
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

Confidential Review Copy. DO NOT DISTRIBUTE.

Learning to Ground Language to Temporal Logical Form

Anonymous EMNLP-IJCNLP submission

Abstract

Often times, natural language commands
exhibit sequential constraints, e.g. “go
through the kitchen and then into the liv-
ing room.” Conventional methods in clas-
sical Reinforcement Learning (RL) assume
Markovian reward functions that cannot
handle such non-Markovian constraints.
We therefore propose to ground natural
language commands to Linear Temporal
Logic (LTL), but propose to do this when
direct supervision is not available — ut-
terances are labelled with trajectories but
not the logical form itself. We use formal
methods of LTL progression and model
checking, to reward the learned latent log-
ical forms that execute correct trajectories.
These logical forms can then serve as input
to planners that correctly solve the naviga-
tion task. We evaluate our framework on
both goal state and path accuracy, as well
as the ability to handle temporal language.

1 Introduction

In navigation and instruction-following tasks,
an agent executes a series of actions to perform
a task, in response to some task specification
that defines the goal that the agent must reach.
This is challenging for two reasons — first,
the broad spectrum of possible language used
must be grounded to a symbolic, logical rep-
resentation, that can then be given to a model
to find a policy that solves the task. Second,

Figure 1: Example path and instruction grounded
to temporal logical form for one of the environ-
ments from (MacMahon et al., 2006). Letters in-
dicate object positions, while colours indicate floor
patterns and wall paintings, that all form proposi-
tions for LTL representations. Agents are required
to correctly interpret the meaning of the instruction
to navigate to the intended goal location.

the complex (e.g., temporal, sequential, con-
ditional) constraints are non-trivial to express
and achieve by conventional methods in classi-
cal Reinforcement Learning (RL), that assume
a Markovian reward function. For example,
commands that specify temporal ordering of
events such as “only enter the living room after
you have been to the kitchen” could potentially
map to unbounded action sequences, unless we
have adequate representation of state properties
in accordance with temporal patterns over time.

We propose to ground natural language in-
structions to LTL task specifications that can

2

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Confidential Review Copy. DO NOT DISTRIBUTE.

handle temporal order and furthermore allow
the logical formula to be structured and de-
composed into paths in an environment. More-
over, we attempt to do this by learning from
demonstrations. While collecting and anno-
tating symbolic logical forms is an expensive
process, we can more easily collect execu-
tions of these logical forms as trajectories in
our environment. Our system takes in natural
language as input, grounds to symbolic tem-
poral logical form, and checks this against a
human-annotated output trajectory as a form
of weak supervision. Our work is novel in
that we ground to LTL logical form (that can
handle temporal constraints) and moreover al-
lows using methods like LTL progression, to
check satisfiability against trajectories in order
to reward the learned latent LTL forms. In
comparison to previous approaches that build
execution models or planners in order to re-
ward logical forms, our approach is an order
of magnitude more efficient in terms of com-
plexity, given that we only need to progress
an LTL expression against a fixed-length tra-
jectory, rather than execute an expression and
solve a planning problem each time. We eval-
uate our method on a benchmark dataset and
highlight the benefits of using a more expres-
sive language, such as LTL, that can handle
temporal order.

2 Related Work

Previous work has used LTL to formulate tasks
in RL, either by creating reward functions
that maximise the probability of satisfying the
LTL formula (Wen et al., 2017; Littman et al.,
2017) or by guiding policy search with a mea-
sure of distance to satisfaction of the task (Li
et al., 2017). Other work exploits the struc-
ture of LTL to decompose a task into subtasks
(Toro Icarte et al., 2018) to deal with tem-
poral abstraction. To the best of our knowl-
edge, there is currently no work that attempts to

ground tasks given in natural language to tem-
poral logic without annotation of logical forms,
to exploit LTL structure for further planning.

Language → Logical Form There is am-
ple prior work on supervised semantic pars-
ing to LTL (Gopalan et al., 2018) and to log-
ical forms other than LTL (Zettlemoyer and
Collins, 2012; Tang and Mooney, 2000; Be-
rant et al., 2013; Yu et al., 2018). Relevant
to our work is past work which learns se-
mantic parsers without explicit annotation of
logical forms, by allowing the execution of
the learned logical form to act as supervi-
sion e.g., conversational logs (Artzi and Zettle-
moyer, 2011), system demonstrations (Chen
et al., 2015; Goldwasser and Roth, 2014; Artzi
and Zettlemoyer, 2013; Williams et al., 2018)
and question-answer pairs (Clarke et al., 2010;
Liang et al., 2013).

Language→ Plan Also relevant is the body
of recent work which seeks to map natural lan-
guage directly to action sequences, e.g. Mei
et al. (2016); Misra and Artzi (2015); Branavan
et al. (2009); Misra et al. (2017); Fried et al.
(2018). Such methods are typically trained
end-to-end, and do not pass through an ex-
plicit intermediate logical form, as we do in
this work.

Logical Form (LTL)→ Plan (Dzifcak et al.,
2009; Gopalan et al., 2018) explore grounding
language to LTL and then planning with an ex-
isting planner, given LTL task specifications.
However (Gopalan et al., 2018) use a standard
sequence-to-sequence model trained on anno-
tated utterances, and they note that this method
fails to exhibit compositionality or generalise
to unseen logical forms. Several recent ap-
proaches use Deep Q-Networks with LTL spec-
ifications (Toro Icarte et al., 2018), by making
using of LTL based rewards (Littman et al.,
2017) where the input to the Q-value func-
tion is both the state and the progressed LTL

3

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Confidential Review Copy. DO NOT DISTRIBUTE.

task. Other work uses hierarchical RL methods
(Sutton et al., 1999; Kulkarni et al., 2016) in
the options framework, by creating one option
per proposition with terminal states defined by
states in which the proposition is true; giving
the state and progressed LTL task as input to a
meta-controller.

3 Grounding Language to Linear
Temporal Logic with Trajectories

We propose to ground natural language to tem-
poral logical form, where grounded LTL ex-
pressions are only supervised by trajectories in
the environment. Our model therefore receives
natural language instructions (as a sequence of
words) as input and is supervised by an exe-
cuted path (as a sequence of points specifying
(x, y) locations) in the environment. Once the
natural language instruction has been grounded
to an LTL expression, this can be used to plan
in a given environment using existing methods
such as Q-learning with LTL-based rewards.
This entire pipeline therefore ensures that the
intended meaning of the instruction is first rep-
resented in logical form (that satisfies temporal
constraints) and then used to navigate in the en-
vironment (to reach the final goal location). In
this section we give an overview of the differ-
ent components that our approach relies on.

3.1 Linear Temporal Logic

LTL Syntax: LTL has the following gram-
matical syntax:

φ ::= π | ¬φ | φ∧ϕ | φ∨ϕ | �φ |2φ |©φ | φUϕ

where the operators ¬,∧,∨ are the logical con-
nectives for negation, and, or and the tempo-
ral operators are � for eventually, � for glob-
ally, U for until and © for next. We can
also define the symbols true and false through
the following equivalences: true ≡ φ ∨ ¬φ
and false ≡ ¬ true. Our set of propositions

P consists of observable elements in the en-
vironment that trajectories can pass through
e.g (at object, is intersection, is corridor). All
LTL expressions are constructed from the set
of propositional symbols P and the extended
set of operators defined above i.e., the Boolean
operators ∧,∨,¬ and the temporal operators
©,U. From these we can define � (always)
and � (eventually) for e.g., �φ = trueUφ.

LTL Semantics: Given the observable ele-
ments in the environment that form atomic
propositions, the truth value of an LTL formula
is determined relative to a sequence of truth as-
signments σ =< σ1, σ2, σ3, ... > where each
state σi is an assignment of true or false values
to propositions. A proposition ρ ∈ σi indicates
that the proposition ρ is true in the state σi.

LTL Progression: Given a sequence of truth
assignments and an LTL task specification, an
LTL formula can be progressed along the se-
quence. For example, the task �(p ∧ © � q)
(i.e., eventually p and eventually q) can be pro-
gressed to �q (i.e., eventually q) once the agent
reaches a state where p is true. In an RL set-
ting, the LTL formula can be updated to reflect
the agent’s actions and the parts of the formula
that have been satisfied so far.

prog(σi, p) true if p ∈ σi, where p ∈ P
prog(σi, p) false if p /∈ σi, where p ∈ P
prog(σi,¬φ) ¬prog(σi, φ)
prog(σi, φ1 ∧ φ2) prog(σi, φ1) ∧ prog(σi, φ2)
prog(σi, φ1 ∨ φ2) prog(σi, φ1) ∨ prog(σi, φ2)
prog(σi,©φ) φ
prog(σi, φ1 Uφ2) prog(σi, φ2) ∨ (prog(σi, φ1)

∧ φ1 Uφ2)

Table 1: Semantics of progression functions for dif-
ferent logical and temporal operators. The progres-
sion function takes in the current state and LTL for-
mula that is updated after application of the func-
tion.

For an LTL expression φ and a state σi, we
define the semantics of the progression func-

4

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Confidential Review Copy. DO NOT DISTRIBUTE.

tion prog(σi, φ) as in Table 1. At each point
in time i, we can therefore update the LTL ex-
pression to reflect which parts of the original
formula have so far been satisfied or unsatis-
fied. We can do this because if a sequence of
truth assignments (i.e., a trajectory) satisfies an
LTL formula at time i if the formula progressed
through φi is then satisfied at time i+ 1.

Program Representation: Formally, we
represent LTL expressions (i.e., executable
programs) as a sequence of tokens that
describe a possibly recursive sequence of
functions in postfix notation. Every token
in an expression is either a function of fixed
arity (i.e., one or two arguments), constant,
variable or λ term that is used to define
Boolean functions. Previous work that parses
to logical representations uses atomic types
such as Boolean, Integer, Size,
Shape, Colour, Side or composite
types Set(?), Func(?, ?). For our
purpose, since our LTL task specifications
specify goal locations in the environment,
our LTL vocabulary consists of observable
elements in the environment of atomic types
(Object, Floor, Wall) and either unary
or binary logical operators (Func). All valid
and syntactically correct programs have a
return type of Boolean. For example, the
LTL expression (a ∧ (� b)) converted to
postfix notation (a b � ∧) is linearised to
allow easier execution with a stack based on
the semantics of operators and propositions.

3.2 Planning in an Environment

Markov Decision Processes: A Markov De-
cision Process (MDP) is a tuple M =
(S,A, T,R, γ) where S and A are a finite sets
of states and actions respectively, T : S ×
A × S → [0, 1] is the transition function,
R : S × A × S → Pr(R) is the reward func-
tion and γ is the discount factor. An agent can
take an action (from the set of all actions) and

World Operation Complexity

Database execution O(|W | × |s|)

SQL: SELECT*MAX(state.area) FROM state

CCG parse: λx. flight(x)∧from(x, bos)

Gridworld progression O(|S| × |s|)
execution O(|S||s|)

LTL: at lamp U � (at chair)

CCG: λ a.move(a) ∧ post(a,intersect
(λx.chair(x),you))∧pre(a,front(you,

λx.lamp(x)))

Table 2: Comparing complexities of different feed-
back systems for different world representations
and logical forms. The first rows show example ex-
ecution models in other domains i.e., SQL query
or a CCG parse (lambda calculus expression) ex-
ecuted against a database, while the latter section
compares feedback methods in navigation domains
i.e., progression vs. execution or planning for LTL
forms or a CCG parse.

change its state, to move within states accord-
ing to the transition function, hence accumu-
lating reward according to the reward function.
An agent learns a policy π i.e., a probability
distribution over state and action pairs, that al-
lows it to determine the actions it should take in
each state with probability π(a|s). The state-
action value or Q-value denotedQπ(s, a) is the
expected discounted return of selecting action
a in state s and then selecting actions accord-
ing to π, and a policy is optimal if the expected
discounted reward gained by following the pil-
icy is maximal for every state s ∈ S. Given the
Q-value function Q∗, the optimal policy is to
then select the action a in every state s with the
highest value of Q∗(s, a).

Q-Learning: The Q-learning algorithm is a
well-known off-policy algorithm, that learns a
target policy while using some other behaviour
policy for action selection. We begin the Q-
learning process by initialising the Q-values of
all state-action pairs to zero, and at every step

5

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

Confidential Review Copy. DO NOT DISTRIBUTE.

use some behaviour policy to pick an action a
for the current state s, therefore returning a new
state s’ an reward r from the environment. The
estimation of Q(s, a) at the current timestep is
then updated as shown in the equation below
where α is the learning rate.

Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]

The Q-learning algorithm is guaranteed to
converge to optimal Q-values if the behaviour
policy visits every state-action pair an infinite
number of times. In practice, this is done by
setting the behaviour policy to be ε-greedy on
the target policy, to ensure that on each step, the
behaviour policy selects random actions with
probability ε and the action with the highest Q-
value with probability 1− ε.

Function Approximation and DQN: For
the Q-learning algorithm to keep track of state-
action pairs, in the simplest form of Q-learning,
a Q-table is used to store the required values.
This however, is impractical for large (or in-
finite) state spaces. Therefore, we instead use
some form of function approximation on the Q-
value function i.e., we define the Q-value func-
tion as a function of state features, where Q-
value updates involve updating the function, in-
stead of updating entries in a Q-table. Deep Q-
Networks (DQN) (Mnih et al., 2015) use neural
networks for this function approximation of the
Q-value function. An experience replay buffer
and a target network are used to stabilise learn-
ing and the agent’s experiences (of the form
(s, a, r, s′)) are stored in the bugger and sam-
pled to train the network over time. The Q-
learning updates are computed with respect to
a target network which is only updated period-
ically to attempt to decrease the chance of the
policy diverging.

Learning with Temporal non-Markovian
Rewards: In order to allow handling of tem-

poral constraints, we use the concept of a non-
Markovian reward decision process that incor-
porates the LTL expression into the environ-
ment MDP. Instead of only considering the pre-
vious state, the reward function R is therefore
defined over state histories R : S∗ → Pr(R).
Given this MDP, the Q-value function of a pol-
icy π is then defined over sequences of states:

Qπ(〈s0, .., st〉, a) = Eπ

[∞∑
k=0

γkR(〈s0, .., st+k+1〉)|At = a

]
The reward functions for these MDPs are de-
fined in terms of completing the task defined
by the LTL formula. We incorporate the LTL
task specification through a labelling function
L : S → 2P where P is the set of propo-
sitional symbols. This is therefore a 7-tuple
τ = 〈S,A, T, P, L, φ, γ〉, where S,A, T and
γ are defined as in an MDP and refer to states,
actions, transitions and the discount factor re-
spectively. P is the set of propositional sym-
bols that form LTL task specifications, L is the
labelling function defined above and φ is the set
of tasks. As in general RL settings, the agent
does not know the transition probability distri-
bution of the domain, but has access to the la-
belling function and the task.

3.3 Environments and Data
SAIL from (MacMahon et al., 2006) is a nav-
igation dataset containing route instructions
annotated with trajectories for three different
environments, each composed of connected
hallways with different patterns (grass, brick,
wood, gravel, blue, flower, or yellow octagons)
on floors, paintings (butterfly, fish, or Eiffel
Tower) on walls and objects (hat rack, lamp,
chair, sofa, barstool, and easel) at intersections.
Figure 1 shows an example environment anno-
tated with object positions, wall paintings and
floor patterns.

The challenge of learning to ground natural
language to logic stems from the fact that in-
structions given by humans are complex, free-

6

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Confidential Review Copy. DO NOT DISTRIBUTE.

No. of instruction sequences 706
No. of sentences 3233
Avg. sentences per sequence 4.61
Avg. tokens per sentence 7.94
Vocabulary size 522
Avg. trajectory length (per sentence) 3.05
Max. trajectory length (per sentence) 31

Table 3: Statistics from the SAIL dataset from
(MacMahon et al., 2006) that contains natural lan-
guage instructions annotated with trajectories.

form and of variable length (single sentences
in isolation or full paragraphs). While this task
and dataset bears superficial similarity to other
navigation benchmarks, the language and poli-
cies required for this task are quite different
— the proportion of instructions to actions is
much higher, the interpretation of language is
highly compositional and the length of the in-
structions vary widely. This task has therefore
been the subject of focused attention in seman-
tic parsing, resulting in a range of different ap-
proaches that attempt to learn how to plan in
such settings.

3.4 Model

Our model draws insights from previous work
(Guu et al., 2017; Goldman et al., 2017) that
train semantic parsers from denotations with
an algorithm that searches through a space of
programs at training time, in order to find the
correct program. We set this up as a reinforce-
ment learning problem, where our agent sam-
ples a token from the vocabulary to generate
a sequence of tokens that in our case, form an
LTL expression. At the end of this sequential
prediction of tokens, each LTL expression is
given a binary reward of 1 or 0, by progress-
ing the LTL expression along the trajectory in
the environment.

Our training samples are of the form (x, t)
where x is a natural language instruction and
t is a trajectory in the environment, and our
model generates program tokens z1, z2.. from

left to right using a neural encoder-decoder
model (Sutskever et al., 2014). We encode
every utterance x with a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) to cre-
ate a contextualised representation hi for ev-
ery input token xi. Our decoder is then
a feed-forward network with attention (Bah-
danau et al., 2014) over the output from the
encoder, that takes as input, the last K tokens
that were decoded. Formally, the probability of
a decoded LTL expression is the product of the
probability of its tokens conditioned on the his-
tory i.e., pθ(z|x) =

∏
t pθ(zt|x, z1:t−1) and the

probability of a decoded token comes from the
learned parameters and embedding matrices as
shown in the equations below.

Encoder The utterance um is encoded with a
bidirectional LSTM:

hFi = LSTM(hFi−1, φu(um, i))

hBi = LSTM(hBi−1, φu(um, i))

hi = [hFi ;h
B
i]

Decoder Let f(z1:t−1) refer to the execution
history and em to the input embedding to the
decoder. We can then compute an attention
vector ct as follows:

qt = ReLU(Wq[em; f(z1:t−1)])

αi ∝ exp(qTt Wahi)i− 1, ..., |um|)

ct =
∑
i

αihi

After combining the above i.e., concatenat-
ing qt with ct, we then produce the program
token by token. Formally, we produce a distri-
bution over the set Z of program tokens, com-
puted with a softmax, as shown in the equation
below, where φz(zt) is the embedding for a to-
ken zt.

pθ(zt|x, z1:t−1) ∝ exp(φTztWs[qt; ct])

7

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 2: Skeleton of our weakly supervised model that learns to compose a logical meaning representation
by only giving binary feedback signal through LTL progression against a ground truth trajectory. This
model can then produce intermediate logical forms for any instruction that can then be given to a planner
that solves the task to find a path.

We also keep track of the execution history
i.e., the k most recent tokens zt−k:t−1 and con-
catenate their embeddings. Our exploration
strategy is the same as in (Guu et al., 2017)
that uses an ε -greedy randomised beam search
to deal with the problem of biased exploration
that can result in visiting only a few states dur-
ing exploration. Like regular beam search, at
each iteration, the set of all continuations for
the next token are sorted by the model prob-
ability pθ(s|x). However, we inject random
noise into exploration. Instead of simply se-
lecting the k highest scoring continuations (for
a beam of size k), we choose continuations one
by one without replacement, from the set of all
possible continuations. At each selection step
from the remaining pool, we either unformly
sample a random continuation with probability
ε or pick the highest scoring continuation from
the pool with probability 1− ε.

Figure 2 shows a skeleton of our proposed
model that is trained to compose together an
LTL formula for the input natural language
utterance, supervised by a trajectory, by pro-
gressing the LTL expression along this trajec-
tory in the environment. This gives us a score
of the satisfiability of the produced LTL ex-
pressions that allows ranking and learning of

logical meaning representations.
For the weakly supervised model, we per-

form a grid search over hyperparameters to
maximise accuracy over the validation set.
These hyperparameters include the learning
rate, the value of ε and the embedding size.

Planning Mechanism: To plan in a given
environment with the grounded LTL task
specification, we use Deep Q-Networks with
LTL specifications, following the methodology
from (Littman et al., 2017) to learn LTL-based
rewards. We use standard RL to solve the
cross-product MDP where the input to the Q-
value function is both the state and the pro-
gressed LTL task at every step. This is the
state-of-the-art approach to learn with reward
functions specified in LTL to allow us to deal
with temporal non-Markovian constraints.

The DQN implementation is baed on the
OpenAIBaselines (Dhariwal et al., 2017). To
train the network, we use experience replay —
minibatches of experiences are sampled from
an experience replay buffer of a fixed size.
The feature vector at each state is computed
based on the distance of every object from the
agent. We use feedforward networks with 2
hidden layers and 64 ReLu units, trained us-

8

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

Confidential Review Copy. DO NOT DISTRIBUTE.

ing an Adam optimiser with a learning rate of
0.0001. At every step, the DQN network learns
by randomly sampling 32 transitions from the
replay buffer. We set the size of the buffer to
25,000 and update the target network at every
100th step and use a discount factor of 0.9.

4 Experimental Evaluation

To evaluate models on the SAIL dataset, previ-
ous works compare the agent’s end state to a la-
belled state s′ i.e., the end point of the ground-
truth trajectory, for all instructions in the test
set. Models are tested on both the single and
multi-sentence instructions to assess their abil-
ity to correctly interpret the intent of the in-
struction and navigate to the goal state in the
environment.

Comparison to prior work: We compare
our model to existing work that report results
on the SAIL dataset, by cross-validating over
the three maps and reporting a final accuracy.
Most similar to our setup is the approach from
(Artzi and Zettlemoyer, 2013) that train a CCG
semantic parser with supervision from trajecto-
ries, however they do this by manually building
execution models for the feedback mechanism
which is more computationally intractable —
the worst case complexity is exponential in the
number of variables.

System Single Multi

Chen and Mooney (2011) 54.4 16.18
Chen (2012) 57.28 19.18

+ additional data 57.62 20.64
Kim and Mooney (2012) 57.22 20.17
Artzi and Zettlemoyer (2013) 65.28 31.93
Andreas and Klein (2015) 59.60 -
Mei et. al. (2017) 71.05 30.34
Ours 66.92 20.17

Table 4: Evaluation of systems on the SAIL dataset.
The second and third columns shows accuracies of
the reaching the goal state for commands that take
the form of single sentences or entire paragraphs.

Goal-state accuracy To directly compare
our approach with existing work, measure
the goal-state accuracy i.e., the ability of the
model to reach the correct final location in
the environment after correctly interpreting
and grounding the natural language instruc-
tion. Specifically, for each instruction in the
test set, our models produces an LTL logical
form, given to the DQN-LTL model that per-
forms Q-learning to solve the navigation task
to reach the final goal state. As shown in ta-
ble 4 we compare to other work that is dif-
ferent in the form of supervision provided and
model architecture used, but evaluates on the
same end-task i.e., final goal-state accuracy
over the SAIL dataset. These include algo-
rithms supervised with logical forms (Chen and
Mooney, 2011; Chen et al., 2015) that learn
semantic parsers for natural language instruc-
tions as well as ones that involve strategies
for online learning of lexicons for the seman-
tic parsers (Chen, 2012) and ones that use con-
textual information (Chen et al., 2010) for bet-
ter language understanding. We also compare
models supervised with paths — the super-
vised alignment-based models (Andreas and
Klein, 2015) that build grounding graphs rep-
resentations to execute instructions and neu-
ral sequence-to-sequence models (Mei et al.,
2016) that translate natural language instruc-
tions to actions that an agent can execute in the
environment.

Path accuracy Unlike prior work, we also
propose a more fine-grained analysis to evalu-
ate path accuracy. Often times, the path taken
to reach the final goal location is crucial – espe-
cially when the instruction specifies constraints
on how to reach the goal, in complicated envi-
ronments with several possible paths. Figure

5 Conclusion

We propose a weakly supervised semantic
parsing model that requires no supervision

9

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 3: Example possible paths that require more
fine-grained evaluation than just final goal location.
While both paths in the figure reach the correct goal
location (and get perfect accuracy under that met-
ric) only the one on the left follows the constraints
specified by the instruction.

System Prec. Recl. Acc.

Mei et. al. (2017) 31.2 30.19 91.2
Ours 33.5 35.2 94.3

Table 5: Evaluating paths produced by systems
against ground-truth paths. Each path is represented
as a masked vector of locations in the environment,
thus allowing comparing of precision, recall and ac-
curacy against the gold path.

of ground-truth logical forms during training.
Moreover, we propose to ground natural lan-
guage to a formal language that allows han-
dling of complex, temporal events that are typ-
ically unable to be handled by most (tradi-
tionally Markovian) methods. Our framework
exploits the structure of LTL by progressing
grounded LTL expressions along paths in the
environment, thus giving the required super-
vision signal to parse language into logical
form. As opposed to other methods that em-
ploy sequence-to-sequence models to map lan-
guage directly to actions in the environment,
our method first formulates the meaning of
the natural language instruction in logical form
that is interpretable, and then uses this meaning
representation to formulate a plan to navigate

in an environment.

6 Future Work

Our concern in this project is to ground natural
language instructions to logical representations
that preserve the underlying meaning of the in-
struction that agents can then later use to cor-
rectly navigate in an environment to solve the
task. Here, we primarily focus on the semantic
parsing component, and show that grounding
to LTL

While this work does not plan or execute
a policy in an end-to-end fashion, the use of
LTL for task specifications can be beneficial for
learning to plan, especially in hierarchical rein-
forcement learning settings that attempt to de-
compose tasks into subtasks. Future work will
explore learning to ground language to collec-
tions of tasks specified in LTL, that can be com-
posed together and learned in RL settings, by
allowing agents to make use of LTL progres-
sion to extract shared subtasks and generalise
this across different instances.

References
Jacob Andreas and Dan Klein. 2015. Alignment-

based compositional semantics for instruction
following. arXiv preprint arXiv:1508.06491.

Yoav Artzi and Luke Zettlemoyer. 2011. Boot-
strapping semantic parsers from conversations.
In Proceedings of the conference on empirical
methods in natural language processing, pages
421–432. Association for Computational Lin-
guistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly
supervised learning of semantic parsers for map-
ping instructions to actions. Transactions of
the Association for Computational Linguistics,
1:49–62.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on free-

10

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

Confidential Review Copy. DO NOT DISTRIBUTE.

base from question-answer pairs. In Proceedings
of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1533–
1544.

Satchuthananthavale RK Branavan, Harr Chen,
Luke S Zettlemoyer, and Regina Barzilay. 2009.
Reinforcement learning for mapping instructions
to actions. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP: Volume
1-Volume 1, pages 82–90. Association for Com-
putational Linguistics.

David L Chen. 2012. Fast online lexicon learn-
ing for grounded language acquisition. In Pro-
ceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Long
Papers-Volume 1, pages 430–439. Association
for Computational Linguistics.

David L Chen, Joohyun Kim, and Raymond J
Mooney. 2010. Training a multilingual
sportscaster: Using perceptual context to learn
language. Journal of Artificial Intelligence Re-
search, 37:397–435.

David L Chen and Raymond J Mooney. 2011.
Learning to interpret natural language navigation
instructions from observations. In Twenty-Fifth
AAAI Conference on Artificial Intelligence.

Henry Chen, Austin S Lee, Mark Swift, and John C
Tang. 2015. 3d collaboration method over
hololens and skype end points. In Proceedings
of the 3rd International Workshop on Immersive
Media Experiences, pages 27–30. ACM.

James Clarke, Dan Goldwasser, Ming-Wei Chang,
and Dan Roth. 2010. Driving semantic parsing
from the world’s response. In Proceedings of the
fourteenth conference on computational natural
language learning, pages 18–27. Association for
Computational Linguistics.

Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai
Wu, and Peter Zhokhov. 2017. Openai baselines.
GitHub, GitHub repository.

Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and
Paul Schermerhorn. 2009. What to do and how
to do it: Translating natural language direc-
tives into temporal and dynamic logic represen-
tation for goal management and action execu-
tion. In 2009 IEEE International Conference

on Robotics and Automation, pages 4163–4168.
IEEE.

Daniel Fried, Ronghang Hu, Volkan Cirik,
Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko,
Dan Klein, and Trevor Darrell. 2018. Speaker-
follower models for vision-and-language naviga-
tion. In Advances in Neural Information Pro-
cessing Systems, pages 3318–3329.

Omer Goldman, Veronica Latcinnik, Udi Naveh,
Amir Globerson, and Jonathan Berant. 2017.
Weakly-supervised semantic parsing with ab-
stract examples. CoRR, abs/1711.05240.

Dan Goldwasser and Dan Roth. 2014. Learning
from natural instructions. Machine learning,
94(2):205–232.

Nakul Gopalan, Dilip Arumugam, LL Wong, and
Stefanie Tellex. 2018. Sequence-to-sequence
language grounding of non-markovian task spec-
ifications. In Robotics: Science and Systems.

Kelvin Guu, Panupong Pasupat, Evan Zheran
Liu, and Percy Liang. 2017. From language
to programs: Bridging reinforcement learning
and maximum marginal likelihood. CoRR,
abs/1704.07926.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan
Saeedi, and Josh Tenenbaum. 2016. Hierarchical
deep reinforcement learning: Integrating tempo-
ral abstraction and intrinsic motivation. In Ad-
vances in neural information processing systems,
pages 3675–3683.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta.
2017. Reinforcement learning with temporal
logic rewards. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), pages 3834–3839. IEEE.

Percy Liang, Michael I Jordan, and Dan Klein.
2013. Learning dependency-based composi-
tional semantics. Computational Linguistics,
39(2):389–446.

Michael L Littman, Ufuk Topcu, Jie Fu, Charles Is-
bell, Min Wen, and James MacGlashan. 2017.
Environment-independent task specifications via
gltl. arXiv preprint arXiv:1704.04341.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting lan-

http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1711.05240
http://arxiv.org/abs/1704.07926
http://arxiv.org/abs/1704.07926
http://arxiv.org/abs/1704.07926

11

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

Confidential Review Copy. DO NOT DISTRIBUTE.

guage, knowledge, and action in route instruc-
tions. Def, 2(6):4.

Hongyuan Mei, Mohit Bansal, and Matthew R Wal-
ter. 2016. Listen, attend, and walk: Neural map-
ping of navigational instructions to action se-
quences. In Thirtieth AAAI Conference on Ar-
tificial Intelligence.

Dipendra Misra and Yoav Artzi. 2015. Reinforce-
ment learning for mapping instructions to actions
with reward learning.

Dipendra Misra, John Langford, and Yoav Artzi.
2017. Mapping instructions and visual obser-
vations to actions with reinforcement learning.
arXiv preprint arXiv:1704.08795.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. 2015.
Human-level control through deep reinforcement
learning. Nature, 518(7540):529.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Richard S Sutton, Doina Precup, and Satinder
Singh. 1999. Between MDPs and semi-MDPs:
A framework for temporal abstraction in re-
inforcement learning. Artificial intelligence,
112(1-2):181–211.

Lappoon R Tang and Raymond J Mooney. 2000.
Automated construction of database interfaces:
Integrating statistical and relational learning for
semantic parsing. In Proceedings of the 2000
Joint SIGDAT conference on Empirical methods
in natural language processing and very large
corpora: held in conjunction with the 38th An-
nual Meeting of the Association for Computa-
tional Linguistics-Volume 13, pages 133–141.
Association for Computational Linguistics.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard
Valenzano, and Sheila A McIlraith. 2018.
Teaching multiple tasks to an rl agent using ltl.
In Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Sys-
tems, pages 452–461. International Foundation
for Autonomous Agents and Multiagent Sys-
tems.

Min Wen, Ivan Papusha, and Ufuk Topcu. 2017.
Learning from demonstrations with high-level

side information. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial
Intelligence.

Edward C Williams, Nakul Gopalan, Mine Rhee,
and Stefanie Tellex. 2018. Learning to parse nat-
ural language to grounded reward functions with
weak supervision. In 2018 IEEE International
Conference on Robotics and Automation (ICRA),
pages 1–7. IEEE.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Ya-
sunaga, Dongxu Wang, Zifan Li, James Ma,
Irene Li, Qingning Yao, Shanelle Roman, et al.
2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain seman-
tic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887.

Luke S Zettlemoyer and Michael Collins. 2012.
Learning to map sentences to logical form:
Structured classification with probabilis-
tic categorial grammars. arXiv preprint
arXiv:1207.1420.

