
Generalizing Artificial Intelligence to Play
Super Mario World

Bridging Genetic Algorithms and Supervised Learning

Benjamin Spiegel, Chris Yu

May 15, 2019

1 Abstract

Generalizing artificial intelligence to perform tasks on which it was
not trained has been a historically difficult task, especially if the type of
problem being solved, in our case, the gameplay of any level of a classic
game, is not trivial to begin with. While there is plenty of work on developing
artificial intelligence that can play video games, existing research applications
to Super Mario World have fallen short due to developed bots’ inability to
play levels it has never seen before at a human level or above. Currently, our
approach implements a generic Neuroevolution of Augmenting Topologies
(NEAT) algorithm, which mainly consists of training a bot that has a neural
network using a genetic algorithm. We will discuss this in greater detail in the
Technical Approach section, but in general, the NEAT algorithm evaluates
the fitness of certain policies based on how far to the right of the level that
policy achieves (i.e. how long it survives and makes progress). Our ultimate
goal is to attain a human level of success on complex levels on which the bot
was not trained, showing that we have successfully designed an algorithm
that achieves some degree of generalization, which we try to do via two main
methods; supervised learning and cross-breeding. Both methods produce
bots that demonstrate generalized behavior, but only cross-breeding shows
that it is possible to produce bots of high fitness on levels to which the
bots had low exposure. In the end, we were able to produce agents that
competently play levels they have only seen a few times.

1



2 Introduction

Although the creation of a game-playing agent may not be a particularly
pressing issue, if we are successful in creating a general solution that can play
multiple levels in Super Mario World while only training on one, our resulting
algorithm should be of interest to anyone attempting to generalize artificial
intelligence, as the same algorithms that are used to train gaming bots can
often be trained on other tasks that are on similar levels of complexity. In
the big picture, fully generalized artificial intelligence has been a major goal
in the field since its inception. Although we only seek to attain a small
degree of generalizability, existing research in the industry proves that it
is a difficult problem with very high utility, as much of existing artificial
intelligence lags behind people on human tasks due to an inability to adapt
or model generalized inferences.

As far as our problem goes, bots trained on Deep Q-Networks, among
other deep learning architectures, have been successful at playing levels in
Super Mario World, but only ones they have been trained on. It is also
possible to create a bot that plays completely optimally on a given level
based on hardcoded moves performed in a frame-perfect manner. This is
the basis of Tool-Assisted Speedrun (TAS) bots, which are accepted as being
the pinnacle of superhuman gameplay. Obviously, TAS bots are even more
restrictive than the class of reinforcement learning bots, since a TAS bot for
one level may not even successfully complete any other level. In the end,
current methods fall short because they do not create adapting bots after
training.

Primarily, our work will be using the NEAT algorithm as a basis in
our attempt to create a bot that can complete any Super Mario World level
with minimal distinct training levels. Our first method involved taking a lot
of data from relatively successful NEAT agents, in other words, the decision
they made (in terms of which buttons to press) given an input image. This
large quantity of data was then fed in as inputs to a fully connected two-layer
supervised learning algorithm that produces an agent that makes decisions
on which buttons to press, given input images of the same format. There
was a lot of attempts to achieve better results via input pruning, tuning
hyperparameters, and adjusting the architecture, which we will discuss in
detail in the Technical Approach section.

Another idea we had was to see how well agents generated by NEAT
could perform on levels that were different but with similar features to the

2



level they were trained on. We hypothesized that supplementing agents that
were trained on one level with training done on another level would yield
agents that were successful at both levels. We took a population of relatively
successful agents that were trained on one level and ran them on a second
level to assess their baseline fitness. Then we continued training on this
second level using the NEAT algorithm to see how long it would take for
agents to successfully beat this second level. We refer to this method as
cross-breeding.

The number of generations it takes for agents to successfully complete
the second level is a measure of the success of this method. Under ideal
circumstances, we would like to create bots that can fully complete levels
(achieve maximum fitness by making it all the way to the right of a level)
to which they have had limited exposure. Another metric of success we used
was fitness, which was measured by how far right in the level that a given
bot could progress. Obviously, the most successful bots achieved much higher
fitness numbers than our initial bots.

3 Related Work

Genetic Algorithms use the principles of biological evolution to pro-
duce agents that can solve complex tasks. Generations of randomly gener-
ated agents are subjected to a fitness test and then culled and re-breeded.
The fitness test is an evaluation of the performance of an agent with respect
to the level. This process continues for many generations until agents can
only make marginal improvements to the fitness test, signifying that the al-
gorithm is close to the optimal solution that is within the capabilities of the
operating structure of the agent. Neuroevolution of Augmenting Topologies
(NEAT) was an improvement to previous Genetic Algorithms because it pro-
vided a better way to preserve network structures through to offspring. In
previous algorithms, gene crossover would often lead to damaged offspring
because structures in individual agents succeeded in different niches. Simply
combining the structures often broke the underlying strategies used by the
individual structures.

The NEAT algorithm is designed to breed networks with simple causal
connections with growing complexity over generations. The first generation
of agent networks are single mutations to the fully unconnected base network
that consists solely of input and output nodes. Part of the NEAT algorithm

3



involves the re-breeding and mutation of agent networks. There are two ways
the structures of these networks can mutate:

1. A new connection can be made between between two nodes that were
previously not connected. This connection may be positive or negative.

2. A new node may form and sever a current connection, inserting itself
between the previously connected nodes.

Positive connections relay the input signal to the receiving node and negative
connections relay the negated input signal to the receiving node. Combina-
tions of the two above possibilities of mutation result in intricate networks in
the long run. The rationale behind this additive approach is that solutions
to problems need not be more complex than what the problem necessitates.
The first successful agents that NEAT creates are also the simplest agents
generated that can perform the task. This is why NEAT can yield simple
solutions to complex problems.

The success of using NEAT to generate agents to play levels in Super
Mario World has been demonstrated before, however existing research only
examines the generated agents on the level they were trained on and does
not rely on other machine learning tools.

4 Technical Approach

4.1 Formal Description

Figure 1: An example of what an input looks like at some point in the level

4



For the base NEAT algorithm, the inputs were in the form of image
data grabbed from the emulator of the blocks in a six-block manhattan radius
of Mario, or in other words, a thirteen-by-thirteen block with Mario in the
center. To simplify the format of the input, it was stored as a 1D array of
170 elements (13 ·13 + 1 extra element that is always set to 1). Each element
stores an integer, in which 1 represents a block that Mario can stand on, 0
represents empty space that Mario can pass through, and −1 represents an
enemy taking up that block.

The output labels to this problem are unique in that they are not one-
hot, as is often the case in classification problems; at each point in time, the
agent can choose to press any number of buttons on the controller, or none of
them. When applicable, this output is provided in the form of a 1D array of
8 elements (one for each button on the controller), with entries of 1 meaning
that the button corresponding to that element is pressed, and entries of 0
meaning that the button corresponding to that element is not pressed.

4.2 Supervised Learning

Our first method involved collecting a lot of examples from fairly suc-
cessful NEAT agents (in this case, fairly successful was defined as achieving
a fitness greater than or equal to 2000 on a given training level), and using
them as inputs to train a supervised learning network to produce labels that
would, hopefully, retain the good decisions made by the many agents we
drew data from. Since our implementation learned on TensorFlow, one of
our difficulties was in creating the full pipeline, from receiving inputs from
the emulator, outputting input data from the NEAT algorithm defined in
Lua, using that input data to train a supervised learning agent in Python,
to outputting those weights so that Lua could run the agent in the emulator.
This was necessary because the libraries that make supervised learning very
efficient are not well-defined in Lua, and Python does not easily interface
with our emulator.

In general, our supervised learning algorithm sends the data through a
two-layer neural network connected with rectified linear units (ReLU), tak-
ing in random batches of a predefined size. Multi-label classification was
implemented via a threshold on output logits, in which logits above a de-
fined threshold are mapped to 1, otherwise mapped to 0. We tested this
method with a variety of hyperparameters, including different learning rates,
different hidden dimension sizes, and adjusting the number of epochs. Our

5



final bot was ran on 10 epochs, with a learning rate of 0.01, a hidden size
of 20, a batch size of 100, and a threshold of 0.5. The trained weights were
then sent back into a Lua algorithm that made decisions in the emulator.

We noticed a lot of repeat input/label pairs, as well as a lot of duplicate
inputs mapped to different labels. This is not surprising, since we are taking
in data from multiple NEAT agents who see the same level, and there are
obviously multiple ways to complete levels in Super Mario World. Conse-
quently, we tried to prune our inputs to the supervised learning architecture
by only maintaining the input/label pairs that were the most populous. We
tested our implementation on both pruned and unpruned inputs.

4.3 Cross-Breeding

To cross-breed agents, we took a generation of agents that were success-
ful at playing the level they were trained on, and simply ran the generation
on a new level. To do this, we modified the existing NEAT training interface
to run existing pools of agents on our level of choice. We found that a decent
selection (about 25%) of agents performed reasonably well (achieved a fitness
of at least 2000) by the 35th generation. This is when we started to evaluate
and train agents on a new level. Running the agents on the new level was
pretty cut and dry without much overhead.

5 Evaluation

As stated previously, our goal was to create agents that could compe-
tently navigate through levels that they had not had very much exposure
to before. In using supervised learning, we were hoping that the many good
behaviors of fit NEAT agents could get generalized into one agent that would
then be able to solve levels more generally, and thus levels that have not yet
been seen. With cross-breeding, we are hoping to demonstrate that it is pos-
sible to produce agents that perform well on a level of low exposure, given
that we already have agents that perform well on another level.

Ideally, the new agents produced by our methods would reach higher
fitness scores on new levels when compared to NEAT agents on new levels.
For cross-breeding, we should be able to create agents that can complete the
testing level given a significantly smaller number of generations in training.

6



Figure 2: Running agents from Donut Plains 1 on Yoshi’s Island 2

This graph shows the comparison of the fitness achieved by agents on
two levels. The population of agents were trained on level Donut Plains 1
(DP1) for 68 generations and the agents that achieved a fitness above 2000
were then ran on a new level, Yoshi’s Island 2 (YI2). In a majority of cases,
the agents performed worse on YI2 than DP1, this is likely because the agents
found themselves in unique situations for which they did not have any similar
experience in. In most cases, agents achieved a fitness level of 1000 or more,
demonstrating some knowledge transfer. Some agents even outperformed
their run on DP1.

7



Figure 3: Crossbreeding Donut Plains agents on Yoshi’s Island 2

This graph shows the fitness of a generation of descendants from the
previous graph that were crossbred on YP2 for only two generations. The
resulting agents still performed well on DP1 though with a lower fitness
on average, but a much larger percentage of agents completed YI2. Two
generations of training yielded much success on levels to which the agents
had little exposure.

Here are the results of some of the bots that we trained, as well as
where we started out; check the descriptions for more information on each
clip: https://drive.google.com/drive/folders/1oQB3djV167ur9jBiiRI3OHyZcpk5pHBI?usp=sharing

For our supervised learning model, although our final trained bots had decent
general behavior (mostly running to the right and spin jumping a lot), it was
not enough to solve levels competently. In particular, it struggled when
confronted by enemies, which may be a result of not having enough inputs
of successful agents handling enemies and enemy edge cases.

For the cross-breeding technique, agents with no additional training
performed with mixed results. Some agents performed with higher fitness
scores on the new level than on the level they were trained on and some agents
performed with a lesser fitness score. There was an agent who performed in
the 2000-2500 fitness bracket on the original level who won the new level.

8



Agents demonstrated skills with respect to dealing with enemies but they
struggled with niche layouts they had not seen before, often stopping or
jumping in place at the end of their run. Few agents died at the hands of
an enemy and most runs were halted after inactivity. Agents who resumed
training on the new level continued to increase in fitness over the course
of multiple generations with about another half-dozen agents being able to
solve the new level after only four generations. These agents were capable of
playing both the original and new level proficiently.

6 Conclusion

In summation, we used different methods in our attempt to create a
generalized bot to play Super Mario World levels to which it had little or no
exposure. Our first method with supervised learning was not very successful.
Although it did produce an agent that had generic behavior, that behavior
was not enough to progress very far through other levels, or handle enemies
well. Cross-breeding showed more promise, proving that we can efficiently
create viable agents on levels of low exposure, given that we already have
agents that are successful on a known training level.

Since our results have been largely preliminary, there is a lot of work
that can be done where we left off. First of all, while supervised learning has
not produced good results yet, it is possible that we have simply not tuned
to the right parameters, or we need to consider modifying the training archi-
tecture to be more expressive. This was a concern because our model must
output multi-hot labels, which means that our less than impressive results
may be a by-product of lack of expressivity in the model. Another concern
about this is the loss function, which is currently a basic implementation
of sigmoid cross-entropy with multiple classes. Lastly, our current method
with input-pruning could be improved, and we could also prioritize collecting
inputs with enemies nearby.

On a longer term, we should also explore even more methods in produc-
ing generalized agents. In particular, methods that take in multiple inputs at
once should be considered, since multiple frames may inform an agent better
due to implicit rate-of-change information that is not present in a still. This
could be particularly good for handling enemy movement, and may be more
along the lines of reinforcement learning, or a combination of reinforcement
and supervised learning.

9



Ultimately, our goal is to show that the methods we have implemented
and adjusted will produce agents with good generalized behavior that re-
sults in a degree of competence in a given task (in our case, playing Super
Mario World). To show that we have attained our goal in general, we would
have to find more problems to test our methods on, whether it be on other
level-based games, or more concrete applications.

10



7 Sources

Charniak, Eugene. Introduction to Deep Learning. The MIT Press, 2019.

SethBling, director. MarI/O - Machine Learning for Video Games. YouTube,
YouTube, 13 June 2015, www.youtube.com/watch?v=qv6UVOQ0F44.

SMW Central - Your Primary Super Mario World Hacking Resource,
www.smwcentral.net/?p=main.

Stanley, Kenneth O., and Risto Miikkulainen. “Evolving Neural Networks
through Augmenting Topologies.” Evolutionary Computation, vol. 10, no.
2, 2002, pp. 99–127.

11


