the same way as before, the bank infers the value gskU . This value
now allows the bank to decrypt s.

This is almost the solution, except for the following subtlety: if G has a
bilinear map, then the decisional Diffie-Hellman problem is easy, and so the
Dodis-Yampolsky construction is not a PRF in this setting! Instead, we must
assume sum-free decisional Diffie-Hellman [30], and slightly change the construc-
tion. This is why the variant of our scheme that allows to trace coins is a factor

1 Another PRF suitable for our purposes is the one due to Naor and Reingold [36].
It is based on the DDH problem, but makes our subsequent schemes less time and
space efficient.

Compact E-Cash 307

of � more expensive than the one that does not. The details of this construction
are given in Section 4.2.

One of the main remaining problems for electronic cash which this paper
does not address is that of efficiently allowing for multiple denominations in a
non-trivial way; i.e., without executing the spending protocol a number of times.

2 Definition of Security

Notation: if P is a protocol between A and B, then P (A(x), B(y)) denotes that
A’s input is x and B’s is y.

Our electronic cash scenario consists of the three usual players: the user,
the bank, and the merchant; together with the algorithms: BKeygen, UKeygen,
Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership. Let us give
some input-output specifications for these protocols, as well as some informal
intuition for what they do.

– The BKeygen(1k, params) algorithm is a key generation algorithm for the bank
B. It takes as input the security parameter 1k and, if the scheme is in the
common parameters model, it also takes as input these parameters params.
This algorithm outputs the key pair (pkB, skB). (Assume that skB contains
the params , so we do not have to give params explicitly to the bank again.)
Similarly, UKeygen(1k, params) is a key generation algorithm for the user U ,
which outputs (pkU , skU). Since merchants are a subset of users, they may use
this algorithm to obtain keys as well. (Assume that sk contains the params,
so we do not have to give params explicitly to the user again.)

– In the Withdraw(U(pkB, skU , n),B(pkU , skB, n)) protocol, the user U with-
draws a wallet W of n coins from the bank B. The user’s output is the wallet
W , or an error message. B’s output is some information TW which will allow
the bank to trace the user should this user double-spend some coin, or an
error message. The bank maintains a database D for this trace information,
to which it enters the record (pkU , TW).

– In a Spend(U(W, pkM),M(skM, pkB, n)) protocol, a user U gives one of the
coins from his wallet W to the merchant M. Here, the merchant obtains a
serial number S of the coin, and a proof π of validity of the coin. The user’s
output is an updated wallet W ′.

– In a Deposit(M(skM, S, π, pkB),B(pkM, skB)) protocol, a merchant M de-
posits a coin (S, π) into its account held by the bank B. Whenever an honest
M obtained (S, π) by running the Spend protocol with any (honest or other-
wise) user, there is a guarantee that this coin will be accepted by the bank.
B adds (S, π) to to its list L of spent coins. The merchant’s output is nothing
or an error message.

– The Identify(params , S, π1, π2) algorithm allows to identify double-spenders
using a serial number S and two proofs of validity of this coin, π1 and π2,
possibly submitted by malicious merchants. This algorithm outputs a public
key pkU and a proof ΠG. If the merchants who had submitted π1 and π2 are

308 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

not malicious, then ΠG is evidence that pkU is the registered public key of a
user that double-spent coin S.

– The VerifyGuilt(params , S, pkU ,ΠG) algorithm allows to publicly verify proof
ΠG that the user with public key pkU is guilty of double-spending coin S.

– The Trace(params , S, pkU ,ΠG,D, n) algorithm, given a public key pkU of
a double-spender, a proof ΠG of his guilt in double-spending coin S, the
database D, and a wallet size n, computes the serial numbers S1, . . . , Sm of
all of the coins issued to U along with proofs Π1, . . . , Πm of pkU ’s ownership.
If VerifyGuilt(params , S, pkU , ΠG) does not accept (i.e., pkU is honest), this
algorithm does nothing.

– The VerifyOwnership(params , S,Π, pkU , n) algorithm allows to publicly verify
the proof Π that a coin with serial number S belongs to a double-spender
with public key pkU .

We will now informally define the security properties. The more elaborate
formal definitions are given in the full version of this paper [13].

Correctness. If an honest user runs Withdraw with an honest bank, then nei-
ther will output an error message; if an honest user runs Spend with an honest
merchant, then the merchant accepts the coin.

Balance. From the bank’s point of view, what matters is that no collection of
users and merchants can ever spend more coins than they withdrew. We require
that there is a knowledge extractor E that executes u Withdraw protocols with all
adversarial users and extracts un serial numbers S1, . . . , Sun. We require that
for every adversary, the probability that an honest bank will accept (S, π) as
the result of the Deposit protocol, where S �= Si ∀1 ≤ i ≤ un, is negligible. If
S1, . . . , Sn is a set of serial numbers output by E when running Withdraw with
public key pkU , we say that coins S1, . . . , Sn belong to the user U with pkU .

Identification of double-spenders. Suppose B is honest. Suppose M1 and M2

are honest merchants who ran the Spend protocol with the adversary, such that
M1’s output is (S, π1) and M2’s output is (S, π2). This property guarantees
that, with high probability, Identify(params, S, π1, π2) outputs a key pkU and
proof ΠG such that VerifyGuilt(params, S, pkU ,ΠG) accepts.

Tracing of double-spenders. Given that a user U is shown guilty of double-
spending coin S by a proof ΠG such that VerifyGuilt accepts, this property
guarantees that Trace(params , S, pkU ,ΠG,D, n) will output the serial numbers
S1, . . . , Sm of all coins that belong to U along with proofs of ownership Π1, . . . , Πm

such that for all i, with high probability, VerifyOwnership(params, Si,Πi, pkU , n)
also accepts.

Anonymity of users. From the privacy point of view, what matters to users is
that the bank, even when cooperating with any collection of malicious users and
merchants, cannot learn anything about a user’s spendings other than what is
available from side information from the environment. In order to capture this
property more formally, we introduce a simulator S. S has some side information

Compact E-Cash 309

not normally available to players. E.g., if in the common parameters model, S
generated these parameters; in the random-oracle model, S is in control of the
random oracle; in the public-key registration model S may hold additional infor-
mation about the bank’s keys, etc. We require that S can create simulated coins
without access to any wallets, such that a simulated coin is indistinguishable
from a valid one. More precisely, S executes the user’s side of the Spend protocol
without access to the user’s secret or public key, or his wallet W .

Exculpability. Suppose that we have an adversary that participates any number
of times in the Withdraw protocol with the honest user with public key pkU ,
and subsequently to that, in any number of legal Spend protocols with the same
user. I.e., if the user withdrew u wallets of n coins each, then this user can
participate in at most un Spend protocols. The adversary then outputs a coin
serial number S and a purported proof Π that the user with public key pkU is
a double-spender and owns coin S. The weak exculpability property postulates
that, for all adversaries, the probability VerifyOwnership(params , S, pkU ,Π, n)
accepts is negligible.

Furthermore, the adversary may continue to engage the user U in Spend
protocols even if it means U must double-spend some coins of her choosing (in
which case the state of her wallet is reset). The adversary then outputs (S,Π).
The strong exculpability property postulates that, for all adversaries, when S is
a coin serial number not belonging to U , the weak exculpability property holds,
and when S is a coin serial number not double-spent by user U with public key
pkU , the probability that VerifyGuilt(params, S,Π, pkU , n) accepts is negligible.

This ends the informal description of our security definition; the descriptions
in the full version of this paper [13] are more precise, but this intuition should
be sufficient for understanding our subsequent security guarantees.

Strengthening the definition: the UC framework. Even though our definition of
security is not in the UC framework, note that our definition would imply UC-
security whenever the extractor E and simulator S are constructed appropriately.
In a nutshell, an ideal electronic cash functionality would allow an honest user
to withdraw and spend n coins. In this case, if the merchant and bank are
controlled by the malicious environment, the simulator S defined above creates
the merchant’s and bank’s view of the Spend protocol. At the same time, the
balance property guarantees that the bank gets the same protection in the real
world as it does in the ideal world, and the exculpability property ensures that
an honest user cannot get framed in the real world, just as he cannot get framed
in the ideal world.

3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we
now briefly review. Many of these protocols can be shown secure under several

310 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

different complexity assumptions, a flexibility that will extend to our e-cash
systems. The notation G = 〈g〉 means that g generates the group G.

3.1 Complexity Assumptions

The security of our e-cash systems is based on the following assumptions:

Strong RSA Assumption [3, 33]: Given an RSA modulus n and a random
element g ∈ Z

∗
n, it is hard to compute h ∈ Z

∗
n and integer e > 1 such that he ≡ g

mod n. The modulus n is of a special form pq, where p = 2p′ +1 and q = 2q′ +1
are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [4, 31]:
Given a random generator g ∈ G, where G has prime order q, the values
(g, gx, . . . , g(xy)) for a random x ∈ Zq, and a value R ∈ G, it is hard to de-
cide if R = g1/x or not.2

Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [30]: Sup-
pose that g ∈ G is a random generator of order q. Let L be any polynomial func-
tion of |q|. Let Oa(·) be an oracle that, on input a subset I ⊆ {1, . . . , L}, outputs
the value gβI

1 where βI =
∏

i∈I ai for some a = (a1, . . . , aL) ∈ Z
L
q . Further, let

R be a predicate such that R(J, I1, . . . , It) = 1 if and only if J ⊆ {1, . . . , L} is
DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with a
one in position j if and only if j ∈ Ii and zero otherwise, then there are no three
sets Ia, Ib, Ic such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise
over the integers). Then, for all probabilistic polynomial time adversaries A(·),

Pr[a = (a1, . . . , aL) ← Z
L
q ; (J, α) ← AOa(1|q|); y0 = g

∏
i∈J ai ; y1 ← G;

b ← {0, 1}; b′ ← AOa(1|q|, yb, α) : b = b′ ∧ R(J,Q) = 1] = negl(|q|),

where Q is the set of queries that A made to Oa(·).

3.2 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter 1k,
outputs γ = (q, g1, h1, G1, g2, h2, G2, e), where e is a non-degenerate efficiently
computable bilinear map from G1 = 〈g1〉 = 〈h1〉 to G2 = 〈g2〉 = 〈h2〉, both
groups of prime order q = Θ(2k). Let e(g1, g1) = g2 and e(h1, h1) = h2. We
assume that each group element has a unique binary representation. More for-
mally, e : G1 × G1 → G2 is a function that is: (bilinear) for all g1, h1 ∈ G1,
for all a, b ∈ Zq, e(ga

1 , hb
1) = e(g1, h1)ab; (non-degenerate) if g1 is a generator of

G1, then e(g1, g1) generates G2; and (efficient) computing e(·, ·) is efficient for
all g1, h1 ∈ G1.

2 Others [4, 31] have used a stronger bilinear version of the y-DDHI assumption, where,
given the same input in 〈g〉y+1 it is hard to distinguish e(g, g)1/x from a random R
in 〈e(g, g)〉.

Compact E-Cash 311

3.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for
proving statements about discrete logarithms, such as (1) proof of knowledge of a
discrete logarithm modulo a prime [39] or a composite [33, 29], (2) proof of knowl-
edge of equality of representation modulo two (possibly different) prime [27] or
composite [17] moduli, (3) proof that a commitment opens to the product of
two other committed values [16, 20, 8], (4) proof that a committed value lies in
a given integer interval [21, 16, 16, 6], and also (5) proof of the disjunction or
conjunction of any two of the previous [28]. These protocols modulo a composite
are secure under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.

When refering to the proofs above, we will follow the notation introduced by
Camenisch and Stadler [19] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that
y = gαhβ and ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is
that Greek letters denote quantities of which knowledge is being proven, while
all other values are known to the verifier. We apply the Fiat-Shamir heuristic [32]
to turn such proofs of knowledge into signatures on some message m; denoted
as, e.g., SPK{(α) : y = gα}(m).

3.4 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions
recently proposed by Dodis and Yampolsky [31], which they expand to verifiable
random functions using bilinear maps. Their construction is:
For every n, a function f ∈ Fn is defined by the tuple (G, q, g, s), where G is
group of order q, q is an n-bit prime, g is a generator of G, and s is a seed in Zq.
For any input x ∈ Zq (except for x = −1 mod q), the function fP,q,g,s(·), which
we simply denote as fDY

s (·), is defined as fDY
s (x) = g1/(x+s+1).

This construction is secure under the y-DDHI assumption. As mentioned in
the introduction, we could instead substitute in the Naor-Reingold PRF [36],
and replace the y-DDHI assumption with the more standard DDH assumption,
at the cost of enlarging our wallets from O(� + k) bits to O(� · k) bits.

3.5 CL Signatures

Recall the Pedersen commitment scheme [38], in which the public parame-
ters are a group G of prime order q, and generators (g0, . . . , gm). In order
to commit to the values (v1, . . . , vm) ∈ Zq

m, pick a random r ∈ Zq and set
C = PedCom(v1, . . . , vm; r) = gr

0

∏m
i=1 gvi

i .
Camenisch and Lysyanskaya [14] came up with a secure signature scheme

with two protocols: (1) An efficient protocol between a user and a signer with

312 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

keys (pkS , skS). The common input consists of pkS and C, a Pedersen com-
mitment. The user’s secret input is the set of values (v1, . . . , v�, r) such that
C = PedCom(v1, . . . , v�; r). As a result of the protocol, the user obtains a sig-
nature σpkS

(v1, . . . , v�) on his committed values, while the signer does not learn
anything about them. The signature has size O(� log q). (2) An efficient proof of
knowledge of a signature protocol between a user and a verifier. The common
inputs are pkS and a commitment C. The user’s private inputs are the values
(v1, . . . , v�, r), and σpkS

(v1, . . . , v�) such that C = PedCom(v1, . . . , v�; r). These
signatures are secure under the strong RSA assumption. For the purposes of this
exposition, it does not matter how CL signatures actually work, all that matters
are the facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption inde-
pendently of the CL signatures. By making additional assumptions based on bi-
linear maps, we can use alternative schemes by Camenisch and Lysyanskaya [15]
and Boneh, Boyen and Shacham [5], yielding shorter signatures in practice.

3.6 Verifiable, Bilinear El Gamal Encryption

In Section 4.2, we apply a technique by Camenisch and Damg̊ard [11] for turning
any semantically-secure encryption scheme into a verifiable encryption scheme.
A verifiable encryption scheme is a two-party protocol between a prover and
encryptor P and a verifier and receiver V. Roughly, their common inputs are
a public encryption key pk and a commitment A. As a result of the protocol,
V either rejects or obtains the encryption c of the opening of A. The protocol
ensures that V accepts an incorrect encryption only with negligible probability
and that V learns nothing meaningful about the opening of A. Together with the
corresponding secret key sk , transcript c contains enough information to recover
the opening of A efficiently. We hide some details here and refer to Camenisch
and Damg̊ard [11] for the full discussion.

In particular, we apply the verifiable encryption techniques above to a bilinear
variant of El Gamal encryption due to Ateniese, Fu, Green, and Hohenberger [2].
Assume we run Bilinear Setup on 1k to obtain ζ = (q, g3,G3, g2,G2, e), where we
have bilinear map e : G3 × G3 → G2. Let (G,E,D) denote the standard key
generation, encryption, and decryption algorithms. On input (1k, ζ), the key
generation algorithm G outputs a key pair (pk , sk) = (e(g3, g

u
3), gu

3) = (gu
2 , gu

3)
for a random u ∈ Zq. To encrypt a message m ∈ G2 under pk , select a random k ∈
Zq and output the ciphertext c = (gk

3 , pkkm) = (gk
3 , guk

2 m). Then, to decrypt c =
(c1, c2), simply compute c2/e(c1, sk). Ateniese et al. [2] show that this encryption
scheme is semantically-secure under the decisional bilinear DH assumption.

4 Two Compact E-Cash Systems

We present two compact e-cash systems. In System One, an honest bank can
quickly detect double-spending, identify the perpetrator, and prove his guilt to
a third party from two coin deposits with the same serial number. This system

Compact E-Cash 313

allows a wallet of 2� coins to be stored in O(�+k) bits. In System Two, the bank
can do everything that it could before, and in addition, the bank can compute
the serial numbers for all the coins that belong to the perpetrator along with
proofs of their ownership. Here, our wallets of 2� coins require O(� · k) bits,
which is still remarkably small. If a user does not double-spend, her coins are
unlinkable. There is no trusted party.

Global parameters for both systems. Let 1k be the security parameter and
let � be any value in O(log k). Our subsequent schemes work most efficiently by
having three different algebraic groups:

– G1 = 〈g1〉, where n is a special RSA modulus of 2k bits, g1 is a quadratic
residue modulo n, and h1 ∈ G1.

– G2 = 〈g2〉, where g2 is an element of prime order q = Θ(2k), and h2 ∈ G2.
– G3 = 〈g3〉, where g3 is an element of the same prime order as G2, and there

exists a bilinear mapping e : G3 × G3 → G2.

Our first scheme will not require G3. Assume that, on input 1k, each system is
initialized with the necessary common parameters, denoted ζ. We also define the
multiple Pedersen commitment as PedCom(x1, . . . , xn; r) = hrΠn

i=1g
xi
i . Some-

times for simplicity we do not explicitly include the randomess r in the input to
the commitment. The values h, {gi} are assumed to be publicly known elements
of the appropriate group.

4.1 System One: Wallets of Size O(� + k) with Public Key
Recovery

Our first system supports the basic algorithms (BKeygen,UKeygen,Withdraw,
Spend, Deposit, Identify, VerifyGuilt). In this scheme, a wallet of size O(� + k) is
sufficient to hold 2� coins. In the Identify algorithm, the bank can recover the
identity of a double-spender pkU from two deposits with the same coin serial
number S. Using VerifyGuilt, the bank can prove that pkU double-spent coin S
to a third party; while all honest users are guaranteed strong exculpability.

The parties set up their keys as follows. In BKeygen(1k, ζ), the bank B generates a
CL signature key pair (pkB, skB) for message space M such that Zq ×Zq ×Zq ⊆
M . In UKeygen(1k, ζ), each user U generates a unique key pair (pkU , skU) =
(gu

2 , u) for a random u ∈ Zq. Recall that merchants are a subset of users.

Withdraw(U(pkB, skU , 2�),B(pkU , skB, 2�)): A user U interacts with the bank B
as follows:

1. U identifies himself to the bank B by proving knowledge of skU .
2. In this step, the user and bank contribute randomness to the wallet secret

s; the user also selects a wallet secret t. This is done as follows: U selects
random values s′, t ∈ Zq and sends a commitment A′ = PedCom(u, s′, t; r)
to B. B sends a random r′ ∈ Zq. Then U sets s = s′ + r′. U and B locally
compute A = gr′

2 A′ = PedCom(u, s′ + r′, t; r) = PedCom(u, s, t; r).

314 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

3. U and B run the CL protocol for obtaining B’s signature on committed values
contained in commitment A. As a result, U obtains σB(u, s, t).

4. U saves the wallet W = (skU , s, t, σB(u, s, t), J), where s, t are the wallet
secrets, σB(u, s, t) is the bank’s signature, and J is an �-bit coin counter
initialized to zero.

5. B records a debit of 2� coins for account pkU .

Spend(U(W, pkM),M(skM, pkB, 2�)): U anonymously transfers a coin to M as
follows. (An optimized version appears in the full version of this paper [13].)

1. M (optionally) sends a string info ∈ {0, 1}∗ containing transaction informa-
tion to U and authenticates himself by proving knowledge of skM.

2. M chooses a random R ∈ Z
∗
q and sends R to U . This is for the double-

spending equation (see Section 1).
3. U sends to M the serial number of the coin S = FDY

s (J), and security
tag T = pkUFDY

t (J)R. Now U must prove their validity, i.e., that S and T
correspond to wallet secrets (u, s, t) signed by B. This is done as follows:
(a) Let A = PedCom(J); prove that A is a commitment to an integer in the

range [0 . . . 2� − 1].
(b) Let B = PedCom(u), C = PedCom(s), D = PedCom(t); prove knowl-

edge of a CL signature from B on the openings of B,C and D in that
order,

(c) Prove S = FDY
s (J) = g

1/(J+s+1)
2 and T = pkUFDY

t (J)R = g
u+R/(J+t+1)
2 .

More formally, this proof is the following proof of knowledge:

PK{(α, β, δ, γ1, . . . , γ3) : g1 = (AC)αh1
γ1 ∧ S = gα

2∧
g1 = (AD)βh1

γ2 ∧ B = g1
δh1

γ3 ∧ T = gδ
2(g

R
2)β}

Use the Fiat-Shamir heuristic to turn all the proofs above into one signature
of knowledge on the values (S, T,A,B,C,D, g1, h1, n, g2, pkM, R, info). Call
the resulting signature Φ.

4. If Φ verifies, M accepts the coin (S, π), where π = (R, T, Φ), and uses this
information at deposit time.

5. U updates his counter J = J + 1. When J > 2� − 1, the wallet is empty.

Deposit(M(skM, S, π, pkB),B(pkM, skB)): A merchant M sends to bank B a
coin (S, π = (R, T, Φ)). If Φ verifies and R is fresh (i.e., the pair (S,R) is not
already in the list L of spent coins), then B accepts the coin for deposit, adds
(S, π) to the list L of spent coins, and credits pkM’s account; otherwise, B sends
M an error message.

Note that in this deposit protocol, M must convince B that it behaved hon-
estly in accepting some coin (S, π). As a result, our construction requires the
Fiat-Shamir heuristic for turning a proof of knowledge into a signature. If M
and B were the same entity, and the Withdraw and Spend protocols were inter-
active, then the bank B would not need to verify the validity of the coin that the

Compact E-Cash 315

merchant wishes to deposit, and as a result, we could dispense with the Fiat-
Shamir heuristic and thus achieve balance and anonymity in the plain model
(i.e., not just in the random oracle model).

Identify(ζ, S, π1, π2): Suppose (R1, T1) ∈ π1 and (R2, T2) ∈ π2 are two entries in
the bank’s database L of spent coins for serial number S. Then output ΠG =

(π1, π2) and pk =
(
TR1

2 /TR2
1

)(R1−R2)
−1

.
Let us explain why this produces the public key pkU of the double-spender.

Suppose coin S belonged to some user with pkU = gu
2 , then each Ti is of the

form gu+Riα
2 for the same values u and α. (Either this is true or an adversary

has been successful in forging a coin, which we subsequently show happens with
only negligible probability.) As the bank only accepts coins with fresh values of
R (i.e., R1 �= R2), it allows to compute:

(TR1
2

TR2
1

)(R1−R2)
−1

=
(guR1+R1R2α

2

guR2+R1R2α
2

)(R1−R2)
−1

= g
u(R1−R2)
(R1−R2)

2 = gu
2 = pkU .

VerifyGuilt(params , S, pkU ,ΠG) : Parse ΠG as (π1, π2) and each πi as (Ri, Ti, Φi).
Run Identify(params , S, π1, π2) and compare the first part of its output to the
public key pkU given as input. Check that the values match. Next, verify each
Φi with respect to (S,Ri, Ti). If all checks pass, accept; otherwise, reject.

Efficiency Discussion of System One. The dominant computational cost in these
protocols are the single and multi base exponentations. In a good implementa-
tion, a multi-base exponentation is essentially as fast as an ordinary exponenta-
tion. While we do not provide the full details of the Withdraw protocol, it can
easily be derived from the known protocols to obtain a CL-signature on a com-
mitted signature [14, 12]. Depending on how the proof of knowledge protocol is
implemented, Withdraw requires only three moves of communication.

The details of (an optimized version of) the Spend protocol are given in the
full version [13]. One can verify that a user must compute seven multi-base
exponentiations to build the commitments and eleven more for the proof. The
merchant and bank need to do eleven multi-base exponentiations to check that
the coin is valid. The protocols require two rounds of communication between
the user and the merchant and one round between the bank and the merchant.

Theorem 1. System One supports the algorithms (BKeygen, UKeygen, Withdraw,
Spend, Deposit, Identify) and guarantees balance, identification of double-spenders,
anonymity of users, and strong exculpability under the Strong RSA and y-DDHI
assumptions in the random oracle model.

Proof of Theorem 1 appears in the full version of this paper [13].

4.2 System Two: Wallets of Size O(� · k) with Traceable Coins

We now extend System One to allow coin tracing. Suppose for the moment that
the Identify algorithm recovered skU rather than pkU for a double-spender. We

316 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

change the withdrawal protocol so that the user U must also provide the bank B
with a verifiable encryption of her wallet secret s (used to generate the coin serial
numbers) under their own public key pkU . This way, if U double-spends, B can
compute skU , recover her secret s, and output the serial numbers Si = fDY

s (i),
for i = 0 to 2� − 1, of all coins belonging to U . (Observe that recovering skU in
the above scheme allows the bank to trace all coins from all wallets for U and
not just from the wallet from which the coin was double-spent!) If U does not
double-spend a coin, however, her anonymity is computationally guaranteed.

The verifiable encryption techniques of Camenisch and Damg̊ard, as de-
scribed in Section 3.6, can be applied to any semantically-secure encryption
scheme for our withdrawal protocol. Thus, all we need is a coin construction
which allows one to recover a double-spender’s skU . Luckily, the bilinear El
Gamal scheme recently proposed by Ateniese et al. (see Section 3.6) allows for
public keys of the form pkU = e(g3, g

u
3) = gu

2 , for u ∈ Zq, where knowing
skU = gu

3 is sufficient for decryption, given the mapping e : G3 × G3 → G2. By
setting our tag Ti = gu

3 (fDY
t (i))R in G3 (where R is a random value chosen by

the merchant), we can now recover skU = gu
3 from a coin spent twice.

One complication with setting T in G3 is that the Dodis-Yampolsky [31]
construction is no longer a PRF when DDH is easy, as it is in G3. This breaks
the anonymity of our coins. Thus, we need a new PRF.

PRF based on the Sum-Free DDH Assumption. Dodis [30] gave a defi-
nition of a sum-free encoding, and proved that if V is any sum-free encoding,
and 〈g3〉 is a group of order q, then fV

(·), defined as follows, is a PRF: the seed
for this PRF consists of values ti ∈ Zq, for 0 ≤ i ≤ 3�; let t = (t0, . . . , t3�); the

function fV
t is defined as fV

t (x) = g
t0

∏
V (x)i=1 ti

3 . This holds under the sum-free
DDH assumption (also introduced by Dodis [30]); note that it seems reasonable
to make such an assumption even of groups where DDH is easy.

For our purposes, we need the encoding V to have nice algebraic properties.
We define an encoding V : {0, 1}� �→ {0, 1}3� as V (x) = x◦x2, where ◦ denotes
concatenation, and multiplication is over the integers. In the full version of this
paper, we recall the sum-free definition and prove that this encoding is sum-free.

Our second system supports all algorithms mentioned in Section 2: (BKeygen,
UKeygen, Withdraw, Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership).
We assume a standard signature scheme (SG ,Sign,SVf). Then, UKeygen(1k, ζ)
runs SG(1k, ζ) → (vkU , sskU) and the bilinear El Gamal key generation algo-
rithm G(1k, ζ) → (ekU , dkU) = (e(g3, g

u
3), gu

3) = (gu
2 , gu

3), and outputs pkU =
(ekU , vkU) and skU = (dkU , sskU). The bank’s keys are as before.

Withdraw(U(pkB, skU , 2�),B(pkU , skB, 2�)): A user U interacts with the bank B
as follows:

1. U identifies himself to the bank B by proving knowledge of skU = (dkU , sskU).
2. As in System One, in this step U and B contribute randomness to the wallet

secret s, and the user selects wallet secrets t = (t0, . . . , t3�), where ti ∈ Zq for
all i. As before, this is done as follows: U chooses random values s′ and t, and

Compact E-Cash 317

sends the commitment A′ = PedCom(u, s′, t) to B, obtains a random r′, sets
s = s′ + r′, and then both U and B locally set A = gr′

2 A′ = PedCom(u, s, t).
3. U forms a verifiable encryption Q of the value s under his own key ekU = gu

3 .
(This encryption can be proved correct relative to commitment A.) Q is
signed by U . B verifies the correctness of Q and the signature σ on Q. U
obtains a CL signature from B on the values committed in A via the protocol
for getting a signature on a set of committed values.

4. B debits 2� from account pkU , records the entry (pkU , Q, σ) in his database
D, and issues U a CL signature on Y .

5. U saves the wallet W = (skU , s, t, σB(u, s, t), J), where J is an �-bit counter
set to zero.

Spend(U(W, pkM),M(skM, pkB, 2�)): The only change from System One is in
the calculation of the security tag T and the subsequent proof Φ. Assume info ∈
{0, 1}∗ and R ∈ Z

∗
q are obtained as before.

1. U sends the serial number of the coin S = fDY
s (J) = g

1/(J+s+1)
2 , the security

tag T = pkUfV
t (J)R = g

u+Rt0
∏

{i:V (J)i=1} ti

3 , and a proof Φ of their validity to
M. The signature proof Φ consists of:

(a) A0 = PedCom(J) and a proof that A is a commitment to an integer in the
range [0, . . . , 2�−1]; a commitment A1 = PedCom(J2) and a proof that it is a
commitment to the square of the opening of A0; and finally, a commitment
A2 = PedCom(V (J)) = PedCom(J ◦ J2) and a proof that it was formed
correctly.

(b) Bi = PedCom(V (J)i) for i = 1 to 3� (commitments to the bits of V (J)) and
proof that each Bi opens to either 0 or 1; that is, PK{(γ1, γ2) : Bi/g1 =
h1

γ1 ∨ Bi = h1
γ2},

(c) proof that A2 and {Bi} are consistent; PK{(γ) : A2/g1

∏3�
i=1 B2i−1

i = h1
γ},

(d) commitments to U ’s secret key u, and wallet secrets s and t: C = PedCom(u),
D = PedCom(s), Ei = PedCom(ti) for i = 0 to 3�, and proof of knowledge
of a CL signature on the openings of C, D, and all Ei’s in that order,

(e) the following commitments that will help in proving that T was formed
correctly: F0 = E0, Fi = PedCom(

∏
{j≤i:V (J)j=1} tj) for i = 1 to 3�,

(f) and a proof that S = fDY
s (J) and T = gu

3 (fV
t (J))R. Proving the statement

about S is done as in System One; proving the statement about T can be
done as follows: Prove, for every 1 ≤ i ≤ 3� that Fi was formed correctly,
corresponding to the committed value ti and the value contained in the
commitment Bi. That is to say:

PK{(α, β, δ) : Fi = PedCom(α) ∧ Fi−1 = PedCom(β) ∧
Ei = PedCom(δ) ∧

((
Bi = PedCom(0) ∧ α = β

) ∨
(
Bi = PedCom(1) ∧ α = βδ

))}

318 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

Note that, if all Fi’s are formed correctly, then F3� is a commitment to the
discrete logarithm of the value fV

t (J) = t0
∏3�

i=1 t
(V (J))i

i . So we can prove
the validity of tag T as follows:

PK{(α, β) : T = gα+βR
3 ∧ C = PedCom(α) ∧ F3� = PedCom(β)}

2. M and U proceed exactly as before.
As in System One, using the Fiat-Shamir heuristic we turn these multiple

proofs of knowledge into one signature, secure in the random-oracle model.

The Deposit protocol and VerifyGuilt algorithm follow the same outline as System
One. During deposit, the bank may store only (S,R, T) in database L to obtain
all desired functionality – except the ability to convince a third party of anything,
such as a double-spender’s identity or which coins belong to him. In the Identify
protocol, the proof of guilt ΠG will additionally include the part of the user’s
secret key recovered as gu

3 .

Trace(ζ, S, pkU ,ΠG,D, 2�): Parse ΠG as (dk , π1, π2) and pkU as (ekU , vkU). The
bank checks that e(g3, dk) = ekU ; if not, it aborts. Otherwise the bank searches
its database D, generated during the withdrawal protocol, for verifiable encryp-
tions tagged with the public key pkU . For each matching entry (pkU , Q, σ), B
does the following: (1) runs the Camenisch-Damg̊ard decryption algorithm on Q
with dk to recover the value s; and (2) then for i = 0 to 2� − 1, outputs a serial
number Si = fDY

s (i) and a proof of ownership Πi = (Q, σ, dk , i).

VerifyOwnership(ζ, S,Π, pkU , 2�): Parse Π as (Q, σ, dk , i). Check that σ is pkU ’s
signature on Q and that i is in the range [0, . . . , 2� − 1]. Next, verify that dk is
pkU ’s decryption key by checking that e(g3, dk) = ekU . Finally, run the verifiable
decryption algorithm on Q with dk to recover s′ and verify that S = fDY

s′ (i). If
all checks pass, the algorithm accepts, otherwise, it rejects.

Efficiency Discussion of System Two. In Withdraw, the number of communi-
cation rounds does not change from System One, but one of the multi-base
exponentiations will involve 3� bases and hence its computation will take longer.
Let us discuss the computational load of the verifiable encryption. For a cheating
probability of at most 2−k, the user must additionally compute k exps and 2k
encryptions with the bilinear El Gamal scheme. To verify, the bank also must
perform k exps but only k encryptions. Upon recovery of the double-spender’s
secret key, the bank needs to perform at most k decryptions and k exponentia-
tions. Furthermore, the bank needs to compute all the 2� serial numbers each of
which takes one exponentiation.

In Spend, the user must compute a total of 7 + 9� and 17 + 21� multi-base
exponentiations for the commitments and the signature proof, respectively. The
merchant and the bank also need to perform 17+21� multi-base exponentiations.
For each of these, there is one multi-base exponentiation with 3� exponents while
all the others involve two to four bases.

Compact E-Cash 319

Theorem 2. System Two supports the algorithms (BKeygen,UKeygen, Withdraw,
Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees bal-
ance, identification of double-spenders, tracing of double-spenders, anonymity of
users, and weak and strong exculpability under the Strong RSA, y-DDHI, and
SF-DDH assumptions in the random oracle model.

Proof of Theorem 2 appears in the full version of this paper [13]. Random
oracles can be removed as discussed in System One.

Acknowledgments. We are grateful to Yevgeniy Dodis for helpful comments.
Part of Jan Camenisch’s work reported in this paper is supported by the

European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT and by the IST Project PRIME. The PRIME projects receives
research funding from the European Community’s Sixth Framework Programme
and the Swiss Federal Office for Education and Science. The information in this
document reflects only the author’s views, is provided as is and no guarantee or
warranty is given that the information is fit for any particular purpose. The user
thereof uses the information at its sole risk and liability.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):591–610, 2000.

2. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Re-encryption
Schemes with Applications to Secure Distributed Storage. In NDSS ’05, pp. 29–43,
2005. Full version available at http://eprint.iacr.org/2005/028.

3. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT ’97, vol. 1233, pp. 480–494, 1997.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004, vol. 3027 of LNCS, pp. 54–73, 2004.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong Diffie-
Hellman. In CRYPTO ’04, vol. 3152 of LNCS, pp. 41–55, 2004.

6. F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT ’00, vol. 1807 of LNCS, pp. 431–444, 2000.

7. S. Brands. Electronic cash systems based on the representation problem in groups
of prime order. In Preproceedings of CRYPTO ’93, pp. 26.1–26.15, 1993.

8. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In EUROCRYPT ’97, vol. 1233 of LNCS, pp. 318–333, 1997.

9. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building
in Privacy. PhD thesis, Eindhoven Inst. of Tech. The Netherlands, 1999.

10. E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change. In SIAM, pp. 457–466, 1995.

11. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to group signatures and signature sharing schemes. In T. Okamoto,
editor, ASIACRYPT ’00, vol. 1976 of LNCS, pp. 331–345, 2000.

12. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspects. In proceedings of SCN ’04, vol. 3352 of LNCS, pp. 120–133, 2004.

320 J. Camenisch, S. Hohenberger, and A. Lysyanskaya

13. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash, 2005. Full
version available at http://eprint.iacr.org/2005/060.

14. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN 2002, vol. 2576 of LNCS, pp. 268–289, 2003.

15. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, vol. 3152 of LNCS, pp. 56–72, 2004.

16. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the
product of two safe primes. In EUROCRYPT ’99, vol. 1592, pp. 107–122, 1999.

17. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In CRYPTO ’99, vol. 1666 of LNCS, pp. 413–430, 1999.

18. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO ’03, vol. 2729 of LNCS, pp. 126–144, 2003.

19. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO ’97, vol. 1296 of LNCS, pp. 410–424, 1997.

20. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998.

21. A. Chan, Y. Frankel, and Y. Tsiounis. Easy come – easy go divisible cash. In
EUROCRYPT ’98, vol. 1403 of LNCS, pp. 561–575, 1998.

22. D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, pp.
199–203. Plenum Press, 1982.

23. D. Chaum. Blind signature systems. In CRYPTO ’83, pp. 153–156. Plenum, 1983.
24. D. Chaum. Security without identification: Transaction systems to make big

brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct. 1985.
25. D. Chaum. Online cash checks. In EUROCRYPT ’89, vol. 434, pp. 289–293, 1989.
26. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’90,

vol. 403 of LNCS, pp. 319–327, 1990.
27. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,

vol. 740 of LNCS, pp. 89–105, 1993.
28. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In CRYPTO ’94, vol. 839 of LNCS,
pp. 174–187, 1994.

29. I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with
hidden order. In ASIACRYPT 2002, vol. 2501 of LNCS, 2002.

30. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
Public Key Cryptography, vol. 2567 of LNCS, pp. 1–17, 2003.

31. Y. Dodis and A. Yampolsky. A Verifiable Random Function with Short Proofs an
Keys. In Public Key Cryptography ’05, vol. 3386 of LNCS, pp. 416–431, 2005.

32. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO ’86, vol. 263 of LNCS, pp. 186–194, 1986.

33. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO ’97, vol. 1294 of LNCS, pp. 16–30, 1997.

34. S. Jarecki and V. Shmatikov. Handcuffing big brother: an abuse-resilient transac-
tion escrow scheme. In EUROCRYPT, vol. 3027 of LNCS, pp. 590–608, 2004.

35. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT
’04, vol. 3027 of LNCS, pp. 571–589, 2004.

36. M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM, 51, Number 2:231–262, 2004.

37. T. Okamoto and K. Ohta. Disposable zero-knowledge authentications and their
applications to untraceable elec. cash. In CRYPTO, vol. 435, pp. 481–496, 1990.

38. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO ’92, vol. 576 of LNCS, pp. 129–140, 1992.

Compact E-Cash 321

39. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239–252, 1991.

40. M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatures. In EURO-
CRYPT ’95, vol. 921 of LNCS, pp. 209–219, 1995.

41. Y. S. Tsiounis. Efficient Electonic Cash: New Notions and Techniques. PhD thesis,
Northeastern University, Boston, Massachusetts, 1997.

	Introduction
	Definition of Security
	Preliminaries
	Complexity Assumptions
	Bilinear Maps
	Known Discrete-Logarithm-Based, Zero-Knowledge Proofs
	Pseudorandom Functions
	CL Signatures
	Verfiable, Bilinear El Gamal Encryption

	Two Compact E-Cash Systems
	System One: Wallets of Size $O(l + k)$ with Public Key Recovery
	System Two: Wallets of Size $O(l · k)$ with Traceable Coins

	References

