The Case for Interactive Data Exploration Accelerators
(IDEAs)

Andrew Crotty Alex Galakatos Emanuel Zgraggen Carsten Binnig Tim Kraska

Department of Computer Science, Brown University
{firstname_lastname}@brown.edu

ABSTRACT

Enabling interactive visualization over new datasets at “human
speed” is key to democratizing data science and maximizing human
productivity. In this work, we first argue why existing analytics
infrastructures do not support interactive data exploration and then
outline the challenges and opportunities of building a system specif-
ically designed for interactive data exploration. Finally, we present
an Interactive Data Exploration Accelerator (IDEA), a new type
of system for interactive data exploration that is specifically de-
signed to integrate with existing data management landscapes and
allow users to explore their data instantly without expensive data
preparation costs.

1. INTRODUCTION

Truly interactive visualization applications allow users to make
data-driven decisions at “human speed,” but traditional DBMSs are
ill-suited to serve this class of applications. Historically, DBMSs
assume (1) long data loading times (e.g., for index construction),
(2) text-based input and output (e.g., a SQL terminal), (3) relatively
simple OLAP queries, and (4) a one-shot (i.e., stateless) batch query-
ing paradigm, therefore making them an exceptionally bad fit for
interactive data exploration. At the same time, the expectation that
a new system supporting both data warehousing and interactive data
exploration will replace existing data management stacks is, simply,
unrealistic. Instead, a system designed specifically for interactive
data exploration must integrate and work seamlessly with existing
data infrastructures (e.g., data warehouses, distributed file systems,
analytics platforms).

In this paper, we outline our vision and present initial results
for a new system designed to enable interactive data exploration.
We suggest dropping the aforementioned assumptions of traditional
DBMSs and propose a new breed of systems that support (1) im-
mediate exploration of new datasets without the need for expensive
data preparation, (2) visual input and output, (3) complex analytics
tasks like machine learning (ML), and (4) “conversational” user
interactions with early results that progressively refine over time.
Furthermore, rather than aiming to replace or extend existing sys-
tems, our goal is to build the first Interactive Data Exploration

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4207-0/16/06. .. $15.00

DOIL: http://dx.doi.org/10.1145/2939502.2939513

Accelerator (IDEA) that connects to existing data management in-
frastructures in order to speed up query processing for visual data
exploration tools like Vizdom [8].

Figure 1 shows an example workflow created in Vizdom where a
user analyzes data gathered from the 1994 US census dataset [13].
In this example, the goal is to determine which features (shown
as boxes on the left) affect whether an individual earns a salary
of more than $50k annually. To answer this question, the user
first drags out the sex attribute to the canvas (Step A) to view
the distribution of males and females. The user then drags out the
salary attribute, links these two visualizations, and selects the
female bar to view the filtered salary distribution for females only
(Step B). A duplicate of the salary visualization connected with
a negated link (dotted line) allows a comparison of the relative
salaries of males and females (Step C). After some analysis, the
user decides to check whether an individual’s education level
coupled with sex has an impact on salary. Finally, linking
education to each of the salary visualizations and selecting
only individuals with a PhD (a rare subpopulation) creates a complex
workflow comparing the respective salaries of highly educated males
and females (Step D). From this analysis, the data seem to suggest
that highly educated females earn less money annually than their
male counterparts. To further explore this finding, the user might
continue the analysis by testing the impact of additional attributes,
applying statistical techniques (e.g., a t-test) to validate the finding,
or performing various ML tasks (e.g., classification, clustering) to
test other hypotheses. A more complete video demonstration of
Vizdom is available at [6].

Throughout this data exploration process, the backend system
must consistently provide response times low enough to guarantee
fluid user interactions in the frontend. In fact, a recent study [14]
shows that even small delays (more than 500ms) significantly de-
crease a user’s activity level, dataset coverage, and insight discovery
rate. No existing techniques, though, can guarantee interactive la-
tencies while also addressing all of our previously stated goals. For
example, existing data warehouses require a full copy of the data
and suffer from long loading times, which contradicts our goal of
being able to start exploring a new dataset immediately without ex-
pensive data preparation (e.g., indexing, compression). Furthermore,
many existing data warehouse indexing techniques suffer from the
“curse of dimensionality” and do not scale well beyond a handful of
attributes [4]. Restricting the number of attribute combinations is
also not an option, since the core idea of data exploration is to look
for new, unexplored relationships in the data. Finally, dynamic data
reorganization techniques (e.g., cracking [12]) do not solve the high-
dimensionality problem and require sorting the data based on user
access patterns, thereby violating the key randomness assumption
of many online algorithms.

Female Male

<=50k >560k

<=50k >50k

Step C

L e e

<=50k >50k

Step B
Male <=50k >50k
Pre-K HS Pr% <=50k >50k
Step D

Figure 1: Example Workflow to analyze Salary Distributions

In order to return early results for long-running queries over large
datasets, online aggregation techniques [11, 17] provide approxi-
mate answers with an estimated error, and several newer analytics
frameworks (e.g., Spark [19], Flink [2]) now support online aggre-
gation using a streaming execution model. We therefore believe that
online aggregation is a good starting point for Vizdom’s backend,
since these techniques will allow the system to quickly provide
initial results that are refined over time as more data is scanned.
However, while online aggregation techniques work well for ap-
proximating results to queries on common subpopulations in the
data, they start to break down when applied to increasingly rare
subpopulations (e.g., when the user in the example selected individ-
uals with a PhD), since scanning the base data in a random order
might not provide enough of these instances to provide an accurate
estimate. This problem is quite common in many interactive data
exploration use cases, where rare events often contain the most inter-
esting insights (e.g., the habits of the few highly valued customers).
Although disproportionate stratified sampling can help in these cases
by overrepresenting rare data items, these samples typically need
to be fully constructed before data exploration even begins [1, 5],
contradicting our goal of enabling immediate exploration of new
datasets. More importantly, though, most of these systems make the
strong assumption that the entire workload is known a priori in order
to create appropriate samples, whereas our goal is to allow users to
explore data in new and potentially unanticipated directions.

In this paper, we make the case for Interactive Data Exploration
Accelerators (IDEAs), which allow users to connect to existing data
sources and immediately begin the process of visual data exploration.
In summary, we make the following contributions:

o We outline the challenges and opportunities associated with
building an IDEA (Section 2).

e We describe the design and unique contributions of the A-
WARE system, the first IDEA (Section 3).

e We present our initial results, which show that our prototype
can provide interactive response times for different data ex-
ploration workflows compared to more traditional approaches
(Section 4).

2. CHALLENGES AND OPPORTUNITIES

Designing an accelerator for interactive data exploration with a
human-in-the-loop frontend requires solving a set of very unique
research challenges while also opening the door to several inter-
esting opportunities. In this section, we first outline some of the
requirements and challenges for an IDEA, followed by an overview
of some of the unique opportunities to address them.

2.1 Challenges

Interactive data exploration has a very unique set of requirements
(e.g., response time guarantees), many of which are pushing the
boundaries of what is feasible today.

Interactive Latencies: By far, the most important challenge in
supporting interactive data exploration is to display a result within
the latency requirement. As [14] showed, even small delays of more
than 500ms can significantly impact the data exploration process
and the number of insights a user makes. Therefore, IDEAs need to
maintain certain response time guarantees in order to provide a fluid
user experience.

Rare Data Items: Data exploration often involves examining
the tails of a distribution to view the relatively rare data items. For
example, real world datasets are rarely perfectly clean and often
contain errors (which are typically rare) that can still have a profound
effect on the overall results. Similarly, valid outliers and the tails
of the distribution are often of particular interest to users when
exploring data (e.g., the few billionaires in a dataset, the super users,
the top-k customers, the day with the highest traffic). Unfortunately,

Vizdom A-ware Data Sources
Progressive
Updates _ Result Cache . Data Warehouses
8 S || 4= Oracle, SAP HANA, ...
g2z % E
‘@0 o 8
2 Sample Store -3 Raw Files
: = - £
>4 - Random + Stratified Samples « s !:_l:+ - HDFS, S3, .
23 Se
© % E Analytics Frameworks
& ©
> Indexes @ = Spark, Hadoop, ...
Use': Adaptive Tail Indexes + VisTrees
Interactions

Tupleware

Figure 2: BIDES Architecture Overview

for rare events and the tail of the distribution, sampling techniques
do not work well since they often miss rare items or require a priori
knowledge of the workload, a challenge when designing an IDEA.

Connect and Explore: Ideally, the user should be able to con-
nect to a dataset and immediately start exploring it. However, this
requirement implies that there is no time for data preparation and
the system has to build all index structures on the fly. Another
implication of the connect and explore paradigm is that the system
has to stream over larger datasets (from the sources) and may not
be able to hold the entire dataset in memory (or even on disk). As
outlined in the introduction, online aggregation methods are a good
fit to overcome this challenge, since they provide an immediate esti-
mate (with error bars) over the incoming stream. However, online
aggregation techniques assume that the data is random, which might
be false since some data sources (e.g., data warehouses) often sort
the data on some attribute. This can result in a biased estimate of
the result and invalid error bars. Similarly, no good estimates are
possible if the source returns the data in some chronological order
and if there is some (unknown) correlation between time and the
value of interest (e.g., the sales are increasing over time).

Interactive ML: ML algorithms can often take a lot of time to
build a single model. There has been a lot of work in online machine
learning algorithms that can simultaneously update a model using
several data items. Yet, the focus of these techniques is usually
different. Rather than aiming to provide a quick answer, the goal
of online learning is to determine which data item provides the
biggest benefit (e.g., to prioritize which data labels to generate
next). Furthermore, these techniques are often not the first choice
for data scientists during data exploration; the common wisdom is
to start with simple techniques first and then add complexity later.
Consequently, there is a need for a new set of standard techniques
(e.g., basic Lasso Regression, Random Forests, etc.) with interactive
latency guarantees.

Consistency: Since fast response times are often only possible
by approximating results and parallel computation, inconsistencies
in the view can occur. For example, in Figure 1(B), the combined
salary bars on the right visualization may not add to the total number
of females shown in the left visualization, leading to an inconsistent
state. While we initially assumed that inconsistencies pose an im-
portant challenge, it turns out that this problem only appears in a
few corner cases as explained later in more detail.

Quantifying Risk: A interactive data exploration system with a
visual interface allows users to explore hundreds of hypotheses in a
very short amount of time. Yet, with every hypothesis test (either
in the form of an explicit statistical test or through a more informal
visualization), the chance of finding something by chance increases.
Additionally, the visual interface can make it easier to overlook
other challenges, (e.g., “imbalance of labels” for a classifier) which

can lead to incorrect conclusions. Therefore, quantifying the risk is
extremely important for an interactive data exploration system.

2.2 Opportunities

Although there are several challenges to address, there are many
unique opportunities, since data exploration involves close interac-
tions between analysts and the system. Many of these challenges
have not yet been explored within the data management community.

Human Perception: One of the most interesting opportunities
stems from the fact that all results are visualized. Therefore, often
precise answers are not needed and approximations suffice. Further-
more, the human eye has limitations and humans are particularly
bad at understanding the impact of error bars [9]. The system can
exploit both of these properties to provide faster response times (i.e.,
only compute what is perceived by the user).

Think Time: Although the user expects subsecond response
times from the system, the system’s expectation from the user is
different; there might be several seconds (or sometimes even min-
utes) between user interactions. During this time, the system not
only has the chance to improve the current answers on the screen,
but also prepare for any future operations. For instance, in our
running example, the user might have already dragged out the sex
and salary attribute, but not yet linked them together. Given that
both attributes are on the screen, the system might begin creating
an index for both attributes. Should the user decide to link the two
visualizations and use one as a filter, the index is already created to
support this operation.

Interaction Times: Similar to think time, the system can also
leverage the user interaction time to provide faster and more accurate
answers. For example, it takes several hundred valuable millisec-
onds to drag an attribute on the interactive whiteboard or to link
two visualizations together. Similarly, to adjust the hyperparameters
of a ML algorithm, the user first click on the parameter button and
then moves a slider. In contrast to the previous think time, user
interactions are much shorter but usually provide more information
to the system about the intent of the user.

Query Sessions and Reuse: In contrast to one-shot DBMS ses-
sions, data exploration is an iterative, session-driven process where
a user repeatedly modifies a workflow after examining the results
until finally arriving at some desired insight. This session-driven dis-
covery paradigm provides a lot of potential to reuse results between
each interaction and modification.

Data Source Capabilities: Traditional analytics systems like
Spark and streaming systems like Streambase assume that they
connect to a “dumb” data source. However, many data sources
are far from “dumb”. For instance, commonly the data source is
a data warehouse with existing indexes, materialized views, and
many other advanced capabilities. While these capabilities do not

directly fulfill the needs for interactive data exploration, they can
still be used to reducing load and network traffic between the data
warehouse and the accelerator. Furthermore, there has been work on
leveraging indexes [16] to retrieve random samples from a DBMS.
These techniques, together with the possibility to push down UDFs
to randomize data, provide a feasible solution to the previously
mentioned bias problem.

Modern Hardware: Finally, there are several modern hardware
trends that can significantly improve the amount of work that can be
done in less than 500ms. While there has been already a lot of work
in leveraging GPUs for data exploration [15], most of the existing
solutions focus on single machine setups and ignore the potential of
small high-performance clusters. Small high performance clusters
can help to significantly increase the amount of available main
memory (1-2 TB of main memory is not uncommon with 8 machine
cluster), which is crucial for interactive speeds, while avoiding the
problems of fault-tolerance and stragglers that come with large
cloud deployments. At the same time, fast network interconnects
with RDMA capabilities are not only more affordable for smaller
clusters, but also offer unique opportunities to decrease latencies.
For example, transferring 2K B with TCP/IP over 1GB Ethernet
requires 100us vs only 2us with RDMA and InfiniBand FDR 4x.
However, taking full advantage of the network requires carefully
redesigning the storage layer of the system in order to enable remote
direct memory access [3].

3. THE A-WARE SYSTEM

The A-WARE system is the first IDEA built specifically to en-
able users to visually explore large datasets through “conversational”
interactions. Our prototype addresses many of the previously men-
tioned challenges (Section 2), applying novel progressive sampling,
indexing, and query optimization techniques in order to provide in-
teractive response times. In this section, we first provide an overview
of our proposed architecture, followed by highlights of research in-
sights and contributions.

3.1 Architecture

A-WARE is part of Brown’s Interactive Data Exploration Stack
(BIDES), which is shown in Figure 2. The Vizdom frontend provides
a visual data exploration environment specifically designed for pen
and touch interfaces, such as the recently announced Microsoft
Surface Hub. Figure 2 includes an actual picture of the Microsoft
Surface Hub in our lab running Vizdom to explore a medical dataset.
A demo video of Vizdom can be found here [6]. Currently, Vizdom
connects to A-WARE using a standard REST interface, which in
turn connects to the data sources using the appropriate protocols
(e.g., ODBC). These data sources can include anything from legacy
data warehouses to raw files to advanced analytics platforms (e.g.,
Spark [20], Hadoop [18]).

As shown in the figure, Vizdom connects to A-WARE, which acts
as an intelligent cache and streaming engine that uses Tupleware [7]
as a runtime for more complex analytics tasks. Tupleware is a gen-
eral purpose distributed analytics framework specifically designed
for small high-performance clusters, thereby allowing A-WARE to
take full advantage of modern hardware (see [7] for more details).

A-WARE roughly divides the memory into three parts: the Result
Cache, the Sample Store, and space for Indexes. When triggered
by an initial user interaction, A-WARE begins ingesting data from
the various data sources, speculatively performing operations and
caching the results in the Result Cache to support possible future
interactions. At the same time, A-WARE also caches all incoming
data in the Sample Store using a compressed row format. When the
available memory for the Sample Store is depleted, A-WARE starts

to update the cache using a reservoir sampling strategy to eventually
create a representative sample over the whole dataset. Furthermore,
A-WARE might decide to split up the reservoir sample into several
stratified subsamples to overrepresent the tails of the distribution, or
to create specialized indexes for potential future queries. All these
decisions are constantly optimized based on both past and current
user interactions. For example, if the user drags a new attribute
onto the canvas, the system might allocate more resources to the
dragged attribute and preparation for potential follow-up queries.
At the same time, A-WARE constantly streams increasingly precise
results to the frontend as the computation progresses over the data,
along with indications about both the completeness and current error
estimates.

3.2 Research Findings and Contributions

In this section, we highlight a few selected research findings and
contributions of A-WARE.

Neither a DBMS nor a Streaming Engine: An IDEA is neither
a DBMS nor a streaming engine, instead has an entirely unique
semantics. Unlike DBMSs, queries are not one-shot operations that
return batch results; rather, workflows are constructed incrementally,
requiring fast response times and progressive results that refine over
time. At the same time, streaming engines traditionally deploy pre-
defined queries over infinite data streams, whereas an IDEA is meant
to enable free-form exploration of data sampled from a deterministic
system (e.g., a finite data source). Fundamentally, A-WARE acts
as an intelligent, in-memory caching layer that sits in front of the
much slower data sources, managing both progressive results and
the samples used to compute them. Oftentimes, A-WARE has the
opportunity to offload pre-filtering and pre-aggregation operations
to an underlying data source (e.g., perform a predicate pushdown to
a DBMS), or even transform the base data by executing a custom
UDF in an analytics framework.

Finally, in contrast to traditional DBMSs and streaming engines,
users compose queries incrementally, therefore resulting in simul-
taneous visualizations of many component results with varying
degrees of error. Maintaining different component partial results
rather than single, exact answers imposes a completely new set of
challenges for both expressing and optimizing these types of queries.
Currently, our A-WARE prototype uses a preliminary interaction
algebra to define a user’s visual queries.

Visual Indexes: Similar to the algebra and optimizer, we also
found that traditional indexes are not optimal for interactive data ex-
ploration tasks. Most importantly, existing techniques either sort the
data (e.g., database cracking) or do not naturally support summary
visualizations. As previously mentioned, sorting can destroy data
randomness and, consequently, the ability to provide good estimates.
Similarly, indexes generally index every tuple without considering
any properties of the frontend (e.g., human perception limitations,
visualization characteristics). This approach often results in very
large indexes, especially with increasingly large samples or highly
dimensional data.

For example, some visualizations (e.g., histograms) require the
system to scan all leaf pages in a traditional B-tree, since this index
is designed for single range requests rather than providing visual
data summaries. We therefore developed VisTrees [10], a new
dynamic index structure that can efficiently provide approximate
results specifically to answer visualization requests. The core idea
is that the nodes within the index are “visually-balanced” to bet-
ter serve visual user interactions and then compressed based on
perception limitations.

Sample Management: As previously mentioned, A-WARE caches
as much data as possible from the underlying data sources in order

L2

S3 V3 L3 S4 S5 R2 L4 S6

Interaction| V1 V2 L1 S1 S2 R1
MonetDB |0.476 0.480
Online Agg.| 0.139] 0.410 0.142
IDEA 0.140| 0.419 0.492

0.610
0.138

0.436 0.549 0.531
0.458

0.4610.597 0.631

Figure 3: Latencies (in seconds) for Workflow 1

Interaction
MonetDB
Online Agg.
IDEA

Figure 4: Latencies (in seconds) for Workflow 2

to provide faster approximate results, since most data sources are
significantly slower. For example, the memory bandwidth of mod-
ern hardware ranges from 40 — 50GB/s per socket [3], whereas we
recently measured that PostgreSQL and a commercial DBMS can
only export 40 — 120MB/s, even with a warm cache holding all data
in memory. Although DBMS export rates may improve in the future,
A-WARE’s cache will still remain crucial for providing approximate
answers to visual queries and supporting more complex analytics
tasks (e.g., ML algorithms).

If the cached data exceeds the available memory, A-WARE needs
to carefully evict stored tuples while retaining the most important
data items in memory. For example, caching strategies like LRU
do not necessarily maintain a representative sample. Therefore, A-
WARE uses reservoir sampling instead to evict tuples while preserv-
ing randomness. Furthermore, A-WARE also needs to maintain a set
of disproportionate stratified samples that overrepresent uncommon
data items in order to support operations over rare subpopulations.

The necessity to maintain different types of potentially overlap-
ping samples poses many interesting research challenges. For exam-
ple, deciding when and what to overrepresent is a very interesting
problem, though A-WARE currently employs a greedy algorithm
that attempts to create a stratified sample for each operation. Fur-
thermore, A-WARE can even use stratified samples to overcome
the label imbalance problem encountered by many ML algorithms
(e.g., overrepresenting the rare subpopulation of individuals with
a PhD when training a classifier to predict education level). Yet,
making these types of decisions can have profound effects on the
overall performance, error estimates, and a user’s understanding of
the model, all of which we are still actively investigating.

Probability Formulation: While developing A-WARE, we ob-
served that many visualizations rely on the observed frequencies
in the underlying data, or estimates of the probability of observing
certain data items. For example, a bar chart over a nominal attribute
is simply a visualization of the relative frequencies of the possible
attribute values (i.e., a probability mass function), and a histogram of
a continuous attribute visually approximates the attribute’s distribu-
tion (i.e., a probability density function). Although seemingly trivial,
this observation prompted us to reconsider online aggregation as a
series of probability expressions. This novel probability formulation
actually permits a wide range of interesting optimizations including
taking advantage of the Bayes’ theorem to maximize the reuse of
results. Similarly, our probability formulation can even be leveraged
when running some statistical tests or ML algorithms.

Our current implementation of A-WARE therefore manages a
cache of results that stores previously computed frequencies and
error estimates for reuse in future queries. We plan to expand
upon this idea, including the new optimizations enabled by the new
formulation, in future work.

Inconsistencies: Interactive response times often require com-
puting approximate answers in parallel, which can lead to incon-
sistencies in concurrent views (e.g., the combined salary bars
shown in Figure 1(B) may not sum to the total number of females).
Similarly, an outlier that appears in one result visualization may not
yet be reflected in another, causing the user to draw a potentially
incorrect conclusion.

Although initially assuming that inconsistencies would pose an
important challenge for A-WARE, we found that this problem only
arises in a few corner cases, and we did not observe any consistency
issues during our user study. In particular, A-WARE’s result reuse
and sampling techniques work together to mitigate many poten-
tial consistency problems, and any noticeable differences tend to
disappear before the user can even recognize them.

4. INITIAL RESULTS

In this section, we compare A-WARE to other alternatives, in-
cluding a column-store DBMS (MonetDB 5) and a traditional im-
plementation of online aggregation. We ran all benchmarks on a
single dual socket machine with Intel E7-8830 processors (8 cores,
24MB cache), 512GB RAM, and 2TB RAID 10 HDDs. Overall,
our benchmarks show that our techniques can almost always deliver
results within the human interactivity threshold.

4.1 Data and Workflows

Our experiments use a modified version of the Adult dataset [13],
a subset of the 1994 US census. This dataset includes 15 attributes
(nine nominal, six continuous), such as sex, education, and a bi-
nary label indicating whether an individual earns more than $50k
annually. In order to test scalability, we scaled the data size while
maintaining the underlying distribution of values. Here, we only
show results for the 10GB dataset. For the evaluation, we simulated
two workflows, both of which were derived from interaction logs
collected during an ongoing user study with 35 participants. In our
study, students from the Intro to Data Science class at Brown Uni-
versity were able to start using the tool to explore several datasets
after only a short introduction to Vizdom.

In the following, we describe the two workflows in more detail
and highlight every user interaction in bold text, with V# referring
to the creation of a new visualization, L# linking two visualizations,
S# selecting an attribute as a filter condition on one visualization,
and R# removing a link or visualization.

Workflow 1: The goal of the first workflow is to determine
how attributes like sex and education influence an individual’s
occupation. The first step in this workflow is to drag out the
sex attribute (V1) followed by education (V2). Next, V1 and
V2 are linked (LL1), and the female bar in V1 is selected (S1). Then,
the selection is toggled to include only males (S2) before removing
the link (R1), which triggers a rerendering of V2. To examine the
distribution of males and females for various education levels, V2
and V1 are linked in the opposite direction (L2), with only the
PhDs selected first (S3). Dragging occupation to the canvas
(V3) and linking with education (L3) then shows the breakdown
of occupations for PhDs. Switching the selection from PhD to HS-
grad (S4) and then back to PhD (S5) enables a quick comparison

of the impact of education on both sex and occupation. Finally,
removing L2 and creating a new link from V1 to V3 (L4) shows the
distribution of occupations for only males with PhDs, which is then
compared to the occupations of females with PhDs by switching the
selection in V1 (S6).

Workflow 2: The second workflow is a continuation of the first,
where the goal is to understand how the explored features affect the
salary attribute (similar to the final workflow shown in step D of
Figure 1). After analyzing the impact of sex and education on
occupation, the salary attribute is dragged onto the canvas
(V4) and linked with V3, filtering only the salaries for the subset
selected in the previous workflow (LS). Selecting only the Prof-
specialty occupation (S7) further filters the displayed salaries. In
order to compare males and females, L4 is removed (R3), and V1 is
re-linked to V4 directly (L6). V4 is duplicated by dragging out the
salary attribute (VS5), followed by linking both V3 (L7) and V1
(L8) to the newly created V5. Finally, negating L8 (N1) produces
a visualization that compares the salaries of male Prof-specialty
workers with doctorates with their female counterparts.

4.2 Discussion

Figures 3 and 4 show the latencies for each step in the previously
described workflows. Our main design goal is to provide usable
(approximate) results within the human interactivity threshold of
500ms. Therefore, each cell in the tables are color-coded to indicate
whether the query latency is below the threshold, ranging from
green (significantly below the threshold) to red (above threshold).
Orange/Yellow values are just around 500ms.

Since MonetDB does not support approximate query answers,
the response times in Figures 3 and 4 show how long MonetDB
requires to compute the entire result. For example, interaction V2,
creating the histogram over the attribute education, required 2.1s,
far above the interactivity threshold.

In contrast, the traditional Online Aggregation and IDEA support
approximate answers. For those two system, we report the latency
to return an answer with less than a 1% standard error. That is,
the IDEA system would even be able to return an earlier but less
accurate answer.

As Figures 3 and 4 show, IDEA can almost always guarantee
a response time below the 500ms threshold, while MonetDB and
online aggregation frequently require several seconds.

The reasons are manifold: MonetDB is a column-store that heav-
ily leverages both sorting and heavy compression to significantly
improve query performance. In some cases, MonetDB can return
results within the threshold; however, as the workflow progresses,
queries begin to take several seconds because they involve com-
pound predicates with several attributes. Similarly, our implemen-
tation of online aggregation can answer the simpler queries almost
immediately, but has difficulty with more selective predicates as
tuples satisfying the predicate become harder to find. To our sur-
prise, MonetDB is sometimes faster than the online aggregation
techniques (e.g., interaction S3). In most cases, the difference can
be explained by the fact that MonetDB has the luxury of indexes and
pre-processing time (e.g., to create more compact and compressed
data), a luxury which would not exist within the connect and explore
paradigm.

On the other hand, our A-WARE prototype augments basic online
aggregation with additional optimizations. By intelligently sampling
and caching (probability) results, our system is able to leverage
past user interactions and immediately render some visualizations
without rerunning the query (R1, S5, R2, V5, L7, L8). Our novel

adaptive indexing techniques allow our system to scan only relevant
subpopulations while saving space by indexing only rare tuples,
which can substantially reduce latency for highly selective predicates
(L3, L5, S7). Finally, since we reformulate the problem to use
probabilities, our system can perform several query rewrites that are
based upon probability theory, in order to to leverage past results and
almost instantly return the result for a new query (S2, S3, S6, R3,
N1). Through the combination of these novel techniques, our system
almost always returns a result to the frontend within the interactivity
threshold. Finally, the two interactions S4 and S7, which are above
the interactivity threshold, could be brought below the threshold by
using the previously mentioned prefetching strategies (which are
not yet implemented) or tolerating a slightly higher error.

5. CONCLUSION

In this paper, we presented the case for Interactive Data Explo-
ration Accelerators (IDEAs), which seek to maximize human pro-
ductivity by allowing users to rapidly gain insights from new large
datasets. We outlined some of the insights we gained from building
one of the first IDEA systems and presented some initial results for
an early prototype, called A-WARE, to show the advantages of our
techniques compared to more traditional approaches.

6. ACKNOWLEDGMENTS

This research is funded in part by the Intel Science and Technol-
ogy Center for Big Data, the NSF CAREER Award 11S-1453171,
the Air Force YIP AWARD FA9550-15-1-0144, NSF IIS-1514491,
and gifts from SAP, Oracle, Google, and Mellanox.

7. REFERENCES

[1] S. Agarwal et al. BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data. In EuroSys, pages 29-42, 2013.

[2] Apache Flink. http://flink.apache.org/.

[3] C.Binnig et al. The End of Slow Networks: It’s Time for a Redesign. In VLDB,
pages 528-539, 2016.

[4] C.Bohm, S. Berchtold, H. Kriegel, and U. Michel. Multidimensional Index
Structures in Relational Databases. J. Intell. Inf. Syst., pages 51-70, 2000.

[5] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized Stratified Sampling for
Approximate Query Processing. TODS, 2007.

[6] A. Crotty et al. Vizdom Demo Video. https://vimeo.com/139165014.

[7]1 A. Crotty et al. An Architecture for Compiling UDF-centric Workflows. In

VLDB, pages 1466-1477, 2015.

A. Crotty et al. Vizdom: Interactive Analytics through Pen and Touch. In VLDB,

pages 2024-2035, 2015.

G. Cumming and S. Finch. Inference by Eye: Confidence Intervals and How to

Read Pictures of Data. American Psychologist, pages 170-180, 2005.

[10] M. El-Hindi, Z. Zhao, C. Binnig, and T. Kraska. VisTrees: Fast Indexes for
Interactive Data Exploration. In HILDA, 2016.

[11] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. In SIGMOD,
pages 171-182, 1997.

[12] S.Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In CIDR, pages
68-78, 2007.

[13] M. Lichman. UCI Machine Learning Repository, 2013,

[14] Z.Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual
Analysis. TVCG, pages 2122-2131, 2014.

[15] Z.Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data.
In EuroVis, pages 421-430, 2013.

[16] F. Olken and D. Rotem. Random Sampling from Relational Databases. In
VLDB, pages 160-169, 1986.

[17] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggregation for
Large MapReduce Jobs. In VLDB, pages 1135-1145, 2011.

[18] The Apache Software Foundation. Hadoop. http://hadoop.apache.org.

[19] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
Streams: Fault-tolerant Streaming Computation at Scale. In SOSP, pages
423-438, 2013.

[20] M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-memory Cluster Computing. In NSDI, pages 15-28, 2012.

[8

9

