Lectures and Office Hours for Week #3

- Office hours this week
 - I will be holding office hours outside of MacMillian today from 4:30-5:30pm
 - Tomorrow I will have office hours over zoom from 10-11am (use the lecture zoom link)
 - Email me if you would like to meet outside of these times.
- Monday and Wednesday we will continue with our overview of memory design and conventional transistor design
 - How does a MOSFET transistor work?
 - What are the main sources of power dissipation in a MOSFET transistor?
 - How do emerging technologies operate?

Coming Up for Week #4

- Paper discussions will start week #4
- Review the following papers:
 - Emerging NVM: A Survey on Architectural Integration and Research Challenges
 - Memory that never forgets: emerging nonvolatile memory and the implication for architecture design
 - I will post papers some time next week
 - I will assign teams for reviewing the papers
 - Expect different team assignments weekly
 - I will also assign discussion leaders for the week
 - If you want to volunteer, let me know
 - We will rotate discussion leaders throughout the semester. Expect to lead 2-3 times
 - Starting the 6th or 7th week of class, students will be able to choose papers to review

Memory Hierarchy Review

- Memory access is checked in fast caches first before resorting to slow memory at lower levels.
LOCALITY
- Locality is a principle that makes having a memory hierarchy a good idea
- If an item is referenced,
 - temporal locality: it will tend to be referenced again soon
 - spatial locality: nearby items will tend to be referenced soon.
- Why does code have locality?
 - loops
 - instructions accessed sequentially
 - arrays, records

DIRECT MAPPED CACHE
- Simple approach: Direct mapped
 - block size is one word
 - every main memory location can be mapped to exactly one cache location
 - lots of words in the main memory share a single location in the cache
- How is the address composed for the cache?
 - cache address is identical with lower bits in the main memory address
 - tag (higher address bits) differentiates between competing main memory words
 - We are taking advantage of temporal locality.

FLEXIBLE PLACEMENT OF BLOCKS
- Direct mapped cache
 - a memory block can go exactly in one place in the cache
 - use the tag to identify the referenced word
 - easy to implement, but rigid placement can cause high miss rate
- Fully associative cache
 - a memory block can be placed in any location in the cache
 - search all entries in the cache in parallel
 - requires a comparator associated with each cache entry
- Set-associative cache
 - a memory block can be placed in a fixed number of locations
 - n locations: n-way set-associative cache
 - a block is mapped to any of n locations in a set
 - Requires searching all locations of the set

LOCATING A BLOCK
- Address portions
 | tag | index | block offset |
- Index selects the set.
- Tag chooses the block by comparison.
- Block offset is the address of the data within the block.
- The costs of an associative cache
 - comparators and multiplexers
 - time for comparison and selection
 - More tag bits to store in cache
TYPES OF CACHE MISSES

- **Compulsory misses**: happens the first time a memory word is accessed
 - the misses for an infinite cache
- **Conflict misses**: happens because two words map to the same location in the cache
 - Most prevalent in direct mapped cache, absent from fully-associative caches
- **Capacity misses**: happens because the program touched many other words before re-touching the same word
 - the misses for a fully-associative cache

ISSUES FOR SET-ASSOCIATIVE CACHES

- Set-associative caches have a significant HW overhead
- Tag lookup is more complicated
- The CPU would like the data as soon as possible
 - For direct mapped caches, there is only one choice of which data to send
 - What about a set-associative cache?
 - Can you send the data to the CPU before the tag has been checked?
 - **What about power concerns?**

AVERAGE ACCESS TIME

- Hit time is also important for performance
- Average memory access time (AMAT)
 - AMAT = Hit time + Miss rate × Miss penalty
- Example
 - CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, L-cache miss rate = 5%
 - AMAT = 1 + 0.05 × 20 = 2ns
 - 2 cycles per instruction

INTERACTIONS WITH ADVANCED CPUS

- Out-of-order CPUs can execute instructions during cache miss
 - Pending store stays in load/store unit
 - Dependent instructions wait in reservation stations
 - Independent instructions continue
 - Effect of miss depends on program data flow
 - Much harder to analyse
 - Use system simulation
“CONVENTIONAL” TRANSISTOR DESIGN

IMPACT OF DOPING ON SILICON RESISTIVITY

P-N JUNCTION REGIONS OF OPERATION

NMOS AND PMOS TRANSISTORS
NMOS TRANSISTOR

- $g=0$: gate is at low voltage ($V_{gs} < V_{tn}$)
 - p-type body is at low voltage
 - source and drain junction diodes are OFF
 - transistor is OFF (no current flows)
- $g=1$: gate is at a high voltage ($V_{gs} \geq V_{tn}$)
 - p-type body is at low voltage
 - source and drain junction diodes are OFF
 - transistor is OFF (no current flows)

PMOS TRANSISTOR

- $g=0$: gate is at low voltage ($V_{gs} < V_{DD} - |V_{tp}|$)
 - negative charge attracted to body
 - inverts channel under gate to n-type
 - transistor is ON (current flows)
 - transistor acts as resistor
- $g=1$: gate is at a high voltage ($V_{gs} \geq V_{DD} - |V_{tp}|$)
 - n-type body is at high voltage
 - Source and drain junctions are OFF
 - transistor is OFF (no current flows)

MOS CAPACITOR

- Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

NMOS CUTOFF

- No channel
- $I_{ds} = 0$
NMOS LINEAR

- Channel forms
- Current flows from d to s
- e^- from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

NMOS SATURATION

- Channel pinches off
- I_d independent of V_{ds}
- We say current saturates
- Similar to current source

THRESHOLD VOLTAGE CONCEPT

- Depletion region: area devoid of mobile carriers (holes)
- Inversion layer: n-channel region under oxide
- The value of V_{GS} where strong inversion occurs is called the threshold voltage, V_T

POWER OF A TRANSITION: P_{TRAN}

What goes into charging/discharging the capacitance C_L?
CHARGING OF A CAPACITOR

Charge on capacitor, \(q(t) = C \, v(t) \)

Current, \(i(t) = \frac{dq(t)}{dt} = C \frac{dv(t)}{dt} \)

\[
i(t) = C \frac{dv(t)}{dt} = \frac{[V - v(t)]}{R} \]
\[
dv(t) = \frac{V - v(t)}{RC} \]
\[
\int \frac{dv(t)}{V - v(t)} = \int \frac{dt}{RC} \]
\[
\ln[V - v(t)] = \frac{-t}{RC} + A \]

Initial condition, \(t = 0, v(t) = 0 \) → \(A = \ln V \)

\[
v(t) = V[1 - e^{\frac{-t}{RC}}] \]

TOTAL ENERGY

- Total energy per charging transition from the power supply \(V_{dd} \)

\[
E_{trans} = \int_{0}^{\infty} Vi(t)dt = \int_{0}^{\infty} \frac{V^2}{R} e^{\frac{-t}{RC}}dt \]

\[
E_{trans} = CV^2 \]
ENERGY CONSUMED PER TRANSITION IN RESISTANCE

\[E = R \int_0^\infty i^2(t) dt = R \frac{V^2}{R^2} \int_0^\infty e^{\frac{-2t}{RC}} dt \]
\[E = \frac{1}{2} CV^2 \]

ENERGY STORED IN CHARGED CAPACITOR

\[E = \int_0^\infty v(t)i(t) dt = \int_0^\infty V \left[1 - e^{\frac{-t}{RC}} \right] \frac{V}{R} e^{\frac{-t}{RC}} dt \]
\[E = \frac{1}{2} CV^2 \]

TRANSITION POWER

- Gate output rising transition
 - Energy dissipated in pMOS transistor = \(\frac{1}{2} CV^2 \)
 - Energy stored in capacitor = \(\frac{1}{2} CV^2 \)
- Gate output falling transition
 - Energy dissipated in nMOS transistor = \(\frac{1}{2} CV^2 \)
 - Energy dissipated per transition = \(\frac{1}{2} CV^2 \)
- Power dissipation:
 \[P_{\text{trans}} = E_{\text{trans}} \alpha f_{\text{ck}} = \alpha f_{\text{ck}} \frac{1}{2} CV^2 \]
 \[\alpha = \text{activity factor} \]

LOWERING DYNAMIC POWER

Capacitance:
Function of fan-out, wire length, transistor sizes

Supply Voltage:
Has been dropping with successive generations

\[P_{\text{dy}} = C_L V_{\text{DD}}^2 \alpha f_{\text{ck}} \]

Activity factor:
How often, on average, do wires switch?

Clock frequency:
Recent scaling back…