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Abstract

Machine learning is very dependent on the structured and processed
data that it is provided making the unsupervised process of lowering data
dimensionality very valuable to save manual labor and improve algorithm
performance. The proposed model with the multitask setting is capable of
producing a disentangled representation for high dimensional noisy data
in grid worlds with complex transition functions. The dimensionality
reduction of images to vectors is done without a goal but, the resulting
representation is beneficial for planning.

1 Introduction

Machine learning today is very effective at playing complex games such as chess
and go through the application of deep nets and thousands of training hours.
However, the great success of many state of the art models can be attributed
to the preprocessed data on which they are trained. The alphaGO AI doesn’t
have a video feed of the table, room, and game board but, instead works from
an internal representation of the game state that is provided by a person. Often
times, without a human made representation or one that is badly formed, a
model does not surpass human play if it gets to playing at all. This is why a lot
of time and effort is put into making a good representation or labeling data for
the AT model to then train on.

Representation learning seeks to bridge this gap where data needs to man-
ually be processed before being fed into a network. The goal is to create a
representation of the domain in an unsupervised manner that then can be used
as a function to convert raw input into values that the model can then train
on. The representation needs to be disentangled, in that the representation is
a bijection from states to representations, and it needs to be structured and
predictable so that observing transitions in the representations can tell you the
actions that occurred.

Existing approaches such as auto encoders, and RBM’s often fail to create
disentangled representations or fail to represent the underlying state structure.
Auto encoders for example can greatly reduce the dimension of the data that



they are given but, the representation they produce needs to store enough to
reconstruct the initial input. This means that random features are stored by
auto encoders when they don’t help identify the actual environment state.

To learn structured disentangled representation we use a combination of four
fully connected neural networks. The phi network is responsible for creating a
representation. The representation learned by the phi network is optimized
based on the loss of the forward model, the inverse model, and the distinguish-
ing model. All together the model is able to create a phi network capable of
extracting features from noisy observations that are useful for planning.

2 Related Work

VAE [D. P. Kingma and M. Welling] is a variation on the previously described
auto encoder method and similarly is used to learn low dimensional represen-
tations for high dimensional data. However, it is used to convert single data
points into representations where the data has no underlying transitions or en-
vironment.

Classical Planning in Deep Latent Space [Masataro Asai and Alex Fuku-
nagal, uses a model to learn a representation for a domain with complex transi-
tions in the context of planning. A representation is learned for the observations
of the state space and this representation is used for creating a plan from the
start to goal state. This directly uses the representation to produce a plan. In-
stead of learning the representation and planning jointly, our model first learns
a representation that can then be used for planning.

3 Technical Approach

We want to create a model that can create a representation of the states in a
gridworld domain from noisy observations. We then want to make sure that this
representation is good for planning and that it can be achieved in gridworlds
with complex transitions such as mazes.

The testing domain is a gridworld with discrete states and an agent with four
actions; up, down, left, right. Walls in the grid world are present around the
perimeter and can be between states, preventing transitions. Hidden state refers
to the actual grid location that the agent is in. Observations, grayscale with
a blurred spot corresponding the the agents location, are images given to the
representation learner. The spot is randomly shifted while still corresponding
to a unique hidden state and a layer of background noise is added. States or
representation states refer to the output of the representation learner. These are
low dimensional vectors and are intended to correspond to the hidden states.

The base algorithm consists of four neural networks. The first is the phi
network which learns the representation. Another network, called the forward
model, is trained to predict the next representation state from a state and action
pair. The inverse model is trained to predict the action that occurred between



two representation states. The final network is trained to distinguish between
real transitions and fake transitions in the environment. The loss of the other
three models is used to adjust the phi network towards a better representation.

The base algorithm is extended to have improved functionality on maze
structures. Instead of training in a single environment the agent is placed into
a new maze after a relatively small number of network updates. The process of
training on multiple environments is called the multitask setting.

Both the base algorithm and the multitask setting are tested on empty grid-
worlds and mazes. To test whether the learned representation is good the rep-
resentation is used to run a DQN agent in the environment.

4 Evaluation

The base algorithm has expected performance on empty gridworlds [figure 1.a].
However, for a maze environment the learned representation is clearly less struc-
tured [figure 1.b]. The unique hidden states are separated in the representation
but there isn’t a structured pattern that corresponds to the actions in the envi-
ronment. The multitask setting, using only 3000 steps as opposed to 5000 used
by the baseline, is able to create the structured representation that is desired
[figure 1.c]. The structure is similar to the one visible in figure 1.a.
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Figure 1: For each visual The top image shows the environment that the agent
is in. The agent can get stuck walking into walls and the observations that it
gets, the dark grey-scale image, have a layer of background noise that varies
for each step in the environment. The image on the right represents how each
state in the environment (a color) is mapped to a position in the representation
space. Seeing a grid in the plot on the right indicates that the agent was able to
learn the grid structure of the environment and has an effective forward model.

To measure the information that is stored in the representation we can com-
pute the mutual information between the representation and the original state
distribution. Figure 2 shows the change in mutual information over time for the
multitask setting and the base algorithm. Because there is little difference in
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the final values for both methods we know that the structures seen in figure 1.b
versus figure 1.c are just as effective in retaining the state space distribution.
However, this does not indicate that both methods are equally good at creating
representation useful for planning.

To qualitatively evaluate the effectiveness of the representation a DQN is
implemented to test the representations usefulness for planning. A fixed goal is
added to the environment and the DQN is fed the outputs of the phi network
for individual state observations. This means that the Q function learns values
in the representation space.

For both the base algorithm and the multitask setting 100 seperate phi
networks are produced. For each phi network a separate DQN is trained for 100
trials and with 100 episodes. Figure 3 shows the compiled loss of the DQN agent
across the episodes for both the multitask setting and the base algorithm. The
higher reward of the agent with the multitask setting shows that the multitask
setting representation is more useful for planning. This also shows that having
a structured representation [figure 1.c] is important on top of separating states
[figure 1.b].

5 Conclusion

The base algorithm is able to construct a disentangled representation from se-
quential, noisy, and variable state observations greatly reducing the dimension-
ality of the data. The model is effective at separating distinct states in rep-
resentation space and contains structure corresponding to the actions in the
environment.

The multitask setting is an effective method for constructing representa-
tions in grid worlds with complex transitions. Furthermore, the representations
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produced by using the multitask setting is effective for planning in the domain.

Further extension of this problem would involve testing the algorithm with
larger and more complex gridworlds. It is not certain that the current method
will have the same functionality in much larger grid or maze worlds.

The transitions can be made more complex with one-way transitions or “por-
tals” connecting states. Additional objects can also be added to the environment
such as fixed objects with no interaction, movable objects, and randomly or pre-
dictably moving entities. These test if the model can represent various types of
objects in the environment along with the environment itself. The observations
that the agent receives can also be modified by showing more or less of the
environment or adding various visual effects. Finally the model can be applied
to a variety of different domains to test the robustness.

Another extension of the problem is creating a representation for a partially
observable environment. In this scenario identical observations may correspond
to completely different states meaning that the existing algorithm may not even
be applicable as it maps a single observation to the representation space at any
given time.
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