CSCI 2951R — A4: Unrequited Mail Due Apr 28, 2016

There are two sides to an email message. For the recipient, the burden of email is never-ending.
For the sender, the wait is unbearable; “did they get see my email?” to “could it be in their
spam folder?” then “when will they reply?” and eventually “what does no answer mean?”

For this assignment, you will make a program to help you handle email responses using your
email history data. Your program will tell the sender what to expect based on recent email
activity, and help draft a reply message.

1 Email Responder

When an email arrives in your inbox, it can trigger a callback (a function that is called when
there is a new email) in a program that you have running. Then this program can do anything
you need, like write a response to the sender. Your email responder should:

1. Predict how long your reply will be based on: a) past response rates to that sender, b) how
“busy” you are based on your recent email reply times, unread messages, ¢) your email
habits like what time of day you usually reply to emails.

2. Consider incorporating other features of the email message into your prediction (length of
the email, what time of date it was sent, whether it’s a weekend, etc.).

3. Give some context about how long it takes you to geerally respond to emails, what happened
in previous email exchanges with that person (like summary statistics of emails sent). This
might be a nice thing for the sender to know.

To compute the prediction, use a regression (e.g., linear regression). Regression is similar to
classification in A3, but for predicting a number instead of a category. sklearn can also do
regression. So you have some features (items 1 and 2 above), you have some known observations
(the actual time it took for you to respond in past cases), and some unknown values you are
trying to predict (your expected response time).

Here’s a starting point to access to your email history through IMAP (which all email services
support). You probably want to get the headers of past emails between you and the sender,
along with the timestamps. MailBot might be a good library to trigger an action when you get
an email. You can combine this with the IMAP processing code.

Using these libraries together, your email responder should compose an instant reply to the
sender about what to expect. Maybe since it’s the weekend, and this sender and you take a few
days between emails, they might not expect a response until Monday. Or maybe it’s Wednesday
afternoon, and you responded to a different email 10 minutes ago, so it’s likely you’ll get to this
one right away.

Now you don’t have to actually send the response (but you are encouraged to, see the Bonus
section below), especially when testing, but write it to a file. Later, check by hand how close
your email assistant’s predictions were, and whether you think the message as a whole would
have been helpful to the sender.


https://github.com/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb
https://github.com/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb
https://flowingdata.com/2014/05/07/downloading-your-email-metadata/
https://mailbot.readthedocs.org/en/latest/

CSCI 2951R — A4: Unrequited Mail Due Apr 28, 2016

1.1 Email Assistant for Drafting a Response

A second helpful thing is an email assistant that helps you write email responses and save them
in your Drafts folder. That way, when you reply, you can just open those drafts, make some
edits, and send them off. Be creative with this part!

For example, your email assistant might try to find the most similar email that has been sent to
you before, copy your response to that and replace the names so you can use that as a starting
point. Alternatively, you could build off an existing reply bot or chat bot.

Hopefully you end up with something you can actually use at the end of this assignment!

Note that this part is only worth 2 points, so if you're short on time, you might want to just get
the responder working.

1.2 Tips

Your email assistant should judiciously filter which emails should be responded to and which
should not. For example, emails sent to a wide audience (e.g., mailing list) or where you are
not in the ‘To’ or ‘CC’ fields usually don’t need a response. You might also want to look in the
email message for words like “action” or “response required”.

You probably want to use the content in the email headers to parse the metadata (timestamps
and sender /recipient information) rather than download the full messages, especially because
email messages can be quite large due to attachments.

Start early! This assignment is purposefully underspecified, so there is room for you to do
something creative. There are a few components which might take longer than you expect:
setting up the python libraries (or choosing alternate ones), figuring out what to extract from the
emails, doing the regression which is similar to part of A3, and coming up with ways to generate
email text that you would actually reuse. You are encouraged to work with other students to
get the email processing libraries working, but do the rest on your own.

2 Grading

This assignment is worth 15 points: 13 points for the email responder, and 2 points for the email
assistant. Check in: by April 21, you should be able to dredge up past email details with that
sender and be comfortable using the email-handling libraries above. We’ll sort out any issues
with email processing in class.

If you are brave enough to actually enable your email responder for a week, you will get two
bonus points. You probably want the response messages to make a note that it’s part of a class
project, that it’s an automatically generated email, and be careful not to send emails to the
entire department.



	Email Responder
	Email Assistant for Drafting a Response
	Tips

	Grading

