
A DETAILED PROOF THAT IP=PSPACE

B.J. MARES

Abstract. I will de�ne IP, the class of interactive proofs, and present a thorough proof

that IP=PSPACE, assuming minimal prior knowledge. Such a presentation is appropriate

for undergraduates in an introductory course on computational theory such as the one for

which this paper was written.

1. Graph Non-isomorphism

Suppose we have two graphs G1 and G2, each with n nodes labeled 1 . . . n. We say that
G1 and G2 are isomorphic if there exists a permutation σ : {1, . . . , n} → {1, . . . , n} of the
node labels such that σ(G1) = G2. This is to say that two graphs are isomorphic when they
are the same up to how the nodes are labeled. Note that isomorphism is an equivalence
relation.
Consider the following example graphs with n = 5:

1 2

5 3

4

1 2

5 3

4

1 2

5 3

4

The �rst two graphs are the isomorphic to each other, since we can relabel the vertices in
either graph until they look the same. The third graph contains a triangle, but the other
two do not. Therefore, the third graph is not isomorphic to either of the �rst two.
In general, it is di�cult to tell whether or not two graphs are isomorphic. A Turing machine

is not so visual. It represents graphs with adjacency matrices. To a Turing machine, the
above graphs look like:



0 1 0 0 1
1 0 1 1 0
0 1 0 0 1
0 1 0 0 0
1 0 1 0 0







0 1 0 1 0
1 0 0 0 1
0 0 0 1 0
1 0 1 0 1
0 1 0 1 0







0 0 1 1 1
0 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 0 1 0 0


 .

We de�ne the language ISO := {〈G1, G2〉 : G1 and G2 are isomorphic graphs}. It is not
known to be in P . It is in NP since the permutation σ such that σ(G1) = G2 acts as a

1

A DETAILED PROOF THAT IP=PSPACE 2

certi�cate. Permuting an adjacency matrix amounts to permuting both its rows and columns
by σ, each of which can be done with a single matrix multiplication in polynomial time.
Consider the compliment language NONISO. It is not known to be in NP or BPP .

Suppose that we have two non-isomorphic graphs G1 and G2, but we are not yet convinced
that they are non-isomorphic. Also suppose that we have a friend with unlimited computa-
tional resources trying to convince us that G1 and G2 are non-isomorphic. Can our friend
succeed in polynomial time?
Consider the following algorithm: we �ip a coin to choose i ∈ {1, 2}. We then devise a

random permutation σ and apply it to Gi. We then send our friend G1, G2, and σ(Gi) and
ask for i. If G1 and G2 are truly non-isomorphic, our friend will have no trouble determining
i by �guring out which of G1 and G2 is isomorphic to σ(Gi).
Now suppose that G1 and G2 are actually isomorphic and our friend is trying to trick us

into believing that they aren't. Then σ(Gi) is isomorphic to both G1 and G2. Moreover,
it should be intuitive that the number of permutations that take G1 to σ(Gi) equals the
number of permutations that take G2 to σ(Gi). This is formally proven in elementary group
theory. Therefore, when we send σ(Gi), our friend has no information about i, and hence a
50-50 chance of correctly guessing it.
Suppose we repeat the process twice. Then if 〈G1, G2〉 ∈ NONISO, our friend correctly

guesses i both times with probability one. If 〈G1, G2〉 /∈ NONISO, the probability that our
friend will guess i correctly both times is only 1

4
.

Motivated by this example of NONISO, we de�ne the class IP.

2. Interactive Proofs

NP is the class of languages decidable by a nondeterministic Turing machine in polynomial
time. It is also equivalent to the class of languages veri�able in polynomial time. For the rest
of this discussion, it will be useful to think of NP languages not in terms of nondeterminism,
but in terms of veri�cation.
We can view NP as the set of languages for which a supercomputer can provide a certi�cate

to a deterministic polynomial time machine. No languages are added to NP if we extend this
de�nition to allow the deterministic polynomial time machine to talk back and forth. This is
because the supercomputer is capable of simulating the polynomial machine, anticipating its
questions, and providing its answers all at the beginning. Thus NP is the language obtained
by permitting interaction with a supercomputer whose responses must be veri�able.
Similarly, we may view BPP as the result of augmenting a deterministic polynomial time

machine with an additional capability: randomness.
Consider the following diagram, where right arrows denote the result of introducing ran-

domness, and up arrows denote the result of introducing interaction:

NP → IP
↑ ↑
P → BPP

Thus NP results from adding interaction to P , and similarly, BPP results from adding
randomness to P . What happens when we add both interaction and randomness to P ?

A DETAILED PROOF THAT IP=PSPACE 3

We will de�ne the result to be IP , the class of languages decidable by an interactive proof
system.
To be more precise, we must formally de�ne what is meant by an interactive proof sys-

tem. A message history is a string of the form m1#m2# . . .#mi, where the mi denote
successive messages in a dialogue. A veri�er V is a probabilistic, polynomial-time com-
putable function such that given an input string w and a message history m1#m2# . . .#mi,
it computes V (w, m1#m2# . . .#mi) = mi+1 for i even. Also, V must accept or reject after
a polynomial number of interactions. Note that mi+1 is not deterministic, but determined
only up to a probability distribution. A prover P is an arbitrary function that computes
P (w, m1#m2# . . .#mi) = mi+1 for i odd, with the only restriction that mi+1 is polynomial
length.
Given a prover P and a veri�er V , they interact by alternately augmenting the message

history until V accepts or rejects. We denote this interaction by V ↔ P . Note that
any interaction requires a polynomial number of steps of the verifying machine. Given an
input string w, there is a probability associated with V ↔ P accepting w. We denote this
probability by Pr [V ↔ P accepts w].
Formally, a language L ∈IP if there exists a veri�er V such that:

(1) ∃P : w ∈ L ⇒ Pr [V ↔ P accepts w] ≥ 2
3
,

(2) ∀P̃ : w /∈ L ⇒ Pr
[
V ↔ P̃ accepts w

]
≤ 1

3
.

This is to say that there's a prover P capable of convincing the veri�er that w ∈ L to a
high probability whenever a string is in the language. If a string is not in the language, it's
impossible for any deceitful prover P̃ to fool the veri�er into believing that w ∈ L to a high
probability.
We have outlined an algorithm for a NONISO veri�er and shown that

(1) ∃P : 〈G1, G2〉 ∈ NONISO ⇒ Pr [V ↔ P accepts 〈G1, G2〉] = 1,

(2) ∀P̃ : 〈G1, G2〉 /∈ NONISO ⇒ Pr
[
V ↔ P̃ accepts 〈G1, G2〉

]
≤ 1

4
.

Therefore NONISO ∈ IP .
Several variations on this de�nition of IP lead to the same class. The following are

equivalent:

(1) IP .
(2) IP de�ned with one-sided error: ∃P : w ∈ L ⇒ Pr [V ↔ P accepts w] = 1.
(3) IP de�ned so that the prover knows the random numbers that the veri�er has gen-

erated.
(4) IP de�ned so that the prover is a PSPACE computable function.
(5) PSPACE.

I will prove only the equivalence of IP and PSPACE.

3. IP ⊂ PSPACE

It's easy to show that IP ⊂ PSPACE. Suppose L ∈ IP . Then we have some veri�er V
for L. The PSPACE algorithm we use to decide L is to compute

z = max
P

Pr [V ↔ P accepts w] .

A DETAILED PROOF THAT IP=PSPACE 4

By the de�nition of IP , if z ≥ 2
3
, then we know that w ∈ L. If z ≤ 1

3
, then we know that

w /∈ L. Note that if V is a veri�er for L, 1
3

< z < 2
3
will never occur.

Now we need to show that it's possible to compute z in PSPACE. Suppose V runs in p(n)
steps, where n = |w|. Then any given response by P is no longer than p(n). Also, V chooses
at most p(n) random numbers. We may recursively simulate V while branching for each ran-
dom number, and each possible response by P . Therefore, the recursion depth is polynomial,
so we can perform such a recursion in PSPACE. We keep a count of the accepting branches
produced by P 's optimal responses, as well as the total number of branches. These numbers
will be exponential in n, but the length of the numerical representation is polynomial in n.
The ratio computed by this PSPACE algorithm is z, therefore IP ⊂ PSPACE.
Recall that TQBF , the language of true quanti�ed boolean formulas, is PSPACE-

complete. Therefore, IP = PSPACE ⇔ TQBF ∈ IP . The goal of this paper will be
to show TQBF ∈ IP , hence IP = PSPACE.

4. Primes and Polynomials

The central idea of these proofs is to extend boolean arithmetic from a binary number
system to a larger �nite �eld modulo a prime. This process is called arithmetization. It will
require some facts about �nite �elds which we will review.

Theorem. Let p be a prime. For all a 6≡ 0 (mod p) there exists a unique number a−1 such

that aa−1 ≡ 1 (mod p).

Proof. Suppose not. Then we have a number a 6≡ 0 (mod p) such that ab 6≡ 1 (mod p) for
all b. Consider the function f(b) = ab (mod p). Then f maps all p numbers modulo p to
the p− 1 numbers modulo p excluding 1 (mod p). By the pigeonhole principle, there must
exist numbers c and d such that both c 6≡ d (mod p) and ac ≡ ad (mod p). Therefore,
a(c− d) ≡ 0 (mod p), so p | a(c− d). By hypothesis, p - a, so p | (c− d). Therefore, c ≡ d
(mod p), contradicting the pigeonhole principle, so a−1 must exist.
Now for uniqueness, suppose that a 6≡ 0 (mod p) and we have two inverses c and d so

that ac ≡ ad ≡ 1 (mod p). Then similarly p | a(c − d), but p - a, so p | (c − d), and c ≡ d
(mod p). Thus any two inverses of the same number are equivalent. �
De�nition. A polynomial modulo p is a polynomial with coe�cients modulo p that evaluates
to a value modulo p. Two polynomials are equivalent modulo p if their coe�cients are
equivalent modulo p.

Theorem. Let q(x) be a nonzero polynomial of degree n modulo p such that q(a) ≡ 0
(mod p). Then q(x) ≡ (x− a)q′(x) (mod p) for some polynomial q′(x) of degree n− 1.

Proof. This follows as a consequence of the polynomial division algorithm one traditionally
learns in precalculus. By the existence and uniqueness of multiplicative inverses, we can
always �nd unique coe�cients to ensure the proper cancellations. For example, 2 (mod 5)
is a root of x3 − 2x2 + 2x + 1 (mod 5), and

x2 + 2

x− 2 |x3 − 2x2 + 2x + 1
(mod 5).

Therefore we may write x3 − 2x2 + 2x + 1 ≡ (x− 2)(x2 + 2) (mod 5).

A DETAILED PROOF THAT IP=PSPACE 5

In order for this algorithm to work, we must ensure that we always get a remainder of
zero so that (x − a) divides q(x) evenly. The remainder will be a number r (mod p). The
division algorithm guarantees that q(x) ≡ (x− a)q′(x) + r (mod p). Clearly r ≡ 0 (mod p)
since 0 ≡ q(a) ≡ (a− a)q′(a) + r ≡ r (mod p). Therefore q(x) ≡ (x− a)q′(x). �

Corollary. Suppose s(x) and t(x) are distinct polynomials modulo p, each of degree at most

n. Then the equation s(x) ≡ t(x) has at most n solutions modulo p.

Conclusion. Let q(x) = s(x) − t(x). Then every solution to s(x) ≡ t(x) is a root of q(x).
Since s(x) and t(x) are of degree of at most n, q(x) has degree at most n. We may iterate
the division algorithm on q(x) until we have q(x) ≡ (x−a1)(x−a2) · · · (x−ai)q

′(x) (mod p),
where q′ has no roots. In this form, we know that the roots of q are a1, . . . , ai. Computing
the degrees of both sides, we have

n
≥ deg q(x)
= i + deg q′(x)
≥ i
≥ # of roots of q(x)
= # of solutions to s(x) ≡ t(x) (mod p).

This establishes the theorem.

Suppose that we have a polynomial s(x) modulo p of degree n, where n is much smaller
than p. Is it ever possible to construct a di�erent polynomial t(x) such that s(x) ≡ t(x)
for most values of x? This corollary surprisingly proves that the answer is no. Any two
polynomials of low degree modulo p are either identical or they rarely agree. We can exploit
this as an algorithm to determine to a high probability whether or not two polynomials are
the same. More speci�cally, if s(x) ≡ t(x) (mod p), then

Pr[s(y) ≡ t(y) (mod p) for a randomly chosen y] = 1.

If s(x) 6≡ t(x) (mod p), then

Pr[s(y) ≡ t(y) (mod p) for a randomly chosen y mod p] ≤ n

p
.

One may be wondering at this point why such an algorithm is of any use when we can
determine whether or not two polynomials are equal by comparing their coe�cients. The
answer is that we may not be able to explicitly compute the coe�cients of one of the poly-
nomials. Therefore, a veri�er can check to a high probability whether or not a particular
polynomial is an expansion of another without expanding the polynomial itself.
To implement our future algorithm, we will need to discover such primes p. It will be

useful to know that the primes are distributed well enough so that we can �nd one whenever
we need one. Let π(m) denote the number of primes ≤ m.

Theorem. For m ≥ 3,
√

m ≤ π(m) ≤ m.

Proof. The upper bound follows directly from the de�nition of π(m). The lower bound is
more complicated.

A DETAILED PROOF THAT IP=PSPACE 6

A number n is prime if and only if all primes p <
√

n do not divide it. Most everyone is
familiar with the sieve of Eratosthenes in which one lists all the numbers from 1 . . .m, circles
the lowest number greater than one, which will be prime, crosses out all multiples of that
prime, and then repeats this process for all primes ≤ √

m. After this is done, all numbers
not crossed o� are primes. A careful analysis of how many numbers can get crossed o� yields
the desired bound.
Suppose m = 51, so we start o� with a list of 51 numbers. For p = 2, we cross o� 24

51
of

these numbers: 4, 6, 8, . . . , 50. This is less than 1
2
of the m numbers in our list. Now when

p = 3, how many of the remaining 27 numbers do we cross o�? We can list the numbers
we attempt to cross o�: 3 · 2, 3 · 3, 3 · 4, . . . , 3 · 17, however, many of these numbers are
already marked o�: the even multiples of three. In fact, 8

16
of these numbers are already

marked o�, so on this step we mark o� 8
27

< 1
3
of the remaining numbers. This is less than

1
3
of the 27 > 1

2
m numbers not crossed o� by 2. Now for p = 5, how many of the remaining

19 numbers do we cross o�? We attempt to cross o� 5 · 2, 5 · 3, . . ., 5 · 10. Now the pattern
begins to emerge: the multiples of 5 already crossed out are the multiples whose quotient is
already crossed out. This time we can cross o� 2 numbers: 5 · 5 and 5 · 7. This is less than 1

5

of the 19 > 2
3
· 1

2
m numbers not crossed o� by p = 2 or p = 3. Now 17 > 4

5
· 2

3
· 1

2
m numbers

remain. For p = 7, we only cross out 7 · 7. Thus 16 > 6
7
· 4

5
· 2

3
· 1

2
m numbers remain. p = 7 is

the last prime <
√

51. The number one is not prime. Therefore,

π(51) = 15 >
6

7
· 4

5
· 2

3
· 1

2
m = m

∏
p<
√

m

p− 1

p
.

It is somewhat tricky, although elementary, to prove that in general,

π(m) ≥ m
∏

p<
√

m

p− 1

p
.

This product over primes is not in general easy to compute. We can approximate it by the
following:

m
∏

p<
√

m

p− 1

p
≥ m

b√mc∏
i=2

i− 1

i
.

This new product collapses, so we see

π(m) ≥ m

b√mc ≥
√

m.

�
Corollary. There is always a prime p such that m < p ≤ (m + 1)2.

Proof. To prove this, we know there is such a prime if and only if π ((m + 1)2) − π(m) ≥ 1
by the de�nition of π(m). Using the bounds of the previous theorem,

π
(
(m + 1)2

)− π(m) ≥
√

(m + 1)2 −m = 1.

�

A DETAILED PROOF THAT IP=PSPACE 7

This result is extremely weak. There are much tighter bounds on π(m) that produce
better results. The Prime Number Theorem states that π(m) is asymptotic to m/ ln m. The
proof involves advanced analytic number theory beyond the scope of this paper.

Corollary. For all c > 1, there is always a prime p such that m < p ≤ cm for su�ciently

large x.

Proof. The Prime Number Theorem says that for all ε > 0, (1− ε) m
ln m

< π(m) < (1 + ε) m
ln m

for su�ciently large m. Therefore, for large m, we have the bound π(cm) − π(m) > (1 −
ε) cm

ln(cm)
− (1 + ε) m

ln m
. Choosing ε = c−1

c+3
, this bound proves that π(cm)− π(m) > 1 for large

m. �

5. COUNTSAT simulations

Suppose we are given the string w = (¬x1∨x2∨x3)∧(x1∨¬x2∨x3), 6, and we wish to show
that it is in COUNTSAT , that is to say that φ(x1, x2, x3) := (¬x1∨x2∨x3)∧(x1∨¬x2∨x3)
has 6 satisfying assignments. Identifying �true� with 0 and �false� with 1, the truth table is
as follows:

x3 = 0 x3 = 1
x2 = 0 x2 = 1 x2 = 0 x2 = 1

x1 = 0 1 0 1 1
x1 = 1 0 1 1 1

We can express the number of satisfying assignments of φ as follows:

1∑
x1=0

1∑
x2=0

1∑
x3=0

φ(x1, x2, x3).

The problem then reduces to verifying that this sum is in fact equal to 6. It is useful to
break this problem up into parts. For the general case with m boolean variables, we de�ne
functions

fi(x1, . . . , xi) =
1∑

xi+1=0

1∑
xi+2=0

· · ·
1∑

xm=0

φ(x1, . . . , xm).

For our example where m = 3, this de�nes four functions:

f3(x1, x2, x3) = φ(x1, x2, x3)

f2(x1, x2) =
∑1

x3=0 φ(x1, x2, x3)

f1(x1) =
∑1

x2=0

∑1
x3=0 φ(x1, x2, x3)

f0() =
∑1

x1=0

∑1
x2=0

∑1
x3=0 φ(x1, x2, x3)

Notice that we have the recurrence fi(x1, . . . , xi) = fi+1(x1, . . . , xi, 0) + fi+1(x1, . . . , xi, 1).
I will now present a potential veri�cation algorithm for COUNTSAT with this example

that doesn't quite work. Suppose we have the following interaction between the prover and
the veri�er:

• P sends f0() = 6.

A DETAILED PROOF THAT IP=PSPACE 8

• V checks that 6 is the answer claimed in the string w.
• P sends f1(0) = 3, f1(1) = 3.

• V checks the recurrence that
f1(0) + f1(1) = f0().

3 + 3 = 6.

• P sends
f2(0, 0) = 2, f2(0, 1) = 1.
f2(1, 0) = 1, f2(1, 1) = 2.

• V checks that

f2(0, 0) + f2(0, 1) = f1(0).
2 + 1 = 3.

f2(1, 0) + f2(1, 1) = f1(1).
1 + 2 = 3.

• P sends

f3(0, 0, 0) = 1, f3(0, 0, 1) = 1.
f3(0, 1, 0) = 0, f3(0, 1, 1) = 1.
f3(1, 0, 0) = 0, f3(1, 0, 1) = 1.
f3(1, 1, 0) = 1, f3(1, 1, 1) = 1.

• V checks that

f3(0, 0, 0) + f3(0, 0, 1) = f2(0, 0).
1 + 1 = 2.

f3(0, 1, 0) + f3(0, 1, 1) = f2(0, 1).
0 + 1 = 1.

f3(1, 0, 0) + f3(1, 0, 1) = f2(1, 0).
0 + 1 = 1.

f3(1, 1, 0) + f3(1, 1, 1) = f2(1, 1).
1 + 1 = 2.

• V checks φ on all (eight in our example) possible values of fm.

This clearly doesn't work since it is exponential, but it exempli�es the strategy we will use,
so we will analyze it anyway. Suppose w ∈ COUNTSAT . Then if P simply tells the truth,
P will convince V .
Now suppose that w /∈ COUNTSAT , and a prover P̃ is trying to convince V otherwise.

For example, suppose w = (¬x1 ∨x2 ∨x3)∧ (x1 ∨¬x2 ∨x3), 5. Then P̃ will have to lie at the
�rst step and say f0() = 5. It could then proceed by lying that f1(0) = 2 and f1(1) = 3 so
that it satis�es the recurrence f1(0) + f1(1) = f0(). Similarly, it could lie about values for f2

and f3. It would be forced to continue lying, but it wouldn't get caught until the end when
V discovers that φ doesn't match f3.
There is no reason to restrict the xi to the values 0 and 1. Without changing the value of

φ(x1, x2, x3) on boolean values, we may arithmetize the expression by the following rules:

α ∧ β = α · β,
¬α = (1− α),

α ∨ β = 1− (1− α)(1− β).

Notice that there is a one-to-one correspondence between the variables on the left hand side
of the equality and the right hand side of the equality. Therefore, we may arithmetize a
boolean formula in polynomial time. Our example arithmetizes to

(1− (1− (1− (1− (1− x1))(1− x2)))(1− x3))
· (1− (1− (1− (1− x1)(1− (1− x2))))(1− x3))

.

A DETAILED PROOF THAT IP=PSPACE 9

Now we can evaluate φ on integer values. The maximum number of satisfying assignments
is 2m. If we choose a prime modulus p larger than this, then we can sum φ modulo p over all
boolean values, and the resulting sum will still be the exact number of satisfying assignments.
To simplify future analysis, m < n, so we will work modulo a prime slightly larger than 2n.
In order to work modulo a prime larger than 2n we need to be able to �nd such a number

and verify that it's prime. It's conceivable that there might be huge gaps between primes
and that the size of the next prime after 2n is not always polynomial in n. Fortunately this
is not the case.
By the theorems proven earlier, P can easily �nd a prime p between 2n and 23n and send

it to V . The binary representation of p will have no more than 3n digits, so V can perform
standard modular arithmetic modulo p in polynomial time. Recall that PRIMES ∈ NP ,
so P can also send a certi�cate so V can verify primality.
Working modulo p, we can modify the current COUNTSAT algorithm to probabilistically

check polynomials modulo p to verify the result.
Suppose w = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3), 6. Then depending on our representation,

n ≈ 25, so we wish to �nd a prime p such that 225 < p < 275, or

33554432 < p < 37778931862957161709568.

We don't have to look far to see that, p = 33554467 su�ces. The veri�cation procedure
would proceed as follows:

• P calculates that n = 25, �nds the prime p = 33554467, and sends it to V with a
primality certi�cate. P also calculates f0() = 6 and sends it to V .

• V checks that p = 33554467 is prime, 225 < p < 275, and that 6 is in fact the answer
given in w.

• P sends f1(x) as a polynomial modulo p in x. In this case, f1(x) ≡ 3 (mod p), a
constant polynomial. (In general this will be a higher degree polynomial in x.)

• V con�rms that

f1(0) + f1(1) ≡ f0() (mod p).
3 + 3 ≡ 6 (mod p).

It then selects at random r1 ≡ 20458155 (mod p) and sends this to P .
• P calculates f2(r1, x) as a polynomial modulo p in x and sends it to V . In this case,

f2(r1, x) ≡ 11462892x2 + 29453417x + 13096314 (mod p).
• V con�rms that

f2(r1, 0) + f2(r1, 1) ≡ f1(r1) (mod p).
13096314 + 20458156 ≡ 3 (mod p).

Then V randomly chooses r2 ≡ 30623655 (mod p) and sends it to P .
• P calculates f3(r1, r2, x) ≡ 16373423x2 + 2771140x + 14409905 (mod p) and sends it
to V .

• V con�rms that

f3(r1, r2, 0) + f3(r1, r2, 1) ≡ f2(r1, r2) (mod p).
14409905 + 1 ≡ 14409906 (mod p).

A DETAILED PROOF THAT IP=PSPACE 10

• V selects r3 ≡ 11829775 (mod p). Then V checks that

f3(r1, r2, r3) ≡ φ(r1, r2, r3) (mod p).
20783835 ≡ 20783835 (mod p).

V accepts if all the checks have passed and rejects otherwise.

The exact rationale of this algorithm will not become clear until we conduct the worst-case
analysis. The basic idea is that V cannot compute the fi, so P computes them instead,
and V checks a random value to make sure that P is telling the truth. Recall that f0() is
the answer we want to verify and fm(x1, . . . , xm) is simply φ(x1, . . . , xm). As i gets larger,
fi(x1, . . . , xi) becomes easier to compute. V can compute φ(r1, . . . , rm) in polynomial time,
so that's what this algorithm works towards.
Clearly w ∈ COUNTSAT ⇒ Pr [V ↔ P accepts w] = 1. As long as P performs the

appropriate computations as described above, V will always accept. It remains to show that

∀P̃ : w /∈ COUNTSAT ⇒ Pr
[
V ↔ P̃ accepts w

]
≤ 1

3
.

To prove the latter statement, must now take an adversarial approach and assume that
P̃ is attempting to trick V into accepting a string with the wrong count. Suppose we were
instead given the string w = (¬x1∨x2∨x3)∧ (x1∨¬x2∨x3), 5, a string not in COUNTSAT
since that formula has six satisfying assignments, not �ve. An interaction with a clever
deceitful prover P̃ might proceed as follows:

• P̃ calculates that n = 25, �nds the prime p = 33554467, and sends it to V with a
primality certi�cate. P̃ also lies that f̃0() = 5.

• V checks that p = 33554467 is prime, p > 225, and that 5 is in fact the answer given
in w.

• P̃ must devise a polynomial f̃1(x) to send to P̃ . To prevent V from rejecting, f̃1(x)

must satisfy f̃1(0) + f̃1(1) ≡ f̃0() (mod p). Suppose that P̃ arbitrarily makes up the
polynomial f̃1(x) = x + 2.

• V con�rms that

f̃1(0) + f̃1(1) ≡ f̃0() (mod p).
2 + 3 ≡ 5 (mod p).

It then selects at random r1 ≡ 20458155 (mod p) and sends this to P̃ .

• P̃ must devise a polynomial f̃2(x) to send to P̃ . To prevent V from rejecting, f̃2(x)

must satisfy f̃2(0) + f̃2(1) ≡ f̃1(r1) (mod p). Suppose that P̃ sends f̃2(x) = x +
10229077

• V con�rms that

f̃2(0) + f̃2(1) ≡ f̃1(r1) (mod p).
10229078 + 10229079 ≡ 20458157 (mod p).

Then V randomly chooses r2 ≡ 30623655 (mod p) and sends it to P .

• P̃ must devise a polynomial f̃3(x) to send to P̃ . This polynomial f̃3(x) must satisfy

f̃3(0) + f̃3(1) ≡ f̃2(r2) (mod p). Since on the �nal step, V will check this polynomial
against φ(r1, r2, x) ≡ 16373423x2 + 2771140x + 14409905 (mod p) on a random x,
it will be desirable to send this exact polynomial for f̃3(x). Unfortunately for P̃ ,

A DETAILED PROOF THAT IP=PSPACE 11

φ(r1, r2, 0) + φ(r1, r2, 1) ≡ 20783835 6≡ f̃2(r2) ≡ 7298265 (mod p), so P̃ cannot send

φ(r1, r2, x) or it will be immediately rejected. Suppose that instead P̃ sends f̃3(x) =
x + 3649132.

• V con�rms that

f̃3(0) + f̃3(1) ≡ f̃2(r2) (mod p).
3649132 + 3649133 ≡ 7298265 (mod p).

• V selects r3 ≡ 11829775 (mod p). Then V checks that

f̃3(r3) ≡ φ(r1, r2, r3) (mod p).
15478907 6≡ 20783835 (mod p).

V has caught P̃ in a lie!

In the last step, V chose a random number r3 and checked f̃3(x) on x = r3 to make sure it

was φ(r1, r2, r3). Recall that f̃3(x) is the polynomial P̃ claims to be f3(r1, r2, x) ≡ φ(r1, r2, x)

(mod p). If P̃ is so clever that it is actually able to send f̃3(x) ≡ f3(r1, r2, x) ≡ φ(r1, r2, x)

(mod p), then V will always pass the �nal check. However if f̃3(x) 6≡ f3(r1, r2, x) (mod p),
for how many values of x does f̃3(x) ≡ f3(r1, r2, x) (mod p)? This depends on the degrees
of these two polynomials.
In general, V will choose a random number rm and check that f̃m(rm) ≡ φ(r1, . . . , rm)

(mod p). In any single variable, the degree of φ, and hence fi, is at most one more than the
number of multiplications in the arithmetization of φ. There are less than n multiplications
in φ, so therefore all polynomials sent by P should have degree at most n. In fact for our
earlier example, the degree of each polynomial never exceeded two. We should modify V to
reject any polynomials of degree greater than n.
Since the degrees of f̃m(x) and φ(r1, . . . , rm−1, x) are at most n, if they are not the same

polynomial, then they agree for at most n values. The probability that these two polynomials
agree on a random number is at most n

p
< n

2n . Hence

Pr
[
V ↔ P̃ accepts on the last step

]
= Pr

[
f̃m(r) ≡ φ(r1, . . . , rm−1, r) (mod p) for a random r

]
≤ Pr

[
f̃m(x) ≡ φ(r1, . . . , rm−1, x) (mod p)

]
+ n

2nPr
[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
= 1− (

1− n
2n

)
Pr

[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
.

The deceitful prover wishes to maximize the probability of acceptance, or equivalently min-
imize the probability of rejection:

Pr
[
V ↔ P̃ rejects on the last step

]
≥

(
1− n

2n

)
Pr

[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
.

For any skilled deceitful prover, the last step is the only di�cult step because it is the only
point at which V checks what P says against φ. If V rejects before the last step, it is because
P said something inconsistent. Therefore, without loss of generality, we may say that among
any decent provers,

Pr
[
V ↔ P̃ rejects w

]
= Pr

[
V ↔ P̃ rejects on the last step

]
.

A DETAILED PROOF THAT IP=PSPACE 12

6. COUNTSAT ∈ IP

Recall that to show COUNTSAT ∈ IP , we need to prove that

w /∈ COUNTSAT ⇒ Pr
[
V ↔ P̃ rejects w

]
≥ 2

3
.

We only need to show this for large n, since V is capable of deciding COUNTSAT up to a
�nite n. Suppose that instead we show that there is a constant c > 2

3
such that for all ε > 0,

Pr
[
V ↔ P̃ rejects w

]
> c− ε

for large enough n. Then if we set

ε =
c− 2

3

2
,

we get

Pr
[
V ↔ P̃ rejects w

]
>

c

2
+

1

3
>

2

3

for su�ciently large n, and hence COUNTSAT ∈ IP .
We denote the largest such c by

c = lim inf
n→∞

Pr
[
V ↔ P̃ rejects w

]
.

Thus if we show

lim inf
n→∞

Pr
[
V ↔ P̃ rejects w

]
>

2

3
,

we get that COUNTSAT ∈ IP .
In general, the lim infn→∞ operator is very similar to limn→∞ except for some technicalities.

For all convergent sequences they agree. In fact,

lim infn→∞ Pr
[
V ↔ P̃ rejects w

]
≥ lim infn→∞

(
1− n

2n

)
Pr

[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
≥ (

limn→∞
(
1− n

2n

)) (
lim infn→∞Pr

[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

])
= lim infn→∞ Pr

[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
.

Therefore, if we prove that

lim inf
n→∞

Pr
[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x)

]
>

2

3
,

we imply that COUNTSAT ∈ IP . I will prove that

lim inf
n→∞

Pr
[
f̃m(x) 6≡ fm(r1, . . . , rm, x) ≡ φ(r1, . . . , rm−1, x) (mod p)

]
= 1.

By assumption, f̃0() 6≡ f0() (mod p) since we assume w /∈ COUNTSAT . Since

f̃1(0) + f̃1(1) ≡ f̃0() 6≡ f0() ≡ f1(0) + f1(1) (mod p),

A DETAILED PROOF THAT IP=PSPACE 13

we have that f̃1(x) 6≡ f1(x) (mod p), so

Pr
[
f̃1(x) 6≡ f1(x) (mod p)

]
= 1.

The deceitful prover P̃ begins with this lie and wants to end with the truth: f̃m(x) ≡
fm(r1, . . . , rm, x) (mod p). If P̃ is able to report the correct polynomial f̃i for any i, then P̃

can trick the veri�er into accepting by reporting the correct f̃i for all subsequent i including
the correct f̃m. Thus if P̃ is able to move from a lie to the truth at any step, P̃ will succeed
in deceiving V .
Suppose that P̃ has engineered f̃1(x) 6≡ f1(x) (mod p) in the most clever way possible to

maximize the probability that it can send the correct f̃2(x). The f̃2(x) that P̃ sends must
satisfy the constraint f̃2(0) + f̃2(1) ≡ f̃1(r1) (mod p). The real f2(r1, x) satis�es f2(r1, 0) +

f2(r1, 1) ≡ f1(r1) (mod p). Therefore, to be able to send the truthful f̃2(x), it must be that

f̃1(r1) ≡ f1(r1) (mod p). V chose the number r1 after P̃ chose f̃1(x). Therefore, P̃ can send

the correct f̃2(x) only if f̃1(x) agrees with f1(x) for a random x. Hence,

Pr
[
f̃2(x) 6≡ f2(r1, x) (mod p)

]
≥ 1− n

2n
.

More generally, for i ≥ 1, if f̃i(x) 6≡ fi(r1, . . . , ri−1, x) (mod p), then

Pr
[
f̃i+1(x) 6≡ fi+1(r1, . . . , ri, x) (mod p)

]
≥ 1− n

2n
.

By induction, for i ≥ 1,

Pr
[
f̃i(x) 6≡ fi(r1, . . . , ri−1, x) (mod p)

]
≥

(
1− n

2n

)i−1

.

In particular,

Pr
[
f̃m(x) 6≡ fm(r1, . . . , rm−1, x) (mod p)

]
≥

(
1− n

2n

)m−1

≥
(
1− n

2n

)n−1

.

Therefore,

lim inf
n→∞

Pr
[
f̃m(x) 6≡ φ(r1, . . . , rm−1, x) (mod p)

]
≥ lim

n→∞

(
1− n

2n

)n−1

= 1

by L'Hôpital's Rule. Therefore, for su�ciently large n,

w /∈ COUNTSAT ⇒ Pr
[
V ↔ P̃ rejects w

]
≥ 2

3
,

so COUNTSAT ∈ IP .

7. TQBF ∈ IP

We can adapt this proof that COUNTSAT ∈ IP to prove that TQBF , the language of
true fully-quanti�ed boolean formulas, is in IP . Instead of counting the number of satisfying
boolean assignments, we wish to have quanti�ers. An example of a TQBF string is w =
∀x1∃x2∀x3(¬x1∨x2 ∨x3)∧ (x1 ∨¬x2 ∨x3). We assume that the formula is in prenex normal
form, that is the quanti�ers appear at the front.

A DETAILED PROOF THAT IP=PSPACE 14

Recall that for COUNTSAT , the goal was to compute

1∑
x1=0

1∑
x2=0

· · ·
1∑

xm=0

φ(x1, x2, . . . , xm).

We can substitute
∏1

xi=0 for ∀xi and
⊎1

xi=0 for ∃xi, where we de�ne

1⊎
xi=0

f(xi) := 1− (1− f(0))(1− f(1)).

Our example would become

1∏
x1=0

1⊎
x2=0

1∏
x3=0

φ(x1, x2, x3).

With COUNTSAT we had the recurrence

fi(x1, . . . , xi) = fi+1(x1, . . . , xi, 0) + fi+1(x1, . . . , xi, 1).

Here we have the recurrence

fi(x1, . . . , xi) =

{
fi+1(x1, . . . , xi, 0) · fi+1(x1, . . . , xi, 1) if the i + 1st quanti�er is ∀.
1− (1− fi+1 (x1, . . . , xi, 0)) (1− fi+1 (x1, . . . , xi, 1)) if the i + 1st quanti�er is ∃.

The exact same algorithm carries over, only instead of checking the COUNTSAT recurrence,
V checks the TQBF recurrence. Unfortunately, a slight complication arises.
Recall that φ(x1, . . . , xm) has degree no more than n in any one variable. Adding two

polynomials does not increase the degree, so for COUNTSAT , fi has degree no more than n.
In the TQBF recurrence, the degree can double at each iteration. Therefore, the degree of
the fi can grow exponentially. This is not acceptable since V must receive these polynomials.
To remedy this situation, we introduce a new operator L called linearization. It is de�ned

by

Lxi
f(xi) := (1− xi)f(0) + xif(1).

Linearization reduces the degree in xi to one without changing the boolean values. By
linearizing each time before a quanti�er is applied, the degree never exceeds two after the
�rst quanti�er is applied. The desired calculation for our example then becomes

1∏
x1=0

Lx1

1⊎
x2=0

Lx1Lx2

1∏
x3=0

Lx1Lx2Lx3φ(x1, x2, x3).

A DETAILED PROOF THAT IP=PSPACE 15

As before, we de�ne a new function for each quanti�er:

f0() :=
∏1

x1=0 Lx1

⊎1
x2=0 Lx1Lx2

∏1
x3=0 Lx1Lx2Lx3φ(x1, x2, x3).

f1(x1) := Lx1

⊎1
x2=0 Lx1Lx2

∏1
x3=0 Lx1Lx2Lx3φ(x1, x2, x3).

f2(x1) :=
⊎1

x2=0 Lx1Lx2

∏1
x3=0 Lx1Lx2Lx3φ(x1, x2, x3).

f3(x1, x2) := Lx1Lx2

∏1
x3=0 Lx1Lx2Lx3φ(x1, x2, x3).

f4(x1, x2) := Lx2

∏1
x3=0 Lx1Lx2Lx3φ(x1, x2, x3).

f5(x1, x2) :=
∏1

x3=0 Lx1Lx2Lx3φ(x1, x2, x3).
f6(x1, x2, x3) := Lx1Lx2Lx3φ(x1, x2, x3).
f7(x1, x2, x3) := Lx2Lx3φ(x1, x2, x3).
f8(x1, x2, x3) := Lx3φ(x1, x2, x3).
f9(x1, x2, x3) := φ(x1, x2, x3).

We get a new recurrence for linearization, and each linearization requires its own veri�cation
step. The veri�cation procedure then goes as follows:

• P calculates that n = 32, 2n = 4294967296, �nds the prime p = 4294967311, and
sends it to V with a primality certi�cate. P also calculates f0() = 1 and sends it to
V .

• V checks that p = 4294967311 is prime, p > 232, and that f0() = 1 so that the
formula is said to be true.

• P sends f1(x) as a polynomial modulo p in x. In this case, f1(x) ≡ 1 (mod p).
• V con�rms that

f1(0) · f1(1) ≡ f0() (mod p).
1 · 1 ≡ 1 (mod p).

It then selects at random r1 ≡ 3009911989 (mod p) and sends this to P .
• P calculates f2(x) as a polynomial modulo p in x and sends it to V . In this case,

f2(x) ≡ x2 + 4294967310x + 1 (mod p).
• V con�rms that

(1− r1)f2(0) + r1f2(1) ≡ f1(r1) (mod p).
1285055323 + 3009911989 ≡ 1 (mod p).

Then V randomly chooses r2 ≡ 2557656319 (mod p) and sends it to P .
• P calculates f3(r2, x) ≡ 820345326x + 1737310993 (mod p) and sends it to V .
• V con�rms that

1− (1− f3(r2, 0))(1− f3(r2, 1)) ≡ f2(r2) (mod p).
3295805320 ≡ 3295805320 (mod p).

Then V randomly selects r3 ≡ 713657950 (mod p) and sends it to P .
• P calculates f4(x, r3) ≡ 1427315899x + 3581309362 (mod p) and sends it to V .
• V con�rms that

(1− r2)f4(0, r3) + r2f4(1, r3) ≡ f3(r2, r3) (mod p).
1517975188 + 494322145 ≡ 2012297333 (mod p).

Then V randomly selects r4 ≡ 2957361682 (mod p) and sends it to P .
• P calculates f5(r4, x) ≡ 1619756052x + 1337605630 (mod p) and sends it to P .

A DETAILED PROOF THAT IP=PSPACE 16

• V con�rms that

(1− r3)f5(r4, 0) + r3f5(r4, 1) ≡ f4(r4, r3) (mod p).
2830992477 + 2207044797 ≡ 743069963 (mod p).

Then V randomly selects r5 ≡ 6744292 (mod p) and sends it to P .
• P calculates f6(r4, r5, x) ≡ 2795513735x + 1499453577 (mod p) and sends it to P .
• V con�rms that

f6(r4, r5, 0) · f6(r4, r5, 1) ≡ f5(r4, r5) (mod p).
1499453577 · 4294967312 ≡ 1499453577 (mod p).

Then V randomly selects r6 ≡ 2703152256 (mod p) and sends it to P .
• P calculates f7(x, r5, r6) ≡ 1936798735x + 383176761 (mod p) and sends it to P .
• V con�rms that

(1− r4)f7(0, r5, r6) + r4f7(1, r5, r6) ≡ f6(r4, r5, r6) (mod p).
1316525994 + 1601895337 ≡ 2918421331 (mod p).

Then V randomly selects r7 ≡ 3503392733 (mod p) and sends it to P .
• P calculates f8(r7, x, r6) ≡ 2421660936x2 + 1825837894x + 1375310369 (mod p) and
sends it to P .

• V con�rms that

(1− r5)f8(r7, 0, r6) + r5f8(r7, 1, r6) ≡ f7(r7, r5, r6) (mod p).
3960328441 + 2981683416 ≡ 2647044546 (mod p).

Then V randomly selects r8 ≡ 3913141309 (mod p) and sends it to P .
• P calculates f9(r7, r8, x) ≡ 3398965994x2 + 4073427229x + 1117541400 (mod p) and
sends it to P .

• V con�rms that

(1− r6)f9(r7, r8, 0) + r6f9(r7, r8, 1) ≡ f8(r7, r8, r6) (mod p).
14121323 + 1507924447 ≡ 2717273579 (mod p).

• V selects r9 ≡ 309850783 (mod p). Then V checks that

f9(r7, r8, r9) ≡ φ(r7, r8, r9) (mod p).
3822769522 ≡ 3822769522 (mod p).

V accepts if all the checks have passed and rejects otherwise.

Analysis of this algorithm is virtually the same as for COUNTSAT . If w ∈ COUNTSAT ,
V will always accept. If w /∈ COUNTSAT , f̃1(x) will always be a lie. The criteria for being

able to tell the truth for each subsequent f̃i(x) given by P̃ is that f̃i−1(x) agrees with the
true fi−1(. . . x . . .) for a random x. Therefore, there is at most an n

2n probability that it can

start telling the truth on that step. The only real di�erence is that there are m2+3m
2

< n2 fi

instead of m. Therefore, we get the limit

lim
n→∞

(
1− n

2n

)n2

= 1

again by L'Hôpital's Rule. Therefore, IP = PSPACE.

A DETAILED PROOF THAT IP=PSPACE 17

8. Concluding Remarks

There are many subtleties in the proof of IP = PSPACE that most texts gloss over.
I mainly followed Sipser's approach because his seemed the most polished. Unfortunately,
his was also the most lacking in details. Hopefully I successfully �lled them all in and
acknowledged all the subtleties.
One subtlety I might have missed is the requirement that the boolean formulas be in CNF.

Both Sipser and Goldreich required this, yet they did not explain where in their proofs it
was necessary. I see no reason why this should matter.

9. References

• Goldreich, Oded. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.

• Papadimitriou, Christos H. Computational Complexity.

• Sipser, Michael. Introduction to the Theory of Computation.

