Goal: Enable autonomous agents to learn how to plan efficiently in massive stochastic state spaces using PFS.

Want to Infer:

\[
Pr(a_i \in A^* | s, G)
\]

(Probability that action \(a \) is optimal for state \(s \) given goal \(G \) — i.e. a Bernoulli)

Estimating Action Optimality:

Tabularly solve a policy for easy worlds in domain, estimate action optimality

Use a set of binary features, \((\phi) \), to featurize states where \(p \) is a propositional function and \(g \) is a goal

Train Naive Bayes classifiers on easy world policies

\[
Pr(a_i \in A^* | s, G) \approx \frac{C(\phi_j, a_i)}{C(a_i)} + C(a_i)
\]

Action Pruning:

Prune actions unlikely to be involved in optimal plan, thereby pruning states, plan in resulting state space

Leveraging Results:

Learning Results:

- **Bellman Updates:**
 - No Pruning
 - Expert Pruning
 - Learned Pruning

- **Plan Cost:**
 - No Pruning
 - Expert Pruning
 - Learned Pruning

- **CPU Time:**
 - No Pruning
 - Expert Pruning
 - Learned Pruning

Learning:

Goal: Produce useful propositional functions given only an OO–MDP problem representation.

Relationally Featurize States:

First gather RL agent observations in domain

Featurize observed states based on the relative values of object attributes.

\[
\phi_i = \begin{cases}
1 & p_i(s) \wedge g_i(G) \\
0 & \text{otherwise}
\end{cases}
\]

Create Data Sets for Each DOORMAX Prediction:

Algorithm 1: DOORMAX Learns Modified to Generate \(D, \psi \)

Experimental Results

- **Minecraft Results:**
 - Bellman Updates
 - Plan Cost
 - CPU Time

- **Robotic Cooking Assistant Results:**
 - Bellman Updates
 - Plan Cost
 - CPU Time

Learning Results:

- **Agreement with PFs:**
 - DOORMAX Without PFs

Goals:

- Produce useful propositional functions given only an OO–MDP problem representation.

- Produce useful propositional functions given only an OO–MDP problem representation.