
Midterm Project Report:

Communicating Robot State via Real Time Projection
Mapping

Henry Stone and Mckenna Cisler

May 2019

1 Abstract

Effective human-robot communication is essential to creating useful robotics
applications. Since humans are visual creatures, aspects of a robot’s state, in-
tentions and understanding of its environment are frequently best communicated
visually. Currently, state of the art devices for communicating such informa-
tion include virtual and augmented reality head-mounted displays, but these
devices are limiting; for example, they must be worn by all users and must be
pre-configured to communicate with the robot. This approach replaces VR/AR
headsets with a projector and depth camera attached to the robot, enabling the
robot to project its state directly onto a changing environment in real time, at
points specified using only its camera. We show that our approach can accu-
rately project user-defined points onto an arbitrary environment with minimal
reprojection error. Overall, this approach enables simpler and more accessi-
ble human-robot visual communication, by removing the need for individual
headsets and consolidating the technology within the robot.

2 Introduction

Modern robots have sophisticated methods for acquiring information about their
environment and computing their own internal state. This is necessary for
robots to function, but it is also useful for robots to communicate this informa-
tion and their own intentions to humans in order to facilitate shared situational
awareness, collaboration, and trust. One of the most practical and informative
methods of communicating this information is through visual aids. This high-
bandwidth method enables humans to quickly grasp detailed information about
the robot, and can allow humans to seamlessly interact with the robot using a
shared spatial understanding.

Today, the three primary approaches for communicating robot state informa-
tion visually are conventional displays, virtual reality displays, and augmented

1



reality displays. Conventional displays, which can exist on or off the robot, gen-
erally represent robot state through visualizations and simulated environments,
while VR and AR displays provide stereoscopic representations of either a simu-
lated environment incorporating robot data (as in VR) or the real world environ-
ment with overlays of robot data (as in AR). However, these approaches all have
limitations. Conventional displays are constrained by their two-dimensional na-
ture, and are not optimal for conveying 3D physical environments. VR and AR
displays improve on this by presenting stereoscopic representations which over-
lay state directly onto either a simulated or real environment, but both require
head mounted displays. Such displays must be worn by each user interacting
with the robot, and additional complexity is required to ensure the displays and
robot can communicate with each other. Additionally, these systems sometimes
require knowledge of the user’s position relative to the robot to provide accurate
visual information. For many applications such displays require an unreason-
able amount of preparation and specialization, limiting their accessibility and
ease of use for human-robot interaction.

We propose an alternative approach to conveying robot information visually:
projecting that information directly onto the environment using dynamic pro-
jection mapping. Our approach has two primary components, a RGBD camera
(in our case, a Kinect V2 sensor), which obtains information about the geome-
try of the scene, and a projector, which enables the robot to project arbitrary
images onto given locations in the scene. Our method is designed as an inter-
face for robot developers; it simply requires a developer to specify a point in the
RGBD camera space defining where (and what) they would like to project in the
environment (world space), and our method will compute where the projector
should project in order to color that world point. In other words, the developer
will be able to project to pixels specified within the camera image, enabling
them to easily select world points based solely on what the camera sees.

We achieve this interface by calibrating the projector-camera system to com-
pute a direct transformation between camera and projector space. This allows
us to transform individual pixels from camera to projector space, but we supple-
ment the transformation with forward warping to transform complete images de-
fined in camera space. Forward warping is used to handle interpolation between
projected camera-space pixels and manage occlusions and other issues arising
from differences in perspective between the camera and projector. OpenGL is
used to implement forward warping and to post-process the warping to correct
for inaccurate camera depth and unrealistic scene geometries. The depth camera
is used to determine the geometry of the scene in real-time, so that differences
in perspective between the camera and projector are taken into account in the
transformation. This enables our software to project a complete image specified
in camera space onto the environment, relying only on data from the RGBD
camera.

We show that our approach, when given individual points specified in the
RGBD camera’s image space, is able to accurately project these points into
the environment such that reprojection error (as measured from the camera’s
perspective) is minimized. The reprojection error represents how accurately we

2



can specify points in world space using points in camera space, and if this error
is sufficiently low to not confuse or distract users, we can conclude that we are
accurately projecting the robot’s environmental understanding to users.

3 Related Work

Stereo camera calibration is a staple problem in computer vision, and has been
studied in depth. Most methods for calibrating stereo cameras rely on finding
correspondences between the two images [1]. In projector-camera calibration
the projector cannot observe the world to generate correspondences with the
camera. Instead, projectors generally employ structured light [2] which is then
observed by the camera to generate correspondences. Certain structured light
patterns used in projection mapping allow the construction of a dense corre-
spondence between camera and projector space. Given a static scene, methods
which compute these dense correspondences can project on desired locations in
camera space, or compute a depth map of an observed scene [2]. However, while
these methods produce high quality projection maps, changes in a scene require
a new structured light scan of the environment, making real time projection
mapping infeasible.

Other techniques make use of an initial camera-projector calibration along-
side printed infrared patterns to construct sparse correspondences [3]. Using
high frame rate projectors and cameras, such methods are able to project onto
moving surfaces at over 1000 frames per second enabling a seamless visual ex-
perience. However, the requirement of printed patterns limits this method to
projecting onto prepared surfaces. While other high speed projection mapping
methods exist which use camera tracking of an object instead of a depth map
[4], this system requires expensive non-commodity hardware, and is insufficiently
mobile for small to medium robotics applications.

Most similar to our work, a recent paper [5], also incorporates a Kinect v2
for real-time projection mapping on a moving scene, performing many similar
calibration steps. Their work, however, is not robotics facing, and thus does
not explore ways to represent internal robotic state. Other works focus on
calibration and projection mapping using the Kinect itself as a projector-camera
system, and how this can be utilized to improve upon the depth estimation
capabilities of the Kinect [6].

Within the domain of robotics, various works explore the value of augmented
reality and virtual reality headsets for showing robot intent [7] and interactively
communicating with robots [8]. Meanwhile Omidshafiei et al. [9] uses projection
mapping to represent a robot’s environment and understanding of its location.
However, while projection mapping is used to represent the robot’s internal
state, the approach is limited to only projecting onto a static planar surface
below the robot, and the projectors themselves are not mounted on the robot.

The main contributions of our approach are as follows

• Using Kinect data to calibrate a projector/Kinect system.

3



• Using Kinect depth to allow real time projection mapping onto changing
scenes.

• Projecting information regarding a robot’s state onto its environment.

• Mounting the projection mapping system onto a mobile robot to allow
operation in a non-prepared environment.

4 Technical Approach

The primary goal of this project was to properly calibrate and project to points
in camera space utilizing the Kinect’s depth data. Formally, given a 2 dimen-
sional camera point, {xc, yc}, and a corresponding depth, {dc}, we would like to
be able to produce a projection point, {xp, yp}, which corresponds to the same
world point as {xc, yc, dc}.

4.1 Model of a Camera

Following traditional computer vision literature, we consider a mathematical
model of a camera (or a projector) composed of three elements. E ∈ R4×4,
the extrinsic matrix, which represents a rotation and translation of world space
coordinates so that the focal point of the camera lies at (0, 0, 0) and the camera
points in the positive Z direction with the top of the camera pointing in the
positive Y direction. I ∈ R4×4, the intrinsic matrix, maps coordinates from this
space into homogeneous image space. The intrinsic matrix represents informa-
tion such as the center of the image and the cameras focal length. These two
matrices are all that is necessary to represent an ideal point camera, mapping
world coordinates ~X = (X,Y, Z) to image coordinates {xc, yc} and depth {dc}
as follows. 

xc · dc
yc · dc
dc
1

 = IE


X
Y
Z
1


From this we can recover xc and yc by diving through by the third element of

the vector. I and E both have
[
0 0 0 1

]
as their bottom row, guaranteeing

that the bottom index stays 1 under multiplication. If we know the depth dc

in addition to the image coordinates, we can reconstruct the vector


xc · dc
yc · dc
dc
1

.

Then we can find the world coordinates corresponding to that point by inverting
the intrinsic and extrinsic matrices.

4




X
Y
Z
1

 = E−1I−1


u · d
v · d
d
1


While this effectively models an ideal camera, in practice additional types

of distortion are caused by a cameras lenses. Thus we also model distortion
coefficients ρ such that the real coordinates in image space are described by a
function of xc, yc, and ρ. For more information on specifics see the OpenCV
calibration page.

4.2 Full System Calibration

Our initial goal was to fully model the both the camera and the projector,
allowing transformation of coordinates to and from a mutual world space as an
intermediary. Using [10] as implemented by OpenCV, we can solve for E, I,
and ρ using a set of correspondences between world space and camera space (or
projector space).

In order to do this, we used a camera calibration grid as our world space,
and find various world space points in camera-space to perform camera cali-
bration (figure 1a). Once we have calibrated the camera, we project lines onto
the calibration grid (figure 1bc). Finding the intersections of these lines, and
using planarity constraints, we can find the world points which correspond to a
specific pixel in the projector (Thus enabling projector calibration). From the
full calibration of the camera and the projector, we were able to covert between
the two domains.

(a) Calibration grid (b) Calibration grid with
vertical projected line

(c) Calibration grid with
horizontal projected line

Figure 1: Calibration Images

However, in estimating the camera matrices and distortion coefficients for
both the camera and the projector, several sources of error were included that
made the calibration sub-par. In particular, given the limited number of im-
ages we could process using the line intersection method, distortion coefficients
tended to be higher that the expected true coefficients for the low-distortion
cameras (which visually appeared to be 0). Thus we eventually discarded this
approach in favor of a direct calibration.

5

https://docs.opencv.org/2.4.13.7/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/calib3d/camera_calibration/camera_calibration.html


4.3 Direct Camera Projector Calibration

If we assume that the distortion coefficients of both the camera and the projector
are ~0, the equations for projection into both the camera and the projector are
simply: 

xc · dc
yc · dc
dc
1

 = IcEc


X
Y
Z
1



xp · dp
yp · dp
dp
1

 = IpEp


X
Y
Z
1


By using both of these equations together and completely ignoring the inter-

mediate values we can represent the entire transformation using a single camera
matrix M . 

xp · dp
yp · dp
dp
1

 = IpEpE
−1
c I−1

c


xc · dc
yc · dc
dc
1

 = M


xc · dc
yc · dc
dc
1


HereM is a a 4 by 4 matrix, but since we know the bottom row is

[
0 0 0 1

]
,

we can functionally consider M ∈ R3×4. This matrix represents the entire
transformation between camera-space and projector-space. In order to solve M,
through minimization of reprojection error, we must collect a set of correspon-
dences directly between camera-space and projector-space.

4.3.1 Collection of Correspondences

In order to collect correspondences, we project three different colored circles
(red, green, and blue) to random (non-adjacent) coordinates in the projector.
We collect images from the Kinect both before and after the circles are projected,
using the difference in the images to remove objects that remain static in the
scene. We blur this difference image with a Gaussian blur with σ = 8.5px so that
brighter circles in the image will have peak brightness at their center. Finally,
taking the maximum relative brightness of each channel (e.g. R − G

2 −
B
2 ), we

localize the center of the projected circle in camera space. Using this location,
and the Kinect’s depth data, we can also find the depth of the corresponding
point.

Given a set of potential corresponding camera-space points {xc, yc, dc} and
projector-space points {xp, yp}, we first validate them by hand to eliminate
clearly extraneous pairs. The remaining correspondences are used to solve for
the optimal calibration, M .

4.3.2 Solving for the calibration matrix, M .

Given a set of correspondences {xc, yc, dc, xp, yp} we find the calibration matrix,
M , as follows using a variation of the 8-point algorithm. While we do not know
dp explicitly, we know that it must be equal to

dp = M3,1xcdc +M3,2ycdc +M3,3dc +M3,4

6



. Using this we know the value of xp should be

M1,1xcdc +M1,2ycdc +M1,3dc +M1,4

M3,1xcdc +M3,2ycdc +M3,3dc +M3,4
=
xp · dp
dp

= xp

We simplify this by multiplying through by the denominator and moving all
terms to one side of the equation. The result is an inequality in the following
form for each correspondence.

M1,1xcdc+M1,2ycdc+M1,3dc+M1,4−M3,1xcdcxp−M3,2ycdcxp−M3,3dcxp−M3,4xp = 0

Similarly, we can construct an inequality using yp for each correspondence.
Since we know the values of xc, yc, dc, xp, and yp, each of these inequalities is
simply a linear constraint on the values of M . We then find a matrix M , which
satisfies these soft linear constraints as well as possible while having ‖M‖2 = 1
in order to avoid the trivial solution M = 03×4.

4.4 Forward Warping with OpenGL

While being able to map points from {xc, yc, dc} to {xp, yp} fully captures the
calibration between the Kinect and the projector, there are several significant
issues to address before we can transform images in Kinect-space to images in
projector-space. First, for each pixel in Kinect-space we need to apply M in
order to convert the pixel to projector space. Since there are over 2 million
pixels in the Kinects field of view, the required number of operations, if CPU-
bound, would severely limit the frame rate of the projection. Second, if adjacent
Kinect pixels are more than 1 pixel apart in projector-space, then we need to
interpolate between them so that intermediate pixels are not black.

In order to solve these issues, we convert the Kinect image into a mesh,
allowing much of our computational pipeline to be applied using graphics tech-
niques on the GPU. First, we use a custom C library linked with Python in
order to move the {xc, yc, dc, R,G,B} values for each pixel of the Kinect’s im-
age to the GPU. The GPU uses a preconstructed mesh of triangles to connect
these vertices into a sheet.

Figure 2: Grid constructed with {xc, yc, dc, R,B,G} information placed at each
vertex.

7



Once the Kinect image data is converted into a mesh, it undergoes several
stages of processing.

First, for each vertex in the mesh, the {xc, yc, dc} information is converted
to {xp, yp} using the matrix M . Operations of this type are integral to graphics,
and thus are highly optimized on the GPU, allowing the throughput necessary
to acheive real time performance.

Second, while we wish to interpolate between nearby points in projector-
space, if two adjacent points in Kinect-space are very far apart in projector-
space, it is likely due to an occlusion (region visible to the projector which is
not visible to the Kinect). In order to avoid projecting into the region not visible
to the Kinect, a geometry shader is used to remove those triangles which are
very significantly streched.

Finally, a fragment shader uses the triangle connectivity to interpolate be-
tween the RGB values at each vertex in order to fill in intermediate regions in
the projector image.

All the operations we perform on the GPU mirror operations which would
be performed in normal real time graphics applications. Thus, GPUs are able
to perform the pipeline very fast compared to what would be expected on the
CPU. The whole pipeline runs at approximately 25 FPS, but could be further
optimized as a significant amount of the computational cost comes from type
conversions and passing the data between Python and C.

4.5 Robot Operating System (ROS) Interface

We implemented our system as a ROS package, with the projector serving as
a ROS node. The projector interface was simple; the node subscribed to two
topics, a depth topic directly from the RGBD camera, and an image topic
which a client node would publish to in order to project. This interface is useful
because the image sent from the client application to the image topic is in
camera space, such that the client application could directly use the camera’s
input to generate the desired projection.

A normal use case would then involve three ROS nodes; a RGBD camera
(Kinect2 in our case), projector, and a client application node. The RGBD
camera provides the latest depth directly to the projector’s depth topic, and
the client application receives the RGB data from the camera to generate its
own image to project, which is then sent to the projector’s image topic.

5 Evaluation

5.1 Projection Accuracy

The purpose of calibrating a projector-camera system is to generate accurate
correspondences between the two in real time. This would mean that for an
arbitrary location in camera space, it is possible to find the corresponding point
in projector space such that when projected it appears at that coordinate in the

8



camera. To evaluate this, we took 39 human-annotated ground truth projector-
camera correspondences. The locations in camera space are projected using our
method and compared to the ground truth projection locations which generated
these points.

We compare our projection method to one which uses simple image stretch-
ing without incorporating Kinect depth.

Figure 3: A comparison of projector-space reprojection error for fitting a full
camera matrix (including depth) vs. an affine transform (without depth) to
out calibration data. Camera space reprojection error, which is much harder
to measure, would be proportional to this error although diminished by a small
factor of 1.5-3, based on the resolutions of the two systems.

There are several cases where we would expect the projector/camera space
transform to be affine. If the projector and camera are in the same location, or if
the space being projected onto was a static plane, then the affine transformation
matrix would be sufficient to capture the difference between the two spaces.
When we compare such a transform fitted to our data with a full camera matrix
transformation which takes into account the Kinect depth, we see that depth

9



information in imperative for a proper calibration even with a baseline between
the Kinect and the projector as small as 15cm.

Qualitatively, we can see that the calibration performs well by comparing
the pattern being projected with the pattern observed by the camera.

Figure 4: In an attempt to project a uniform grid in camera space (right), we
see that the projection (left) must distort itself across depth boundaries.

Thus it is clear both quantitatively and qualitatively that the calibration
system is capable of adequately projecting points from camera space to projector
space.

5.2 Use Case Demonstrations

We also produced three demonstrations of potential use cases of our implemen-
tation of projection mapping. These were intended to qualitatively demonstrate
the usefulness of this method in various robotics contexts.

5.2.1 Drawing

The drawing demonstration is a simple interface that allowed a user to draw
on an image from the RGBD camera (using their mouse), and then have what
they drew projected on the environment at the same location they drew on in
the image.

10



Figure 5: A demonstration of the drawing interface. The user draws directly on
an image from the camera using their mouse (left), and the drawing is projected
on the real world as it was drawn (right). A video demonstration can be found
here. Note that the image drawn here was slightly outside of the area the
projector could illuminate, and the top of the image was cut off.

This demonstration provided qualitative validation of the reprojection ac-
curacy of our method; under visible scrutiny the drawn image appeared in the
same location in the environment as was specified using the camera. In other
words, the drawing on the interface is nearly perfectly overlaying the real-world
projection in the left image above.

This demonstration also suggests several possible robotics applications of
our software. These include:

• Enabling interaction through telepresence robots, by allowing the remote
user to project on the environment.

• Novel human-robot interaction using automated drawing as a form of
robot communication.

• User interfaces for controlling robots utilizing nearby surfaces.

5.2.2 Object Tracking

The object tracking demonstration shows the addition of tracking algorithms to
project onto a consistent point on an object, rather than just a consistent point
in a static scene.

11

https://youtu.be/o0LdbWGSY78
https://youtu.be/o0LdbWGSY78


Figure 6: A demonstration of combined projection and object tracking. An
object in the camera’s view is selected to track (in this case, the uppermost eye
on the shirt), and a red square is continually projected at the tracked object’s
camera coordinates as the object moves. A video demonstration can be found
here.

This demonstration shows the usefulness of object tracking for enabling con-
sistent projection onto the environment despite robot movement or changes in
the environment. This example also demonstrates the relatively low latency of
this system.

There are several possible applications of the combination of projection map-
ping and object tracking, including:

• Object illumination for human-robot communication.

• Locking human- or robot- generated projections to particular objects (for

12

https://youtu.be/PmASBRfJJT4
https://youtu.be/PmASBRfJJT4


example, as an extension to the drawing demo above).

5.2.3 MaskRCNN

The MaskRCNN demonstration shows how our system can convey high level
robot understanding of its environment. MaskRCNN arrives at its labeling
of the world through a complex and error-prone process. Since the system is
so complex, understanding (and debugging) a robots interpretation of a scene
without access to the robots internal state is very difficult. Our MaskRCNN
demo shows the capability of our system to express this complex internal state
in a salient and human-understandable manner.

Figure 7: The MaskRCNN demonstration correctly categorizing human and
chair objects. A video demonstration can be found here.

Some examples where expressing MaskRCNN information with projection
mapping could be useful:

• Settings where it is important to know if a robot recognizes you as a
human such as working with industrial robots.

• Debugging human-robot interaction technologies where the robot’s labels
of the environment are important.

6 Conclusion

This paper has presented a novel approach to conveying visual information from
a robot using dynamic projection mapping. We have presented a system com-
prised of a depth camera and projector, which uses an initial co-calibration to
produce a single transformation matrix that is used along with forward warp-
ing to project to world coordinates specified in camera-space. We have shown

13

https://youtu.be/mAQnXi_ttEI


the advantages of this system system over conventional VR and AR approaches
to communicating robot state, and demonstrated that our method enables ac-
curate projection of visual data onto a robot’s environment due to acceptable
visual error and minimal reprojection error relative to a baseline method. We
have also provided demonstrations of our method that are useful for several
robot applications.

Given the ability to project directly from a camera-space image (as opposed
to a set of points), there are several applications that immediately present them-
selves. For example, a robot could use a combination of MaskRCNN and other
robot processing to constantly project its classification of and intentions with ob-
jects surrounding it. This could increase the safety of human-robot interaction
in collaborative work spaces, by allowing all humans in that space to under-
stand what a robot’s intentions are. Another application to consider is, given
a path indicated in the Kinect’s view, draw a series of footsteps on the ground,
indicating the intended path of the robot. These applications both make use of
the calibration to bridge between camera-space and projector-space in order to
assist in expressing a robot’s understanding of its state and its actions.

Our technique is limited by several factors. Notably, we only calibrate be-
tween the projector and the Kinect to which it is connected. A broader cal-
ibration scheme would also include calibration between the Kinect and other
cameras on the robot, allowing the robot to project from the point of view of
other cameras as well. Another extension of our technique would be to track
objects in world space automatically, built off of the robot’s global localization.
Our object tracking demonstration showed tracking of objects in the Kinect’s
view, but if the Kinect were to lose sight of the desired object the track may not
be recovered. One could instead correspond objects to their world coordinates,
and project onto those objects whenever they were visible to the projector. One
could easily imagine an application such as telepresence where you might want
to project notes onto a whiteboard and have the notes reappear even if the
telepresence robot were to move away and return.

Ultimately, dynamic projection mapping enables a myriad of applications for
seamlessly communicating a robot’s state, environmental understanding, and
intentions. There is also significant opportunity to build additional features
on top of projection mapping to present higher-level interfaces for roboticists,
making it easier to communicate complex internal representations easily and
intuitively to robot users with minimal programmer effort.

References

[1] Juyang Weng, Paul Cohen, and Marc Herniou. Camera calibration with
distortion models and accuracy evaluation. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (10):965–980, 1992.

[2] Daniel Moreno and Gabriel Taubin. Simple, accurate, and robust projector-
camera calibration. In 2012 Second International Conference on 3D Imag-

14



ing, Modeling, Processing, Visualization & Transmission, pages 464–471.
IEEE, 2012.

[3] Gaku Narita, Yoshihiro Watanabe, and Masatoshi Ishikawa. Dynamic pro-
jection mapping onto deforming non-rigid surface using deformable dot
cluster marker. IEEE transactions on visualization and computer graphics,
23(3):1235–1248, 2017.

[4] Kohei Okumura, Hiromasa Oku, and Masatoshi Ishikawa. Acitve projec-
tion ar using high-speed optical axis control and appearance estimation
algorithm. 2013 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6, 2013.

[5] Yundong Guo, Shu-Chuan Chu, Zhenyu Liu, Chan Qiu, Hao Luo, and
Jianrong Tan. A real-time interactive system of surface reconstruction and
dynamic projection mapping with rgb-depth sensor and projector. Inter-
national Journal of Distributed Sensor Networks, 14(7):1550147718790853,
2018.

[6] Thiago Motta, Manuel Eduardo Fernández, Luciano Soares, and Alberto
Raposo. Projection mapping for a kinect-projector system. Proceedings -
2014 16th Symposium on Virtual and Augmented Reality, SVR 2014, pages
200–209, 09 2014.

[7] Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tomp-
kin, George Konidaris, and Stefanie Tellex. Communicating robot arm mo-
tion intent through mixed reality head-mounted displays. arXiv preprint
arXiv:1708.03655, 2017.

[8] Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie, Yixin Zhu, and Song-
Chun Zhu. Interactive robot knowledge patching using augmented real-
ity. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1947–1954. IEEE, 2018.

[9] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Yu Fan Chen,
Nazim Kemal Ure, Shih-Yuan Liu, Brett T Lopez, Rajeev Surati,
Jonathan P How, and John Vian. Measurable augmented reality for pro-
totyping cyberphysical systems: A robotics platform to aid the hardware
prototyping and performance testing of algorithms. IEEE Control Systems
Magazine, 36(6):65–87, 2016.

[10] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence, 22, 2000.

15


	Abstract
	Introduction
	Related Work
	Technical Approach
	Model of a Camera
	Full System Calibration
	Direct Camera Projector Calibration
	Collection of Correspondences
	Solving for the calibration matrix, M.

	Forward Warping with OpenGL
	Robot Operating System (ROS) Interface

	Evaluation
	Projection Accuracy
	Use Case Demonstrations
	Drawing
	Object Tracking
	MaskRCNN


	Conclusion

