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Figure 1: The Movo in VR surrounded by the rendered Lidar point cloud.

Abstract

Robot teleoperation using VR has the opportunity to improve user experience
in controlling robots. Current work has developed VR teleoperation that renders
an environment that is not fixed in VR space, which has the potential to cause
nausea and confusion in users. In this project, we improve the user experience
of VR teleoperation using Lidar and SLAM. We use Lidar to provide a more
complete view of the environment, which allows users to plan actions better in
dynamic environments. Furthermore, we use out-of-the-box SLAM to transform
the Lidar points in VR as the robot moves, giving the effect that the virtual robot
is moving within a fixed environment in VR. This work provides a user experience
where the user feels like they are in the robot’s real environment, as opposed to
prior work where the user felt like they were viewing the environment projected
in front of a fixed robot. Our new approach has the potential to improve success
of certain tasks that involve navigating the Movo in a dynamic environment, and
interacting with the environment (e.g. opening doors).

1 Introduction

VR teleoperation is a new form of teleoperation of robots. The use of VR allows for a
richer display of the robot’s state and environment, and enables the users to control the
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robot in a more intuitive way. Many robots today are still operated by humans, and
a better user experience can improve the success rate and time spent on certain tasks.
Furthermore, teleoperation provides a framework to collect data that may be used to
train robots to autonomously perform tasks in a supervised manner.

There have been two main approaches to this task. The first approach was not per-
formed on a mobile robot, and thus did not explore the extra challenges and opportuni-
ties that arise with teleoperating on a mobile robot. The second approach used sensor
data that did not provide a complete environment when viewed in VR, and did not use
the robot’s location data to adapt the sensor data to the robot’s location.

Our technical approach consisted of two main elements: Lidar and SLAM. The first
part of the project consisted of getting Lidar data from the Movo rendered in the VR
environment. This approach involved connecting the Lidar to the Movo, connecting the
Movo to Unity through Rosbridge, calibrating the points, and then rendering the points
in Unity. While most of this part of the project involved connecting many technologies
together, many problems arose in the process and in this paper we outline solutions to
those problems.

The second main element of the process was using the Movo’s location with the Lidar
point cloud, so that when the Movo moves the environment as rendered by the point
cloud does not move with it. In other words, suppose a chair was sitting right in front
of Movo, and the chair was being renderd in VR. Were the Movo to move closer to the
chair, we aim that in VR space, the chair would not move, but the Movo would move
closer to the chair, effectively mimicking reality. This approach consists of writing
a manual publisher on ROS to publish a transform along with a timestamp of the
transform, and then synchronizing the Movo’s location and point cloud on the Unity
side, so that the point cloud changes at the same time as the Movo moves. We describe
the importance of synchronizing the data streams, and we explain the technical details
of the synchronization process.

We lastly note a number of successes of the project, including a better interface for
viewing the Lidar point cloud, and a successful synchronization method for Lidar and
SLAM data within Unity. The resulting project achieved the goal of rendering an
environment that adapts to Movo’s movements, providing users with the effect that
they’re in a virtual copy of the Movo’s environment. We also detail some shortcomings
and future improvements of the project, noting in particular the lag between when the
Movo senses changes in the environment to when those changes are rendered in VR, as
well as slight jitter in the point cloud due to an imperfect synchronization method.

2 Related Work

There have been two main approaches to VR teleoperation. Whitney et al.1 applied VR
teleoperation to Baxter to pick up objects. Their approach did not generate an entire

2



3 TECHNICAL APPROACH

environment around Baxter as they were only concerned with the objects immediately
in front of it, nor did they teleoperate with a mobile robot. In doing so they failed
to examine a key advantage of VR teleoperation, namely moving mobile robots in a
dynamic environment. The second main approach, done by Nishanth Kumar, applied
VR teleoperation to the Movo, and generated the Kinect RGBD feed as a point cloud
in front of the robot.2 The shortcoming in that approach was that the Movo was fixed
in VR space, and whenever the Movo moved in real life, the point cloud would move
in VR space instead of the robot. This provides an unnatural user experience: a main
benefit of VR is to put the user in a simulated environment that feels and acts like a
real environment. An environment that rotates and translates about the user while the
user position remains fixed, as implemented Kumar’s work, does not take advantage of
a key strength of VR.

3 Technical Approach

The problem we aim to solve is as follows: given a Movo in an environment, with a 360
degree Lidar sensor situated on the robot, we aim to render the robot and Lidar data
in virtual reality and control the robot via virtual reality controls. Furthermore, when
the Movo moves, we aim to move the virtual Movo in VR, and render the point cloud
such that the location of static objects remain fixed in VR space. In other words, while
the point cloud may change, fixed objects that the point cloud renders in VR should
not move in VR when the robot moves.

We provide a diagram outlining the software stack that we used to connect VR and
the Movo, so that we could control the Movo from VR, and view the Movo’s sensors in
VR. A diagram can be found below.

Figure 2: The software stack used to connect VR with the Movo.

In this section, we go into detail on how we used each part of the software stack, as
well as solutions to problems that arose during the development process. Our approach
consists of two main subsections: the first section details how we render the Lidar point
cloud in VR, and the second details how we incorporate SLAM in VR to update the
VR environment according to the Movo’s movements.
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3.1 Lidar to VR

We make use of a more complete representation of the environment by using a Velodyne
VLP16 Puck3 that uses LIDAR to scan the environment. Using the puck, we get access
to a real time point cloud representing the environment in 360 degrees around the Movo.
This provides a better representation in VR than using the Kinect which only provides
environment data in front of the robot. A more complete representation allows users
to navigate better, especially in the presence of dynamic objects.

3.1.1 Initiating the Velodyne/Movo Handshake

The first main challenge arose from connecting the Velodyne Puck to ROS, so that they
can communicate. The Velodyne by default is designed to connect to a system with local
IP addresses in the 192.168.x.x range, whereas ROS operates within the 10.66.171.x
range. Upon connecting the Velodyne to ROS, they were unable to ping each other.
After examining packets via Wireshark, we found that sending a ping broadcast from
the Movo to address 192.168.1.255 initiated an ARP request and response between
the Velodyne and the Movo, which enabled direct pings between the Movo and the
Velodyne. This also enabled use of the Velodyne’s user interface, which allowed us to
change the Velodyne’s default IP address to one within the 10.66.171.x range. This
allows the Velodyne to automatically connect to the Movo when the Movo turns on,
without requiring manual ping broadcasts.

3.1.2 Accessing the Point Cloud in Unity

After the Velodyne connected successfully with the Movo, the next step was to get the
Velodyne point cloud data into Unity. On the ROS side, this step was mostly seamless:
we first installed the drivers from the Velodyne site, and then ran the launch script,
which published the point cloud as a sensor msgs/PointCloud2 type on the rostopic
/velodyne points. On a machine on the network in the lab, we ran rosbridge4 which
ran a websocket converting the rostopic data on the Movo to JSON objects that can
be accessed by anyone on the network.

On the Unity side, we made use of ROS#5 and the built-in PointCloud2 data type to
access the websocket data within Unity. We wrote a class that read messages from the
websocket, and stored them in a PointCloud2 object. This allowed us to have continual
access to the Lidar data within Unity. Upon each new point cloud that the Velodyne
read, the point cloud would be published on /velodyne points and registered by the
Rosbridge websocket, then sent from the websocket to the Message Receiver class within
Unity.

We note one small issue that arose with the PointCloud data: while the sensor msgs/PointCloud2

takes in rgb data, the Velodyne broadcasts the rgb data as a scalar between 0 and 255
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as the blue value, and zeros for the red and green values. This is because the Velodyne
does not capture color, yet still provides a value for each point to aid in visualizing the
point cloud. We applied the same method as rviz in coloring the points: we converted
the value to a color along a spectrum ranging from blue to red, passing through green
and yellow respectively.

3.1.3 Rendering the Point Cloud in Unity

Once the point cloud data was accessible in Unity, the next step in this section of the
project was to render the point cloud within the VR environment. We aimed to avoid
creating a GameObject for each point in the point cloud, as the number of points was
too large (around 20,000 points per point cloud), and generating 20,000 GameObjects
would significantly slow Unity down. Instead, we created a Mesh and MeshRenderer
in the Unity scene, and used a custom shader designed specifically for point clouds
to render the point cloud. The shader was taken from a Unity internet forum.6 The
only modification made to the shader was to change the rendered points from triangles
to squares. Once the shader was incorporated into Unity, the Lidar point cloud was
rendered in Unity at each timestep.

3.1.4 Calibration

The last step in this section was to calibrate the point cloud so that the points in VR
were aligned correctly with the user’s perspective. In other words, we aimed to render
the environment as if the user were standing in the real environment, with the virtual
floor as rendered by Lidar points beneath the user, the virtual ceiling above the user, and
the entire virtual environment level with the user’s eyesight. We note that this did not
occur automatically — as the focus of this project was not on calibration, we refrained
from incorporating automatic calibration techniques and manually transformed the
points to their correct position in VR.

The first calibration step required publishing a static transform between the Movo’s
base link, representing the position of its base, with the Velodyne puck. To do this,
we ran rviz and enabled the Kinect point cloud along with the velodyne point cloud.
We published a static transform and tweaked the transform values until the velodyne
points matched up with the Kinect points. An image of this effect can be found below, as
well as a link to a video of this process can be found at https://youtu.be/HJ6vcdtEmo8.

Once the Velodyne points were successfully calibrated on ROS, the points needed to be
calibrated within Unity as well. Note that two rounds of calibration are not needed: we
could have arrived at the same final calibration of points were we to skip calibration on
ROS, yet for the sake of future projects that may use the Velodyne points, we calibrated
on ROS as well. We also note that once the points were calibrated on ROS, they were
not automatically calibrated in Unity as well: in Unity, the y- and z-axes are swapped
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Figure 3: Lidar and Kinect point clouds overlayed for the purposes of calibration.

from ROS’s coordinates (i.e. “up” in ROS is the z-coordinate, whereas “up” in Unity
is the y-coordinate), and even merely swapping the y and z values of the point cloud
did not yield the correct positions. We repeated the process of calibrating the points
in Unity as we did in ROS. First we enabled the Kinect point cloud in Unity, then we
manually transformed the Velodyne points until they lined up with the Kinect. We are
unaware of why we needed to perform such a calibration, and future investigation into
the problem may yield an answer.

Once the points were calibrated, and upon running rosbridge, the velodyne launch
script, and the Unity scene, the point cloud from the Velodyne puck was successfully
rendering in quasi-real-time in the VR environment, and the rendered environment
resembled the Movo’s environment. Note that the points were not quite rendered in
real time due to lag in sending the Velodyne data from ROS to Unity. We describe the
lag in more detail in the Evaluation section.

3.2 Incorporating SLAM

The second main part of the project was to incorporate the Movo’s real-time location
within the environment, and transform the Movo and point cloud in VR according to
the updated position. In other words, we aimed to move the virtual Movo in VR exactly
how it moves in real life. In this section, we first describe motivation as for why this
creates a much better user experience, then we explain the technical details of how we
incorporated SLAM.
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3.2.1 Motivation

The main reason why incorporating SLAM into VR teleoperation of a mobile robot is
useful is that in doing so we build a fixed environment in virtual reality that represents
the robot’s environment. Were SLAM not incorporated, if the robot were to move
around, then it would appear in VR that the environment is rotating and translating
about the robot, and that the robot was fixed in space. We show this visually below.

Figure 4: Before and after the Movo moves, as seen in the real environment versus from
the Lidar puck’s perspective.

When the robot moves forward, the Lidar point cloud observes that the objects move
backwards. Therefore, if the point cloud was displayed in a fixed location in VR, the
points would give the visual effect of a shifting environment whenever the robot moves.
To counteract this effect, we would need to move the point cloud in VR wherever the
Movo moves.

If the robot is in position ~p1, and an object is in position ~x, then the Lidar will register
the object relative to the Movo at position ~x − ~p1. If the robot moves to position ~p2,
then the point cloud will register the object at position ~x − ~p2. If we fix the Lidar
point cloud in VR space, then the object will move from ~x − ~p1 to ~x − ~p2, effectively
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translating ~p1− ~p2. By shifting the point cloud when the robot moves by ~p2− ~p1 in VR,
then the object will appear to have moved (~p1 − ~p2) + (~p2 − ~p1) = ~0 in VR. In other
words, the object will not appear to have moved.

The same can be said for rotations: if the Movo rotates θ, then the point cloud needs to
also be rotated θ in order to counteract the effects of the moving Lidar puck. In other
words, in VR the point cloud needs to move exactly how the robot moves in reality.

As shown, the robot’s position is necessary in rendering objects consistently in the
environment. In the next sections we detail how we obtained the robot’s location, and
how we rendered the point cloud according to the location data.

We briefly note that the Lidar point cloud does not completely capture an object, and
that if the Lidar puck moves closer to an object the Lidar may capture points from
different parts of the object. In practice we observed that the closer the Lidar puck
gets to an object, the closer the Lidar rings get, and so while a fixed object may be
rendered at the same position in VR space when the robot moves, the points that render
the object may move on the object itself. This effect can be observed in the second
demo video in the Evaluation section. In the last section of this paper we detail future
work that may alleviate this effect.

3.2.2 SLAM Messages

To get the location data from the Movo into Unity, we first ran out-of-the-box SLAM
using the 2D Lidar data from Movo’s base. The launch script published a transform
between /base link and /map, which described the Movo’s position in the map. Since
ROS# does not have access to Movo’s transform tree, we wrote a manual publisher that
read the transform and published it as a geometry msgs/transform stamped message
on a rostopic which included a timestamp of the transform. This allowed the location
data to be passed through rosbridge into Unity. We lastly wrote a ROS# Message
type GeometryTransformStamped so that ROS# could automatically parse incoming
messages from the rosbridge websocket.

Once the location data was received in Unity, we transformed the Movo’s position
according to the position within the map. We set the point cloud object as a child of
the Movo within Unity, so that whenever the Movo rotates or translates in VR, the
point cloud moves with it to provide the effect of rendering a fixed environment.

3.2.3 Synchronizing Data Streams

We note one crucial aspect of incorporating location data with the Lidar point cloud:
in order to maintain the effect that the Lidar points render fixed objects in the same
location, we must transform the Movo in VR and render the Lidar point cloud using
sensor data taken at the same time step. Suppose the input streams were not synchro-
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nized, and the location data was received in Unity one second before the Lidar data
was. Then suppose the Movo were to move forward: the Movo would be shifted in
VR, and therefore so would the point cloud, yet the updated point cloud would not
have been received so it would appear as if the entire environment shifted away from
the Movo. One second later, the updated point cloud would be received in Unity and
then the environment would shift back. In other words, the environment would shift
forward, and then backward one second later to its original position. This effect would
be quite confusing to the user, and it nullifies the entire point of incorporating SLAM.

To prevent this issue, we examined the timestamps of the incoming messages in order
to use the Lidar data and location data at roughly the same time. Since the location
data was a lot smaller, the messages were coming in faster, and therefore we stored the
location data on a FIFO queue. Once a point cloud was received in Unity, we popped
positions off of the queue until the timestamp of the location message at the head of
the queue was later in time than the incoming point cloud. We used the last popped
location to set the Movo’s location, and we updated the point cloud immediately with
the new point cloud data. This method was accurate within around 0.1s of data, i.e.
whenever a point cloud was rendered, the Movo’s position data was usually at most
around 0.1s behind the point cloud data. We detail future improvements to this method
in the Evaluation section. We note that since the data was never perfectly matched up,
we observed slight jitter in the environment as rendered by the point cloud whenever
the Movo moved.

4 Evaluation

Recall that the goal of the project was to build a VR demo that renders the Movo’s Lidar
data as a point cloud, and uses SLAM to transform the virtual Movo and point cloud
in VR according to how the Movo moves. In this section, we first examine successes
that we attained in the final demo, and then describe shortcomings of and potential
improvements of the project.

4.1 Successes

We list three main successes:

1. Lidar Point Cloud Rendering: The final project successfully rendered the Lidar
point cloud in VR, and the point cloud as viewed in VR resembled the Movo’s
environment. We note in particular the improvement upon viewing point clouds on
a monitor. By utilizing the unique way that VR handles depth with two monitors,
one for each eye, the final demo allowed users to more easily distinguish closer points
from farther points, as opposed to a monitor where depth is harder to recognize. We
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also note that the virtual reality user experience gives the user the feeling that
they are inside the environment, which provides the user with a better intuitive
understanding of the environment. The VR head controls also provide more intuitive
control over viewing the environment than using a mouse to rotate and translate the
users’ perspective. Lastly, the use of Lidar provides a more complete rendering of
the environment than the Kinect point cloud, and a more complete rendering has
the potential to make navigation tasks easier.

2. Moving the Virtual Movo in VR: The final demo successfully moves the virtual
Movo in a way that resembles how the Movo moves in reality. In the shortcomings
section, we will describe a small transform bug that was not fixed in the final demo,
yet barring the bug the virtual Movo’s movements match the real Movo’s movements
in the environment, and the point cloud location moves correctly along with it, so
that the environment appears fixed in VR space. This was a major success, as this
was the main goal of the second half of the project.

3. Synchronizing the Lidar and SLAM Data: While the final demo contains a
bit of jitter in rendering the point cloud as representing a fixed environment in VR,
the Lidar and SLAM data streams are synchronized, and the resulting point cloud
renders objects as if they are fixed in VR space even when the Movo moved in reality.
This was also a success because without this the demo would not give the user a sense
of a fixed environment, which would worsen overall user experience. Furthermore, we
anticipate inducing nausea in some users if they were to view a virtual environment
that translates and rotates frequently due to unsynchronized data streams.

4.2 Shortcomings and Potential Improvements

We list a few shortcomings of the project, as well as potential solutions for future work:

1. Lag: We note that a major drawback of the final demo is the lag between the real
time environment and the point cloud in VR. There is around five seconds of delay
between when an event happens in the Movo’s environment to when the event is
rendered in VR. Furthermore, the lag increases as the demo progresses. For the
purposes of producing a proof-of-concept for the final demo, other features of the
project were prioritized, yet we propose that future work on this project begin with
reducing lag. A few approaches that may be effective are a) to profile the Unity
code for inefficiencies, b) to compress the Lidar point cloud in ROS so that less data
is sent over the network, and c) to reduce the frame rate of the point cloud. Lag
reduces usability of the project, and while it is acceptable in a demo, it needs to be
drastically reduced before the project could be considered a finished product.

2. Environment Jitter: As mentioned earlier, the imperfect data synchronization
method yields slight jitter in the environment as the Movo moves. A simple fix
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would consist of writing a publisher on ROS that reads the location data and sensor
data at the same time step, and publishes them together as a single message so that
no synchronization is required on the Unity end. We predict that such a fix would
eliminate jitter altogether.

3. Location Transform Bug: We note that in the final demo there’s still a transform
bug that causes the virtual Movo to mirror the real Movo’s movements about the
y-z plane in Unity. In other words, when the real Movo moves left the virtual Movo
moves right, and vice versa. Note that the point cloud also has this bug, which is how
the demo can render the environment as fixed when the Movo moves despite the bug
in the virtual Movo’s movements. We anticipate that more time spent debugging
transforms would eventually fix this issue.

4. A Brittle Software Stack: We lastly note a major drawback to general develop-
ment on the software stack used in this project. Namely, the entire stack is brittle
and prone to breaking. In some cases, the Movo failed to run its launch script
correctly, and required a few reboots before it ran successfully. In other instances,
rosbridge failed to detect rostopics on the Movo. Another issue consisted of out-of-
order packets from rosbridge in Unity. Further issues involved problems with the VR
controllers, as well as the headset failing to display the VR environment. All of these
kinds of issues extend development time, and we raise the question of how much time
should be spent in developing projects atop the software stack versus developing less
error-prone software. We do not attempt to answer such a question. We do, how-
ever, warn future developers of these issues so that they may consider whether their
projects are feasible given their timeframe and the general delay caused by many
unforeseen breaks in the software stack.

4.3 Demo Videos

We include two demo videos. The first shows the Lidar point cloud rendered in VR,
alongside a video of the environment around the Movo. The second shows how the
point cloud adapts to changes in the Movo’s position, demonstrating that the rendered
environment does indeed appear to be fixed regardless of the Movo’s movements. Note
that in both videos, the overlayed videos have been edited to match events in VR with
events in reality, whereas in the actual demo the events occurred with seconds of lag.

The first video can be found at: https://youtu.be/UAxVMhP1Gw0, and the second
can be found at https://youtu.be/XWc4mgR5bMg.

We include a few screenshots of the demo videos below.
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Figure 5: Screenshots of the final demo.

5 Conclusion

We have detailed the final demo, which successfully renders the Movo’s Lidar point
cloud in VR, and renders the point cloud and virtual Movo according to the Movo’s
movements. We have made use of a pre-existing software stack, and have extended
many aspects of it to fit the use case in this project. We have addressed problems that
arose in the development process, including networking issues as well as data stream
synchronization. The project successfully achieved the goals set out at the start of
the project, but still contains many drawbacks that provide a starting point for future
work.

After the small issues detailed in the Evaluation section have been addressed, we envi-
sion a number of additions to the project that we would like to see. The first addition
is to perform basic texture mapping atop the point cloud. While users can discern the
environment from the point cloud alone in VR, the overall look and feel of the point
cloud would improve if textures are rendered atop the points. Instead of people being
rendered as a collection of points, they could be rendered as humanoid meshes. This
has the potential to make the VR-rendered environment look more like the Movo’s real
environment. This would require an efficient method for performing texture mapping
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on a sparse point cloud.

Another addition that would provide useful is to perform real-time 3D mapping using
the point clouds over many timesteps. We envision that we could write a back-end server
that can store and process the point cloud, and implement 3D mapping techniques using
the Movo’s 2D SLAM data. We also hope that such a server could store large maps
so that the Movo could map entire floors of buildings and store the maps so that users
could revisit the maps in VR offline or the next time that they teleoperate the Movo.

Lastly, we hope that in the long term, user interfaces for teleoperation user interfaces
will improve enough that users can easily teleoperate robots for performing daily tasks,
and that teleoperation could be used in factories to reduce the risk of harm of humans.
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