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Abstract

The concept of relativization has recently been a topic of great
interest among complexity theorists. It has been used to both give
evidence on whether a relation is nontrivial to prove and to show how
sophisticated a certain proof technique is. Most notably relativization
has been used to show that no standard diagonalization method is
enough to prove that P 6= NP. This paper will summarize some of
the results in this field and will provide a detailed proof showing that
relative to a random oracle A, PA 6= NPA is true with probability 1
(ie. µ({A : PA = NPA}) = 0). In addition, Bennet and Gill’s random
oracle hypothesis will be discussed.

1 Introduction

In the relativization model, we will adapt our model of a turing machine by
giving it additional information at no computational cost. The idea is that
in this relativized world of computation, a turing machine can essentially
compute certain problems (ie SAT ) in one step. The language which it
can recognize for free is called the oracle. We note that such a machine
is physically impossible and that the oracle can even be an uncomputable
language.

Definition 1 An oracle is a language A. An oracle turing machine,
denotes as MA, is a standard turing machine with an additional tape denoted
as the oracle tape. The machine can copy characters onto the oracle tape and
in a single step receive definitive knowledge of whether the string is in the
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language A. If C denotes a complexity class, CA is defined as the relativized
complexity class. Namely, CA = {MA : M ∈ C}.
For example, PA represents all polynomial time oracle A turing machines. It
will also be useful to define the characteristic sequence of an oracle.

Definition 2 The characteristic sequence of an oracle A is an infinite
binary sequence where the xth bit, denoted as A(x), is 1 iff x ∈ A.

The first uses of oracles in complexity theory were to take some computa-
tional relation which were unproven in the unrelativized case and to show that
there exists oracles such that both possibilities of the relation are possible in
the relativized case. Most notably, Baker, Gill and Solovay proved that there
exists an oracle A such that PA = NPA and an oracle B such that PB 6= NPB

(see [BGS75]). The first statement will hold for any PSPACE-complete lan-
guage since NPA ⊆ NPSPACE ⊆ PSPACE ⊆ P A and the second statement
was proven by taking the language LA = {w : ∃x ∈ A[|x| = |w|]} and con-
structing and oracle A such that for all machines MA

i , L(MA
i ) 6= LA.

It has been shown that any possible relations between the classes P, NP,
PSPACE, and EXPTIME hold for suitable oracles. It has been show that
there is an oracle C such that NPC = coNPC but Pc 6= NPc. There
are also oracles D, E such that NPD 6= coNPD and NPe 6= coNPE but
PD = NPD ⋂

coNPD and PE = NPE ⋂
coNPE. Furthermore, it has been

proven that relative to some oracles NP
⋂

coNP has a complete problem
while to other oracles it does not (see [Sip82]) .

The complexity problems above are some of the most important problems
in the field and remain unproved in the unrelativized case. The fact that
there exists oracles such that either relation can hold gives strong evidence
of the nontriviality of the statement. Many of the standard proof techniques
employed in complexity theory hold in the relativized case. This means that
if we had a proof in the unrelatived case, the same proof technique would
work in the relativized case. Therefore, none of these methods are strong
enough to prove any of the above relations. Additionally, this introduces the
concept of complexity of proof techniques.

One such proof technique is the “standard” diaganolization method. For
example, suppose we had a proof which showed that P 6= NP via a typical
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diaganalization argument, then the same method could prove that PA 6= NPA

for all oracles A which is a contradiction. Another example is the rather triv-
ial statement below which will be useful later:

Theorem 3 If NPA 6= coNPA, then PA 6= NPA.

Proof Since any deterministic class including relativized classes is closed un-
der complementation, if PA = NPA, then NPA = PA = coPA = coNPA. 2

Therefore, in order to prove any statement such as whether NP
⋂

coNP has a
complete problem would require a method sophisticated enough such that it
won’t hold under relativization. For the complexity classes IP and PSPACE,
there are oracles such that either relation holds. However, by a rather re-
markable and sophisticated proof, it can be shown that IP = PSPACE in
the unrelativized case. This is a good example of a proof technique strong
enough to not hold under relativization.

2 Relative to a Random Oracle

We begin by defining an random oracle as one whose characteristic sequence
is an infinite random sequence as 0’s and 1’s.

Definition 4 An oracle A is said to be randomly selected if for all x ∈ 2{0,1},
Pr[x ∈ A] = 1

2
.

We now provide the definition for a function ξA(x) : {0, 1}n → {0, 1}n in-
dexed by the oracle A:

Definition 5 ξA(x)
df
= A(x1)A(x10)A(x100) · · ·A(x1−|x|−1) in which the im-

plicit operation is concatenation. ξA(x) can be viewed as a length preserved
function whose kth bit is 0 or 1 dependent on whether x10k−1 ∈ A.

Clearly, any machine with the oracle A can easily compute ξA(x). The moti-
vation of this definition is to create a function which is ideally one-way such
that it is usually tough to find a preimage without an exponential number
of oracle queries. It can be shown that the number of inverse images of ξA

approaches a Poisson distribution for large n. Namely, for a random oracle
A and string x of length n,

lim
n→∞

Prx,A[x has exactly k inverse images under ξA] =
e−k

k!
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In particular, the fraction of n-bit strings which have no inverse approaches
1/e and the fraction which have exactly one inverse approaches 1/e. It can
be shown the for all n ≥ 5, these fractions are between 0.36 and 0.37. We
now define RANGEA to be the range of the function ξA.

Definition 6 RANGEA df
= {x : ∃y [ξA(y) = x]}

Definition 7 CORANGEA df
= RANGEA = {x : ¬∃y [ξA(y) = x]}

Theorem 8 RANGEA ∈ NPA

Proof An oracle NDTM on input x could nondeterministically guess y and
verify by using the oracle A that ξA(y) = x. 2

We want to show that for almost all oracles RANGEA /∈ coNPA or equiva-
lently that CORANGEA /∈ NPA. This will show that for almost all oracles
NPA 6= coNPA. When we say “almost all”, we mean that if we select a
random oracle, then the probability that NPA 6= coNPA is 1. Equivalent,
once can view this statement from a measure theory standpoint. We denote
Ω as the set of all languages and µ as the probability measure on Ω. Since
we can represent any element in Ω as an infinite sequence of 0’s and 1’s,
we can indentify each language with a real number between 0 and 1. The
probability measure over Ω is equivalent to the Lebesque measure on the unit
interval. Thus, the statement µ({A : NPA = coNPA}) = 0 is equivalent to
PrA[NPA 6= coNPA] = 1. It is worthwhile to note that µ({A : A is com-
putable }) = 0 since the set of computable languages is countable while Ω is
uncountable.

Intuitively, we can see that in order to verify that an input x is in CORANGEA

we must verify that x has no preimages under ξA. Since for a random oracle
ξA essentially resembles a pseudorandom sequence where the value of one
argument is independent of another, it seems unlikely to verify that there
is no preimage without quering the oracle an exponential number of times.
To formalize this argument, we first prove the following lemma which shows
that the result follows if we can show that each nondeterministic oracle tur-
ing machine differs from CORANGEA with nonzero probability.
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Lemma 9 Let MA = {MA
1 , MA

2 , . . . } be a family of oracle nondeterministic
turing machines. If there exists a constant ε > 0, such that the language,
L(MA

i ), accepted by each machine MA
i , differs from LA = CORANGEA on a

set of oracles of measure > ε, then the set of oracles for which CORANGEA ∈
NPA has measure 0. In other words, if µ({A : L(MA

i ) 6= CORANGEA}) > ε
for all i, then µ({A : CORANGEA ∈ NPA}) = 0.

Proof For succintness, throughout this proof LA will denote CORANGEA

and in fact this proof easily genearlizes to any language with certain funda-
mental properties. It will suffice to prove that for each machine MA

i and the
class

Cm
df
= {A : ∀x < m[LA(x) = MA

i (x)]},
then

lim
m→∞

µ(Cm) = 0.

In other words, we take the set of oracles where MA
i does not err for the first

m inputs. The measure of this set obviously decreases as m grows and thus
if it approaches 0 as m → ∞, then µ({A : LA = L(MA

i )}) = 0 and by the
countable subadditivity of µ,

µ({A : LA ∈ NPA}) = µ({A : ∃i[LA = L(MA
i )]})

≤ µ(
⋃

i

{A : LA = L(MA
i )})

≤
∑

i

µ({A : LA = L(MA
i )})

= 0

To prove that limm→∞ µ(Cm) = 0, it will suffice to show that for any m, there
exists a larger n such that µ(Cn) ≤ (1 − ε)µ(Cm) which simply means that
the measure is a decreasing sequence to 0 eliminating the possibility of it con-
verging to some possible value. Since CORANGEA is certainly recognizable
for any oracle turing machine, it follows that Cm depends on only a finite
portion of the oracle characteristic sequence. Thus, Cm can be expressed as
a finite disjoint union of cylinders Zs where Zs is the set of oracles whose
characteristic sequences begins with the finite sequence s.
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Thus the lemma will follow if we show that ε is a lower bound for the con-
ditional error probability within any cylinder, limn→∞1−µ(Zs

⋂
Cn)/µ(Zs).

This holds from the assumption in the lemma µ({A : L(MA
i ) 6= CORANGEA}) >

ε. 1 2

Theorem 10 If A is a random oracle, then CORANGEA /∈ NPA with prob-
ability 1.

Proof From Lemma 9, it will suffice to show that µ({A : L(MA
i ) 6= CORANGEA)

> 1
3

for all oracle nondetermistic turing machines MA
i . Namely, we will show

that every machine has an input on which it errs with probability at least 1
3
.

For each machine MA
i , we choose an n ≥ 5 which is sufficiently large enough

such that none of the nondeterministic computation paths can query the or-
acle A on more than 1 percent of the 2n length n inputs. This limits the
number of explicit strings the machine can test are preimages of the input.
We know such an n exists since each computation path has a polynomial
number of steps. We now define the following class of oracles:

C0
df
= {A : ¬∃y [ξA(y) = 0n]}

C1
df
= {A : ∃uniqy [ξA(y) = 0n]}

It is clear that C0 represents the set of oracles in which the input 0n is in
CORANGEA and C1, disjoint from C0, represents some of the oracles in
which 0n is not in CORANGEA. From the discussion of the function ξA for
n ≥ 5, 0.36 < µ(C0), µ(C1) < 0.37 approaching 1/e for large n. For oracles
M ∈ C0, the machine MA

i should accept 0n. Similarly, for oracles M ∈ C1,
MA

i should reject 0n. We define the following conditional probabilities on C0

and C1.

α0 = Pr[MA
i accepts 0n|A ∈ C0]

α1 = Pr[MA
i accepts 0n|A ∈ C1]

We have denoted α0 to represent the fraction of oracles in C0 that do not
err and accept 0n, and α1 to represent the fraction of oracles in C1 that

1This proof is an oversimplified version of the one presented by Bennet and Gill. A
more rigorous proof would have to introduce the idea of a family of machine languages
being finitely patchable with respect to an oracle.
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err and accept 0n. Therefore, the error probability ε = µ({A : L(MA
i ) 6=

CORANGEA}) is at least

ε > (1− α0)µ(C0) + α1µ(C1)

> 0.36(1 + α1 − α0)

In order to show that ε > 1
3
, we introduce a transformation of oracles

which will allow us to relate the condition probabilities α0 and α1 such that
α1 ≥ 0.99α0. The transformation T : A → A′ will map C0 onto C1 in a
measure preserving manner while not changing too many accepting paths.
To obtain A′ from A, we randomly select a string z ∈ {0, 1}n and remove all
strings in A of the form z10i for i = 0, . . . , n − 1. We realize that from the
definition of ξA that ξA′(z) = 0n since A′(z10i) = 0. For all other strings y
of length n, ξA′(y) = ξA(y) since the transformation doesn’t add or remove
any strings of the form y10i.

In order to show α1 ≥ 0.99α0, we choose a random oracle A ∈ C0 and a
random n-bit string z and generate the transformed oracle A′ ∈ C1. With
probability α0, MA

i accepts 0n. We select one such accepting computation
path. With probability at least 0.99, the set of strings queried by A does not
include a string of the form z10i (this follows since we chose n large enough
such that MA

i could only query 1 percent of n-bit strings). Since z is the only
string on which A and A′ differ, the same computation path accepts under
the oracle A′ with probability at least 0.99. Therefore, the probability MA

i

accepts 0n for A ∈ C1 is at least 0.99 times the probability MA
i accepts 0n

for A ∈ C0. Namely, α1 ≥ 0.99α0. The percent 1 was arbitrarily chosen so
it can be seen that for any constant percent p > 0, α1 ≥ (1 − p)α0. Thus,
for any oracle nondeterministic turing machine MA

i , the probability MA
i for

A ∈ C1 mistakenly accepts 0n is at least the probability MA
i for A ∈ C0

correctly accepts 0n.

Therefore, ε > 0.36(1 + α1 − α0) ≥ 0.36(1 − 0.01α0) > 1
3

since α0 ≤ 1.
This establishes the condition in Lemma 1 that the error probability for each
machine MA

i is nonzero. Thus, CORANGEA /∈ NPA. 2

Corollary 11 If A is a random oracle, then PA 6= NPA 6= coNPA with
probability 1.
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Proof The previous theorem showed that with probability 1 RANGEA ∈
NPA but RANGEA /∈ coNPA. For such oracles A, NPA 6= coNPA which
implies from Theorem 1 that PA 6= NPA. 2

The above theorem was first proved by Bennet and Gill (see [BG81]).
In addition, they proved that with probability 1, LA ⊆ PA, NPA ⊆ PPA,
and PPA ⊆ PSPACEA. Furthermore, they showed that with probability 1,
P A = BPP A.

3 Random Oracle Hypothesis

Since the relations that Bennet and Gill showed are true with probability 1
in the relativized case are commonly believed to be true in the unrelatized
case, it seems logical to hypothesize that if a statement hold for almost all
oracles, then it should hold in the unrelativized case. This is exactly what
Bennet and Gill proposed in [BG81]. First, they defined what it meant to be
an acceptable relativized statement. Basically, it means that the statement
has to be definable in quantificational logic using bound variables, acceptable
relatived relations on these variables, and the logical operations AND, OR
and NOT.

Random Oracle Hypothesis 12 Let SA be an acceptable relativized state-
ment. The corresponding unrelativized statement S? is true if and only if SA

is true with probability 1 when A is chosen randomly.

Clealry, if this hypothesis was true, then it would follow that P 6= NP as
well as many other relations. Additionally, it would also imply a very me-
chanical proof technique for showing complexity theory relations. Bennet
and Gill argued that while in relativized classes the oracles are defined in
such a way to accentuate the difference between the classes, a random oracle
employs none of the structure of the problem. Therefore, intuitively if a rela-
tion hold in almost all of these structureless oracle then it should hold in the
unrelativized case. This would imply that a random oracle is essentially no
different than no oracle. On the hand, this hypothesis seems rather unlikely
since with probability 1, an oracle is not computable. Thus, any random
oracle turing machine is computationally infeasible. It thus might unlikely
than any relation proven to hold for this unreasonable models of computation
will hold in the unrelativized case.
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Stuart Kurtz provided 2 counterexamples to this random oracle hypothesis
(see [Kur83]). One of these counterexamples were the two relativized classes
PSPACEA and PQUERYA. PQUERYA is defined as the class of languages
computable in polynomial space using a polynomially bounded number of
oracles calls. These classes fall within Bennet and Gill’s definition of accept-
able. It is clear that in the unrelativized case, PSPACE? = PQUERY?. By a
very similar proof technique to the one shown above, it can be seen that with
probability 1, RANGEA /∈ PQUERYA. However, since NPA ⊆ PSPACEA

holds for all oracles and RANGEA ∈ NPA, RANGEA ∈ PSPACEA for all
oracles A. Thus, with probability 1, PQUERYA 6= PSPACEA. This dis-
proves the random oracle hypothesis as formulated above. However, Bennet
and Gill argued that PQUERY is a very unnatural complexity class since it
bounds oracle queries and thus reformulated the hypothesis based on a new
definition of what it means to be an acceptable class. Nevertheless, it seems
(at least to me) that such a hypothesis is highly doubtful.

4 Conlcusion

This paper summarized many of the essential relativization results published
in the late 70s and early 80s. The notion of exploring a relation or complexity
concept in the relativized case is a very useful idea. If one can show that there
are oracles such that any of the relations can hold, then there is significant
evidence that the relation is nontrivial and that any proof must employ a
sophosticated method that transcends relativization.
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