
Blockchains from a Distributed Computing Perspective

MAURICE HERLIHY, Brown University

ACM Reference Format:
Maurice Herlihy. 2018. Blockchains from a Distributed Computing Perspec-
tive. 1, 1 (January 2018), 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Bitcoin first appeared in a 2008 white paper authored by someone
called Satoshi Nakamoto [15], themysterious deus abscondidus of the
blockchain world. Today, cryptocurrencies and blockchains are very
much in the news. Much of this coverage is lurid, sensationalistic,
and irresistible: roller-coaster prices and instant riches, vast sums of
money stolen or inexplicably lost, underground markets for drugs
and weapons, and promises of libertarian utopias just around the
corner.
This article is a tutorial on the basic notions and mechanisms

underlying blockchains, colored by the perspective that much of the
blockchain world is a disguised, sometimes distorted, mirror-image
of the distributed computing world.

This article is not a technical manual, nor is it a broad survey of
the literature (both widely available elsewhere). Instead, it attempts
to explain blockchain research in terms of the many similarities, par-
allels, semi-reinventions, and lessons not learned from distributed
computing. This article is intended mostly to appeal to blockchain
novices, but perhaps it will provide some insights to those familiar
with blockchain research but less familiar with its precursors.

2 THE LEDGER ABSTRACTION
The abstraction at the heart of blockchain systems is the notion
of a ledger, an invention of the Italian Renaissance originally de-
veloped to support double-entry bookkeeping, a distant precursor
of modern cryptocurrencies. For our purposes, a ledger is just an
indelible, append-only log of transactions that take place between
various parties. A ledger establishes which transactions happened
(“Alice transferred 10 coins to Bob”), and the order in which those
transactions happened (“Alice transferred 10 coins to Bob, and then
Bob transferred title to his car to Alice”). Ledgers are public, accessi-
ble to all parties, and they must be tamper-proof: no party can add,
delete, or modify ledger entries once they have been recorded. In
short, the algorithms that maintain ledgers must be fault-tolerant,
ensuring the ledger remains secure even if some parties misbehave,
whether accidentally or maliciously .

Author’s address: Maurice HerlihyBrown University, maurice.herlihy@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2.1 Blockchain Ledger Precursors
It is helpful to start by reviewing a blockchain precursor, the so-
called universal construction for lock-free data structures [12].
Alice runs an on-line news service. Articles that arrive concur-

rently on multiple channels are placed in an in-memory table where
they are indexed for retrieval. At first, Alice used a lock to synchro-
nize concurrent access to the table, but every now and then, the
thread holding the lock would take a page fault or a scheduling
interrupt, leaving the articles inaccessible for too long. Despite the
availability of excellent textbooks on the subject [13], Alice was
uninterested in customized lock-free algorithms, so she was in need
of a simple way to eliminate lock-based vulnerabilities.
She decided to implement her data structure in two parts. To

record articles as they arrive, she created a ledger implemented as
a simple linked list, where each list entry includes the article and
a link to the entry before it. When an article arrives, it is placed
in a shared pool, and a set of dedicated threads, called miners (for
reasons to be explained later), collectively run a repeated protocol,
called consensus, to select which article to append to the ledger.
Here, Alice’s consensus protocol can be simple: each thread creates
a list entry, then calls a compare-and-swap instruction to attempt
to make that entry the new head of the list.

Glossing over some technical details, to query for a recent article,
a thread scans the linked-list ledger. To add a new article, a thread
adds the article to the pool, and waits for for a miner to append it
to the ledger.

This structure may seem cumbersome, but it has two compelling
advantages. First, it is universal: it can implement any type of data
structure, no matter how complex. Second, all questions of concur-
rency and fault-tolerance are compartmentalized in the consensus
protocol.

A consensus protocol involves a collection of parties, some of whom
are honest, and follow the protocol, and some of whom are dishonest,
and may depart from the protocol for any reason. Consensus is
a notion that applies to a broad range of computational models.
In some contexts, dishonest parties might simply halt arbitrarily
(so-called crash failures), while in other contexts, they may behave
maliciously (so-called Byzantine failures). In some contexts, parties
communicate through objects in a shared memory, and in others,
they exchange messages. Some contexts restrict how many parties
may be dishonest, some do not.

In consensus, each party proposes a transaction to append to the
ledger, and one of these proposed transaction is chosen. Consensus
ensures: (1) agreement: all honest parties agree on which transaction
was selected„ (2) termination: all honest parties eventually learn the
selected transaction, and (3) validity: the selected transaction was
actually proposed by some party.

Consensus protocols have been the focus of decades of research in
the distributed computing community. The literature contains many
algorithms and impossibility results for many different models of
computation (see surveys in [1, 13]).

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 • Maurice Herlihy

Because ledgers are long-lived, they require the ability to do
repeated consensus to append a stream of transactions to the ledger.
Usually, consensus is organized in discrete rounds, where parties
start round r + 1 after round r is complete.

Of course, this shared-memory universal construction is not yet
a blockchain, because although it is concurrent, it is not distributed.
Moreover, it does not tolerate trulymalicious behavior (only crashes).
Nevertheless, we have already introduced the key concepts under-
lying blockchains.

2.2 Private Blockchain Ledgers
Alice also owns a frozen yogurt parlor, and her business is in trou-
ble. Several recent shipments of frozen yogurt have been spoiled,
and Bob, her supplier, denies responsibility. When she sued, Bob’s
lawyers successfully pleaded that not only had Bob never handled
those shipments, but they were spoiled when they were picked up
at the yogurt factory, and they were in excellent condition when
delivered to Alice’s emporium.

Alice decides it is time to blockchain her supply chain. She rents
some cloud storage to hold the ledger, and installs internet-enabled
temperature sensors in each frozen yogurt container. She is con-
cerned that sensors are not always reliable (and that Bob may have
tampered with some), so she wires the sensors to conduct a Byzan-
tine fault-tolerant consensus protocol [4], which uses several rounds
of voting to ensure that temperature readings cannot be distorted
by a small number of of faulty or corrupted sensors. At regular
intervals, the sensors reach consensus on the current temperature.
They timestamp the temperature record, and add a hash of the
prior record, so that any attempt to tamper with earlier records will
be detected when the hashes do not match. They sign the record
to establish authenticity, and then append the record to the cloud
storage’s list of records.
Each time a frozen yogurt barrel is transferred from Carol’s fac-

tory to Bob’s truck, Bob and Carol sign a certificate agreeing on
the change of custody. (Alice and Bob do the same when the barrel
is delivered to Alice.) At each such transfer, the signed change-of-
custody certificate is timestamped, the prior record is hashed, the
current record is appended to the cloud storage’s list.
Alice is happy because she can now pinpoint when a yogurt

shipment melted, and who had custody at the time. Bob is happy
because he cannot be blamed if the shipment had melted before he
picked it up at the factory, and Carol is similarly protected.
Here is a point that will become important later. At every stage,

Alice’s supply-chain blockchain includes identities and access con-
trol. The temperature sensors sign their votes, so voter fraud is
impossible. Only Alice, Bob, and Carol (and the sensors) have per-
mission to write to the cloud storage, so it is possible to hold parties
accountable if someone tries to tamper with the ledger.

In the shared-memory universal construction, a linked list served
as a ledger, and an atomic memory operation served as consensus.
Here, a list kept in cloud storage serves as a ledger, and a combina-
tion of Byzantine fault-tolerant voting and human signatures serves
as consensus. Although the circumstances are quite different, the
“ledger plus consensus” structure is the same.

3 PUBLIC BLOCKCHAIN LEDGERS
Alice sells her frozen yogurt business and decides to open a restau-
rant. Because rents are high and venture capitalists rapacious, she
decides to raise her own capital via an intriguing coupon offering
(ICO): she sells digital certificates redeemable for discount meals
when the restaurant opens. Alice hopes that her ICO will go viral,
and soon people all over the world will be clamoring to buy Alice’s
Restaurant’s coupons (many with the intention of reselling them at
a markup).
Alice is media-savvy, and she decides that her coupons will be

more attractive if she issues them as cryptocoupons on a blockchain.
Alice’s cryptocoupons have three components: a private key, a public
key, and a ledger entry (see sidebar). Knowledge of the private key
confers ownership: anyone who knows that private key can transfer
ownership of (“spend”) the coupon. The public key enables proof
of ownership: anyone can verify that a message encrypted with the
private key came from the coupon’s owner. The ledger conveys
value: it establishes the link between the public key and the coupon
with an entry saying: “Anyone who knows the secret key matching
the following public key owns one cryptocoupon”.

Suppose Bob owns a coupon, and decides to transfer half of it to
Carol, and keep the other half for himself. Bob and Carol each gener-
ates a pair of private and public keys. Bob creates a new ledger entry
with his current public key, his new public key, and Carol’s public
key, saying: “I, the owner of the private key matching the first public
key, do hereby transfer ownership of the corresponding coupon to the
owners of the private keys matching the next two public keys”. Spend-
ing one of Alice’s cryptocoupons is like breaking a $20-dollar bill
into two $10-dollar bills: the old coupon is consumed and replaced
by two distinct coupons of smaller value. (This structure is called
the unspent transaction output (UTXO) model in the literature.)
Next, Alice must decide how to manage her blockchain. Alice

does not want to do it herself, because she knows that potential
customers might not trust her. She has a clever idea: she will crowd-
source blockchain management by offering additional coupons as
a fee to anyone who volunteers to be a miner, that is, to do the
work of running a consensus protocol. She sets up a shared bulletin
board (sometimes called a peer-to-peer network) to allow coupon
aficionados to share data. Customers wishing to buy or sell coupons
post their transactions to this bulletin board. A group of volunteer
miners pick up these transactions, batch them into blocks for effi-
ciency, and collectively execute repeated consensus protocols to
append these blocks to the shared ledger, which is itself broadcast
over the bulletin board. Every miner, and everyone else who cares,
keeps a local copy of the ledger, kept more-or-less up-to-date over
the peer-to-peer bulletin board.
Alice is still worried that crooked miners could cheat her cus-

tomers. Most miners are probably honest, content to collect their
fees, but there is still a threat that even a small number of dishonest
miners might collude with one another to cheat Alice’s investors.
Alice’s first idea is have miners, identified by their IP addresses, vote
via the Byzantine fault-tolerant consensus algorithm [4] used in the
frozen yogurt example.

Alice quickly realizes this is a bad idea. Alice has a nemesis, Sybil,
who is skilled in the art of manufacturing fake IP addresses. Sybil

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

Blockchains from a Distributed Computing Perspective • :3

could easily overwhelm any voting scheme simply by flooding the
protocol with “sock-puppet” miners who appear to be independent,
but are actually under Sybil’s control.

We noted earlier that the frozen yogurt supply chain blockchain
was not vulnerable to this kind of “Sybil attack” because parties
had reliable idenities: only Alice, Bob, and Carol were allowed to
participate, and even though they did not trust one another, each
one knew they would be held accountable if caught cheating. By
contrast, Alice’s Restaurant’s cryptocoupon miners do not have
reliable identities, since IP addresses are easily forged, and a victim
would have no recourse if Sybil were to steal his coupons.

Essentially the same problem arises when organizing a street
gang: how to ensure that someone who wants to join the gang
is not a plain-clothes police officer, newspaper reporter, or just a
freeloader? One approach is what sociologists call costly signal-
ing [21]: the candidate is required to do something expensive and
hard to fake, like robbing a store, or getting a gang symbol tattoo.

In the public blockchain world, the most common form of costly
signaling is called proof of work (PoW). In PoW, consensus is reached
by holding a lottery to decide which transaction is appended next
to the ledger. Here is the clever part: buying a lottery ticket is a
form of costly signaling because it is costly: expensive in terms of
time wasted and electricity bills. Sybil’s talent for impersonation
is useless to her if each of her sock puppet miners must buy an
expensive, long-shot lottery ticket.

Specifically, in the PoW lottery, miners compete to solve a useless
puzzle, where solving the puzzle is hard, but proving one has solved
the puzzle is easy (see sidebar). Simplifying things for a moment, the
first miner to solve the puzzle wins the consensus, and gets to choose
the next block to append to the ledger. That miner also receives
a fee (another coupon), but the other miners receive nothing, and
must start over on a new puzzle.
As hinted, the previous paragraph was an oversimplification. In

fact, PoW consensus is not really consensus. If two miners both
solve the puzzle at about the same time, they could append blocks
to the blockchain in parallel, so that neither block precedes the
other in the chain. When this happens, the blockchain is said to
fork. Which block should subsequent miners build on? The usual
answer is to build on the block whose chain is longest, although
other approaches have been suggested [19].
As a result, there is always some uncertainty whether a transac-

tion on the blockchain is permanent, although the probability that a
block, once on the blockchain, will be replaced decreases exponen-
tially with the number of blocks that follow it [8]. If Bob uses Alice’s
cryptocoupons to buy a car from Carol, Carol would be prudent
to wait until Bob’s transaction is fairly deep in the blockchain to
minimize the chances that it will be displaced by a fork.
Although PoW is currently the basis for the most popular cryp-

tocurrencies, it is not the only game in town. There are multiple
proposals where cryptocurrency ownership assumes the role of
costly signaling, such as Ethereum’s Casper [2] or Algorand [9].
Cachin and Vukolic [3] give a comprehensive survey of blockchain
consensus protocols.

3.1 Discussion
The distinction between private (or permissioned) blockchain sys-
tems, where parties have reliable identities, and only vetted parties
can participate, and public (or permissionless) blockchain systems,
where parties cannot be reliably identified, and anyone can partici-
pate, is critical for making sense of the blockchain landscape.

Private blockchains are better suited for business applications, par-
ticularly in regulated industries, like finance, subject to know-your-
customer and anti-money-laundering regulations. Private blockchains
also tend to be better at governance, for example, by providing or-
derly procedures for updating the ledger protocol [11]. Most prior
work on distributed algorithms has focused on systems where par-
ticipants have reliable identities.

Public blockchains are appealing for applications such as Bitcoin,
which seek to ensure that nobody can control who can participate,
and participants may not be eager to have their identities known.
Although PoWwas invented by Dwork and Naor [6] as a way to con-
trol spam, Nakamoto’s application of PoW to large-scale consensus
was a genuine innovation, one that launched the entire blockchain
field.

4 SMART CONTRACTS
Most blockchain systems also provide some form of scripting lan-
guage to make it easier to add functionality to ledgers. Bitcoin
provides a rudimentary scripting language, while Ethereum [7]
provides a Turing-complete scripting language. Such programs are
often called smart contracts (or contracts) (though they are arguably
neither smart nor contracts).

Here are some examples of simple contract functionality. A hashlock
h prevents an asset from being transferred until the contract receives
a matching secret s , where h = H (s), for H a cryptographic hash
function (see sidebar). Similarly, a timelock t prevents an asset from
being transferred until a specified future time t .

Suppose Alice wants to trade some of her coupons to Bob in return
for some bitcoins. Alice’s coupons live on one blockchain, and Bob’s
bitcoin live on another, so they need to devise an atomic cross-chain
swap protocol to consummate their deal. Naturally, neither one
trusts the other.
Here is a simple protocol. Let us generously assume 24 hours

is enough time for anyone to publish a smart contract on either
blockchain, and for the other party to detect that that contract has
been published.

• Alice creates a secret s , h = H (s), and publishes a contract
on the coupon blockchain with hashlock h and timelock 48
hours in the future, to transfer ownership of some coupons
to Bob.

• When Bob confirms that Alice’s contract has been published
on the coupon blockchain, he publishes a contract on the Bit-
coin blockchain with the same hashlock h but with timelock
24 hours in the future, to transfer his bitcoins to Alice.

• When Alice confirms that Bob’s contract has been published
on the Bitcoin blockchain, she sends the secret s to Bob’s
contract, taking possession of the bitcoins, and revealing s to
Bob.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

:4 • Maurice Herlihy

1 function withdraw(uint amount) {
2 client = msg.sender;
3 if (balance[client] >= amount} {
4 if (client . call . sendMoney(amount)) {
5 balance[client] −= amount;
6 }}}

Fig. 1. Pseudocode for DAO-like contract

1 function sendMoney(unit amount) {
2 victim = msg.sender;
3 balance += amount;
4 victim .withdraw(amount)
5 }

Fig. 2. Pseudocode for DAO-like exploit

• Bob sends s to Alice’s contract, acquiring the coupons and
completing the swap.

If Alice or Bob crashes during steps one or two, then the contracts
time out and refund their assets to the original owners. If either
crashes during steps three and four, then only the party who crashes
ends up worse off. If either party tries to cheat, for example, by
publishing an incorrect contract, then the other party can simply
halt and its asset will be refunded. Alice’s contract needs a 48-hour
timelock to give Bob enough time to react when she releases her
secret before her 24 hours are up.
This example illustrates the power of smart contracts. There

are many other uses for smart contracts, including off-chain trans-
actions [16], where assets are transferred back and forth off the
blockchain for efficiency, using the blockchain only to settle bal-
ances at infrequent intervals.

4.1 Smart Contracts as Objects
A smart contract resembles an object in an object-oriented program-
ming language. A contract encapsulates long-lived state, a construc-
tor to initialize that state, and one or more functions (methods) to
manage that state. Contracts can call one another’s functions.
In Ethereum, all contracts are recorded on the blockchain, and

the ledger includes those contracts’ current states. When a miner
constructs a block, if fills that block with smart contracts and exe-
cutes them one-by-one, where each contract’s final state is the next
contract’s initial state. These contract executions occur in order, so
it would appear that there is no need to worry about concurrency.

4.2 Smart Contracts as Monitors
The Decentralized Autonomous Organization (DAO) was an invest-
ment fund set up in 2016 to be managed entirely by smart contracts,
with no direct human administration. Investors could vote on how
the fund’s funds would be invested. At the time, there were breath-
less journalistic accounts explaining how the DAO wold change
forever the shape of investing [17, 20].
Figure 1 shows a fragment of a DAO-like contract, illustrating

a function that allows an investor to withdraw funds. First, the

function extracts the client’s address (Line 2), then checks whether
the client has enough funds to cover the withdrawal (Line 3). If
so, the funds are sent to the client through an external function
call (Line 4), and if the transfer is successful, the client’s balance is
decremented (Line 5).

This code is fatally flawed. In June 2016, someone exploited this
function to steal about $50million funds from the DAO. As noted, the
expression in Line 3 is a call to a function in the client’s contract. Fig-
ure 2 shows the client’s code. The client’s contract immediately calls
withdraw() again (Line 4). This re-entrant call again tests whether
the client has enough funds to cover the withdrawal (Line 3), and
because withdraw() decrements the balance only after the nested
call is complete, the test erroneously passes, and the funds are trans-
ferred a second time, then a third, and so on, stopping only when
the call stack overflows.
This kind of re-entrancy attack may at first glance seem like an

exotic hazard introduced by a radically new style of programming,
but if we change our perspective slightly, we can recognize a pitfall
familiar to any undergraduate who has taken a concurrent program-
ming course.

First, some background. A monitor is a concurrent programming
language construct invented by Hoare [14] and Brinch Hansen [10].
A monitor is an object with a built-in mutex lock, which is ac-
quired automatically when a method is called and released when
the method returns. (Such methods are called synchronized meth-
ods in Java.) Monitors also provide await () call that allows a thread
to release the monitor lock, suspend, eventually awaken, and re-
acquire the lock. For example, a thread attempting to consume an
item from an empty buffer could callwait () to suspend until there
was an item to consume.

The principal tool for reasoning about the correctness of amonitor
implementation is the monitor invariant, an assertion which holds
whenever no thread is executing in the monitor. The invariant can
be violated while a thread is holding the monitor lock, but it must
be restored when the thread release the lock, either by returning
from a method, or by suspending viawait () .
If we view smart contracts through the lens of monitors and

monitor invariants, then the re-entrancy vulnerability looks very
familiar. An external call is like a suspension, because even though
there is no explicit lock, the call makes it possible for a second pro-
gram counter to execute that contract’s code concurrently with the
first program counter. The DAO-like contract shown here implicitly
assumed the invariant that each client’s entry in the balance table
reflects its actual balance. The error occurred when the invariant,
which was temporarily violated, was not restored before giving up
the (virtual) monitor lock by making an external call.
Here is why the distributed computing perspective is valuable.

When explained in terms of monitors and monitor invariants, the
reentrancy vulnerability is a familiar, classic concurrency bug, but
when expressed in terms of smart contracts, it took respected, expert
programmers by surprise, resulting in substantial disruption and
embarrassment for the DAO investors, and required essentially
rebooting the Ethereum currency itself [5].

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

Blockchains from a Distributed Computing Perspective • :5

4.3 Smart Contracts as Read-Modify-Write Operations
The ERC20 token standard is the basis for many recent initial coin
offerings (ICOs), a popular way to raise capital for an undertaking
without actually selling ownership. The issuer of an ERC20 token
controls token creation. Tokens can be traded or sold, much like
Alice’s Restaurant’s coupons discussed earlier. ERC20 is a standard,
like a Java interface, not a particular implementation.

An ERC20 token contract keeps track of how many tokens each
account owns (the balances mapping at Line 3), and also how many
tokens each account will allow to be transferred to each other ac-
count (the allowed mapping at Line 5). The approve() function
(Lines 9-13) adjusts the limit on how many tokens can be trans-
ferred at one time to another account. It updates the allowed table
(Line 10), and generates a blockchain event to make these changes
easier to track (Line 11). The allowance () function queries this al-
lowance (Lines 14-16).
The transferFrom function (Lines 17-23) transfers tokens from

one account to another, and decreases the allowance by a corre-
sponding amount. This function assumes the recipient has sufficient
allowance for the transfer to occur.
Here is how this specification can lead to undesired behavior.

Alice calls approve() to authorize Bob to transfer as many as 1000
tokens from her account to his. Alice has a change of heart, and
issues a transaction to reduce Bob’s allowance to a mere 100 tokens.
Bob learns of this change, and before Alice’s transaction makes
it onto the blockchain, Bob issues a transferFrom () call for 1000
tokens to a friendly miner, who makes sure that Bob’s transaction
precedes Alice’s in the next block. In this way, Bob successfully
withdraws his old allowance of 1000 tokens, setting his authorization
to zero, and then, just to spite Alice, he withdraws his new allowance
of 100 tokens. In the end, Alice’s attempt to reduce Bob’s allowance
from 1000 to 10 made it possible for Bob to withdraw 1100 tokens,
which was not her intent.

In practice, ERC20 token implementations often employ ad-hoc
workarounds to avoid this vulnerability, the most common being to
redefine the meaning of allow () so that it will reset an allowance
from a positive value to zero, and in a later call, from zero to the
new positive value, but will fail if asked to reset an allowance from
one positive value to another.
The problem is that approve() blindly overwrites the old al-

lowance with the new allowance, regardless of whether the old
allowance has changed. This practice is analogous to trying to im-
plement an atomic decrement as shown in Figure 4. Here, the decre-
ment method reads the shared counter state into a local variable
(Line 4), increments the local variable (Line 5), and stores the result
back in the shared state (Line 6). It is not hard to see that this method
is incorrect if it can be called by concurrent threads, because the
shared state can change between when it was read at Line 4 and
when it was written at Line 6. When explained in terms of elemen-
tary concurrent programming, this concurrency flaw is obvious, but
when expressed in terms of smart contracts that ostensibly do not
need a concurrency model, the same design flaw was immortalized
in a token standard with a valuation estimated in billions of dollars.

4.4 Discussion
We have seen that the notion that smart contracts do not need a con-
currency model because execution is single-threaded is a dangerous
illusion. Sergey and Hobor [18] give an excellent survey of pitfalls
and common bugs in smart contracts that are disguised versions of
familiar concurrency pitfalls and bugs. Atzei et al. provide a com-
prehensive survey of vulnerabilities in Ethereum’s smart contract
design.

5 CONCLUSIONS
Radical innovation often emerges more readily from outside an es-
tablished research community than from inside. Would Nakamoto’s
original Bitcoin paper have been accepted to one of the principal
distributed conferences back in 2008? We will never know, of course,
but the paper’s lack of a formal model, absence of rigorous proofs,
and lack of performance numbers would have been a handicap.
Today, blockchain research is one of the more vibrant areas of

computer science, with the potential of revolutionizing how our
society deals with trust. The observation that many blockchain
constructs have underacknowledged doppelgängers (or at least,
precursors) is not a criticism of either research community, but
rather an appeal to each side to pay more attention to the other.

6 SIDEBAR: PUBLIC AND PRIVATE KEYS
Modern cryptography is based on the notions of matching public
and private keys. Any string encrypted by one can be encrypted
by the other. Encrypting a message with Alice’s public key yields a
message only Alice can read, and encrypting a message with Alice’s
private key yields a digital signature, a message everyone can read
but only Alice could have produced.

7 SIDEBAR: CRYPTOGRAPHIC HASH FUNCTION
A cryptographic hash function H (·) has the property that for any
value v , it is easy to compute H (v), but it is infeasible to discover a
v ′ , v such that H (v ′) = H (v).

8 SIDEBAR: PROOF OF WORK PUZZLES
Here is puzzle typical of those used in PoW implementations. Let
b be the block the miner wants to append to the ledger, H (·) a
cryptographic hash function, and “·” concatenation of binary strings.
The puzzle is to find a value c such that H (b · c) < D, where D is
a difficulty setting (the smaller D, the more difficult). Because H
is difficult to invert, there is no way to find c substantially more
efficient than exhaustive search.

REFERENCES
[1] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,

Simulations and Advanced Topics. John Wiley & Sons.
[2] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gad-

get. https://github.com/ethereum/research/commits/master/papers/casper-basics/
casper_basics.pdf. (sep 2017). Accessed: 6 January 2018.

[3] Christian Cachin and Marko Vukolic. 2017. Blockchain Consensus Protocols in
the Wild. CoRR abs/1707.01873 (2017). arXiv:1707.01873 http://arxiv.org/abs/
1707.01873

[4] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and Im-
plementation (OSDI ’99). USENIX Association, Berkeley, CA, USA, 173–186.
http://dl.acm.org/citation.cfm?id=296806.296824

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

https://github.com/ethereum/research/commits/master/papers/casper-basics/casper_basics.pdf
https://github.com/ethereum/research/commits/master/papers/casper-basics/casper_basics.pdf
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
http://dl.acm.org/citation.cfm?id=296806.296824

:6 • Maurice Herlihy

1 contract ERC20Example {
2 // Balances for each account
3 mapping(address => uint256) balances ;
4 // Owner of account approves the transfer of an amount to another account
5 mapping(address => mapping (address => uint256)) allowed;
6 // other fields omitted
7 ...
8 // Allow spender to withdraw from your account , multiple times , up to the amount .
9 function approve(address spender, uint amount) public returns (bool success) {
10 allowed[msg.sender][spender] = amount; // alter approval
11 Approval(msg.sender, spender, amount); // blockchain event
12 return true ;
13 }
14 function allowance(address tokenOwner, address spender) public returns (uint remaining) {
15 return allowed[tokenOwner][spender];
16 }
17 function transferFrom(address from, address to , uint tokens) public (bool success) {
18 balances[from] = balances[from].sub(tokens);
19 allowed[from][msg.sender] = allowed[from][msg.sender].sub(tokens);
20 balances[to] = balances[to]. add(tokens);
21 Transfer (from, to , tokens);
22 return true ;
23 }
24 ... // other functions omitted
25 }

Fig. 3. ERC20 Token example

1 class Counter {
2 private int counter ;
3 public void dec() {
4 int temp = counter ;
5 temp = temp + 1;
6 counter = temp;
7 }
8 ...
9 }

Fig. 4. An incorrect atomic decrement operation

[5] Michael del Castillo. 2016. Ethereum Executes Blockchain
Hard Fork to Return DAO Funds. https://www.coindesk.com/
ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/. (July
2016). Accessed: 6 Januar 2018.

[6] Cynthia Dwork and Moni Naor. 1993. Pricing via Processing or Combatting Junk
Mail. Springer Berlin Heidelberg, Berlin, Heidelberg, 139–147. https://doi.org/10.
1007/3-540-48071-4_10

[7] Ethereum. [n. d.]. https://github.com/ethereum/. ([n. d.]).
[8] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg,
281–310. https://doi.org/10.1007/978-3-662-46803-6_10

[9] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceed-
ings of the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM, New

York, NY, USA, 51–68. https://doi.org/10.1145/3132747.3132757
[10] Per Brinch Hansen. 1973. Operating System Principles. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA.
[11] Mike Hearn. [n. d.]. The resolution of the Bitcoin experiment. ([n. d.]). https:

//blog.plan99.net/the-resolution-of-the-bitcoin-experiment-dabb30201f7.
[12] Maurice Herlihy. 1991. Wait-free Synchronization. ACM Trans. Program. Lang.

Syst. 13, 1 (Jan. 1991), 124–149. https://doi.org/10.1145/114005.102808
[13] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[14] C. A. R. Hoare. 1974. Monitors: An Operating System Structuring Concept.

Commun. ACM 17, 10 (Oct. 1974), 549–557. https://doi.org/10.1145/355620.361161
[15] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System. (May

2009). http://www.bitcoin.org/bitcoin.pdf
[16] J. Poon and T. Dryja. 2016. The Bitcoin Lightning Network: Scalable Off-Chain

Instant Payments. https://lightning.network/lightning-network-paper.pdf. (Jan.
2016). Accessed: 29 December 2017.

[17] Nathaniel Popper. 2016. A venture fund with plenty of virtual capital, but no
capitalist. New York Times. (man 2016). https://www.nytimes.com/2016/05/22/
business/dealbook/crypto-ether-bitcoin-currency.html.

[18] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Con-
tracts. CoRR abs/1702.05511 (2017). arXiv:1702.05511 http://arxiv.org/abs/1702.
05511

[19] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A
Fast and Scalable Cryptocurrency Protocol. Cryptology ePrint Archive, Report
2016/1159. (2016). http://eprint.iacr.org/2016/1159.pdf Accessed: 2017-02-20.

[20] Paul Vigna. 2016. hiefless Company Rakes In More Than $100 Mil-
lion. Wall Street Journal. (may 2016). https://www.wsj.com/articles/
chiefless-company-rakes-in-more-than-100-million-1463399393.

[21] Wikipedia. [n. d.]. Signalling Theory. https://en.wikipedia.org/wiki/Signalling_
theory. ([n. d.]). Accessed: 3 January 2018.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Draft 16 Jan 18

https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
https://www.coindesk.com/ethereum-executes-blockchain-hard-fork-return-dao-investor-funds/
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/3-540-48071-4_10
https://github.com/ethereum/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/3132747.3132757
https://blog.plan99.net/the-resolution-of-the-bitcoin-experiment-dabb30201f7
https://blog.plan99.net/the-resolution-of-the-bitcoin-experiment-dabb30201f7
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/355620.361161
http://www.bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
http://arxiv.org/abs/1702.05511
http://arxiv.org/abs/1702.05511
http://arxiv.org/abs/1702.05511
http://eprint.iacr.org/2016/1159.pdf
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
https://en.wikipedia.org/wiki/Signalling_theory
https://en.wikipedia.org/wiki/Signalling_theory

	1 Introduction
	2 The Ledger Abstraction
	2.1 Blockchain Ledger Precursors
	2.2 Private Blockchain Ledgers

	3 Public Blockchain Ledgers
	3.1 Discussion

	4 Smart Contracts
	4.1 Smart Contracts as Objects
	4.2 Smart Contracts as Monitors
	4.3 Smart Contracts as Read-Modify-Write Operations
	4.4 Discussion

	5 Conclusions
	6 Sidebar: Public and Private Keys
	7 Sidebar: Cryptographic Hash Function
	8 Sidebar: Proof of Work Puzzles
	References

