
Limits of Computation: Homework 6 solutions

Kevin Matulef

March 7th, 2001

Problem 8.19

A directed graph is strongly connected if every two nodes are connected by a di-
rected path in each direction. Show that the language STRONGLY-CONNECTED
={〈G〉| G is a strongly connected graph} is NL-complete.

• First we show that STRONGLY-CONNECTED ∈ NL. Consider the fol-
lowing machine which decides STRONGLY − CONNECTED.
On input 〈G〉,

1. Nondeterministically select two nodes a and b.

2. Run PATH(a,b). If it rejects, then the graph is not strongly con-
nected, so accept. Otherwise, reject.

Since storing the node numbers a and b only takes log space, and PATH
uses only log space, STRONGLY − CONNECTED ∈ NL. Finally, since
NL=CoNL, STRONGLY-CONNECTED ∈ NL

• Next we must show that every other language in L is log space reducible to
STRONGLY-CONNECTED. We do this by reducing PATH to STRONGLY-
CONNECTED. Consider the following reduction.
“On input 〈G, s, t〉

1. Copy all of G onto the output tape.

2. Additionally for each node i in G

3. Output an edge from i to s.

4. Output an edge from t to i.

If there is a path from s to t, the the constructed graph is indeed strongly
connected, because every node can now get to every other node by going
through the s − t path. If there is not a path from s to t, then the
constructed graph is not strongly connected because the only additional
edges in the constructed graph go into s and out of t, so there can be no
new ways of getting from s to t.

1

Finally, we must verify that the reduction can indeed be performed by a
log space transducer. Indeed this is the case, because though the output
has size O(n), essentially the only space necessary to perform the reduction
is that used to keep track of the node number i in the for loop above.

Problem 8.20

An undirected graph is bipartite if its nodes may be divided into two sets so that
all edges go from a node in one set to a node in the other set. Show that a graph
is bipartite if and only if it doesn’t contain a cycle that has an odd number of
nodes. Then, show that BIPARTITE = {〈G〉| G is a bipartite graph} is in NL.

• First we show that if a graph is bipartite, it must not contain a cycle with
an odd number of nodes. Suppose it did contain such a cyle. Label the
nodes n1, n2,n2k, n2k+1. Clearly, if n1 is in some set A, then n2 must
be in set B, so n3 must be in set A, etc. By induction, we see that all the
nodes with an odd subscript must be in set A, and all those with an even
subscript must be in set B. But this implies that n1 and n2k+1 are both
in set A, a contradiction because they are connected.

• Second, we show that if a graph contains no cycles with an odd number
of nodes, then the graph is bipartite. Suppose a graph does not contain
any odd cycles. Pick a node, and label it A. Label all off its neighbors B.
Label all of their unlabeled neighbors A, etc, until all nodes are labeled.
Suppose that this contruction caused two adjacent nodes x and y to have
the same label. Then that would mean that both x and y were reached by
taking an odd number of steps from the start node, or both were reached
by taking an even number of steps. In either case, the total number of
nodes traversed in getting to x from the start node, and getting to y
from the start node (excluding the start node itself), is even. But adding
the start node in makes the total number of nodes odd, contradicting the
hypothesis that there were no odd cycles. Thus, the construction succeeds
in properly dividing the nodes, so the graph is bipartite.

• Finally, we show BIPARTITE ∈ NL. Since NL=CoNL, it suffices to demon-
strate that BIPARTITE = HAS-ODD-CYCLES? = {〈G〉| G is a graph
that contains an odd cycle} ∈ NL. The following algorithm works
“On input 〈G〉

1. counter := 0.

2. start := Nondeterministically select a starting node.

3. successor := Nondeterministically select a successor of s.

4. While (counter ≤ the number of nodes)

5. If successor = start and if counter is odd, accept, otherwise...

6. successor := nondeterministically select a successor of successor

2

7. If counter has increased above the number of nodes, reject.

Since the only space used by the above algorithm is for keeping track of
the node numbers start and successor, and keeping track of the counter
counter (whose maximum value is the number of nodes), the algorithm
clearly only uses log space on any one branch. Therefore, BIPARTITE ∈
NL.

3

