Problem 4.15

Let $E = \{ \langle M \rangle \mid M$ is a DFA that accepts some string of the form ww^R for $w \in \{0,1\}^* \}$. Show that E is decidable.

- Consider the DFA M with start state q_0 and set of accept states F. Let q_1 be the state that M transitions to on input 1, and let F' be the set of states that lead to F on an input of 1. Clearly, M accepts a palindrome beginning and ending with 1 iff the similar DFA (call it M'), with q_1 as the start state and F' as the set of accept states, itself accepts a palindrome. This observation leads to a nice recursive algorithm.

- Palindrom-checker = “On input $\langle M \rangle$, where M is a DFA:

 1. If M’s start state is included in its accept states, then M generates a palindrome. Otherwise...
 2. Run the palindrom-checker on M' (which is just M with a different start state and set of accept states) to see whether it generates a palindrome beginning and ending with 1.
 3. If it doesn’t, run palindrom-checker on M'' (I hope you can guess what that is) to see if it generates a palindrome beginning and ending with 0.

- There’s a hitch in the above algorithm. It’s essentially performing a depth-first search, but there’s no guarantee that it will terminate. It may go into an infinite loop. Fortunately, there is a way around this. Consider the input to palindrom-checker. It differs on each call in the start state and the set of accepts states. Since there are q possible start states, and 2^q possible sets of accept states, the total number of inputs to palindrom-checker is $q2^q$. As the algorithm proceeds, it simply keeps track of whether or not palindrom-checker has been called with those inputs before. This way the palindrom-checker subroutine should never be called more than $q2^q$ times, and the algorithm will terminate (ok, so I don’t promise efficiency or anything like that...).
Problem 5.17

Show that PCP is decidable over a unary alphabet.

- If the alphabet is unary, the dominoes only differ in the number of 1s that
each has on the top and bottom. This specific case of PCP is solved easily
by the following algorithm:

- M= “Given a collection of dominoes

 1. If some dominoe has the same number of 1s on top and bottom, there
 is a trivial match, so accept.

 2. If all the dominoes have more 1’s on top than on bottom, there is no
 possibility of a match, so reject. Likewise, if all the dominoes have
 less 1’s on top than on bottom, reject.

 3. Find one dominoe with more 1’s on top than on bottom (say a differ-
 ence of a 1s), and one dominoe with more 1s on bottom than on
 top (say a difference of b 1s). Choosing b of the first dominoe and a
 of the second should make an equal number of 1s on both top and
 bottom, and hence a match.

Problem 5.20

a. Let $A_{2DFA} = \{ \langle M, x \rangle | M \text{ is a 2DFA and } M \text{ accepts } x \}$. Show that A_{2DFA}
is decidable.

 - As with a Linear Bounded Automata, there is only a finite number of
 configurations that a 2DFA can be in on a given input. Specifically, consider a
 2DFA with q states on an input of size n. Each head can be in n different
 spots, so the total number of configurations for the machine is g_n^2. Thus,
 the algorithm that decides A_{2DFA} is as follows:

 L= “On input $\langle M, w \rangle$ where M is a 2DFA and w is a string

 1. Simulate M on w for g_n^2 steps or until it halts.

 2. If M has halted, accept if it has accepted, otherwise reject.

b. Let $E_{2DFA} = \{ \langle M, x \rangle | M \text{ is a 2DFA and } L(M) = \emptyset \}$. Show that E_{2DFA} is
not decidable.

 - Again, as with Linear Bounded Automata, we prove this via a reduction
to A_{TM} via computation histories. The idea is that we show how to solve
A_{TM} by translating any instance of an A_{TM} problem into an E_{2DFA}
problem. Given a machine $\langle M \rangle$ and an input w, we construct a 2DFA
that accepts all accepting computation histories for $\langle M \rangle$ on w and rejects
everything else. Then we can decide whether M accepts w by deciding
whether the language of the 2DFA is empty. The proof is almost exactly
like Theorem 5.9, so I will omit some details.
• Presume, as in Theorem 5.9, that the computation history is presented as a single string, with configurations separated by # marks. Either one of the 2DFA’s heads can easily check that C_1 is indeed the start configuration, and that C_l is an accepting configuration (these are within the realm of a regular DFA. They only require a linear scan, and no writing on the tape). The slightly more difficult part is checking whether each C_{i+1} legally follows from C_i. The Linear Bounded Automota does so by zigzagging between corresponding positions of C_i and C_{i+1}, and marking the current position on the tape to keep track of the head position. The 2DFA cannot write like the LBA, but it can utilize the fact that it has two heads.

• After checking C_1 and C_l for validity, the first head moves back to the leftmost symbol of C_1, and the second head moves to the leftmost symbol of C_2. Together, they move right simultaneously, checking that the symbols they read are equivalent, except to the immediate right or left of the state symbol. For these few areas, validity checks are built-in to the 2DFA based on the transition function of M. Not that there are only a finite number of feasible configuration pairs where the pertinent parts of each configuration are valid transitions (for example aqb goes to acq or something like that). Also note that no marking of the tape is needed, because the two heads can traverse the tape simultaneously, and it’s unnecessary to mark the tape in order to “remember” location.

So to summarize the reduction, here’s how to build a machine S which “solves” A_{TM} based on the specious assumption that E_{2DFA} is decidable.

S=“On input $\langle M, w \rangle$, where M is a TM and w is a string:

1. Construct the 2DFA T from M and w as described above.
2. Run the decider for E_{2DFA} on T.
3. If the decider rejects, accept; if the decide accepts, reject.