
CS2951k Final

Devin Howard and Ebube Chuba

April 2019

1 Abstract

This project aims to create an accurate conduit between the production of real-
world sounds and digital audio, essentially we’re making a simple digital music
producer. The inaccessibility in current music production is largely a result of
the steep learning curve in Digital Audio Workstations (DAWs). The ability
to produce a song out of the music that every individual can make lends itself
to solving this. Currently, related work as far as creating sounds goes as far as
music auto-encoders that have been used mainly to recreate specific genres of
sound, specifically classical. Our work also creates a final product which is a
multi-track sound built from its individual components rather than the single
mp3 produced by other works. The application of this being that it allows a
producer to further edit a produced sound.

Our approach is to frame song-learning as a reinforcement learning problem
wherein we first use convolution over mel-spectrograms to get an embedding
that accounts for temporal features. The reward function is a distance function
between the input embedding and the exported final state embedding.

JacqueesBot is able to take in an input sample that will then be interpolated.
The robot is able to take in a sound with no regard to its genre and length (to
a reasonable length). JacqueesBot is able to then recreate the sample within a
DAW and export it in a commonly used audio format.

2 Introduction

Music is one of the most ubiquitous and personal types of media that we con-
sume. The music industry makes an estimated $43 billion dollars yearly. Al-
though musical creativity is common, access and education to music production
software is not as widespread. Even for those who are professionals, painstak-
ingly producing the sound in your head can be cumbersome. Our project aims
to address these issues by creating a straightforward agent that can learn to
recreate that sound in a DAW, and serve that output to the user to continue
their own edits.

1

JacqueesBot is this tool for automatic sample interpolation, a valuable tool
to professionals and amateurs alike. With our current implementation, given
enough time, JacqueesBot is able to find the perfect cover for any input sound.

Previous approaches to music generation usually are premised by deep learn-
ing systems that output similar sounds in the same genre as the input. One
approach even uses reinforcement learning to fine tune the output of a music
generation RNN (https://ai.google/research/pubs/pub45871). We take a dif-
ferent approach in that we want our AI to act like a musical producer—in the
environments producers are in while making music. We also want the output
(or final state) to be a in usable DAW format organized with the tracks created
by the system.

We solve this problem by first training a convolutional neural network that
does instrument classification based on the mel-spectrogram of a sound. After
the network is trained we take the penultimate layer, before the sigmoid but
after all the convolution, to use an embedding for each sound. This is how we
represent the audio clips in the abstract soundspace.

Next we create a Monte Carlo tree search (MCTS) representation of the task.
In this representation the state is the combination of all of the objects in the
environment and conditions that are true for that environment. We define only
one class of objects, Samples. Samples have the following attributes: instru-
ment, pitch, insert time, and length. Samples also have individual embeddings,
which are made by running them through the aforementioned neural network.

There are three actions in this framework: insert, hold, and finish. Insert a
sample at a timestep, hold for a specific amount of time on a track, and finish
a track to export and evaluate it.

The final reward function is a distance metric between the embedding of the
input song and that of the final output audio. However, because embeddings
were trained on short clips of audio (about 3s each), the reward will be the
combination of a sliding window of both audio outputs. It will also linearly
scale for the difference in length between the final exported song and the input
audio. Once the reward converges, the song has been created.

3 Related Work

• Deep convolutional neural networks for predominant instrument recogni-
tion in polyphonic music by Yoonchang Han, Jaehun Kim, and Kyogu
Lee: https://arxiv.org/pdf/1605.09507.pdf

• Quantitative Analysis of a Common Audio Similarity Measure by Jesper
Højvang Jensen, Mads Græsbøll Christensen, Daniel P. W. Ellis, and Søren
Holdt Jensen:
https://labrosa.ee.columbia.edu/ dpwe/pubs/JensCEJ09-quantmfcc.pdf

• An Object-Oriented Representation for Efficient Reinforcement Learning
by Carlos Diuk, Andre Cohen, and Michael L. Littman:
http://carlosdiuk.github.io/papers/OORL.pdf

2

The related work as previously mentioned is mostly in the realm of us-
ing music auto-encoders to recreate specific genres of sound. Work has
also been done in using auto-encoders to interpolate 2-bar loops, done
separately for melodies and drum beats. These related projects don’t en-
capsulate the full range of what we want JacqueesBot to be capable of.
Specifically we want to remove those constraints on our song creation,
allowing for any sample to be interpolated and the recreation of entire
songs. Additionally, one of the most important features that we want is
the ability to export created songs in a common format (mp3 or wav).

4 Technical Approach

We train a neural network on the IRMAS dataset of instruments as per the
paper in (Han et. al.). This network is trained on a corpus of three-second long
audio samples of different instruments and is tasked to classify that instrument
in one of 11 different instrument classes. The audio files are pre-processed by
converting the stereo signal to mono. This signal is then down-sampled to
22.05kHz. We then normalize the time signal by dividing by the max value.
Then then mel-spectrogram of that audio is calculated with STFT windows of
size 2048 and 128 mel bins as in the aforementioned paper. This spectrogram is
finally normalized with a natural log before finally being passed in as input to the
neural net. We use the output of the penultimate later for timbre embeddings
for all sounds the agent will come across. The timbre embedding for the three
second clipm c starting a time t is referred to as TE(ct).

Our MCTS agent is then structured to have a pre-selected set of instances
from the class sample s1, s2, . . . , sn. Each sample has attributes s.instrument,
s.pitch, s.path, s.length, and s.track.

For an input/inspiration sound I, and a final exported audio output O is
the sum of the timbre reward and the pitch reward. We reduce pitch similarity
to matching as best as possible the timbre and pitch of the original sound. The
timbre reward is the distance in the embeddings between the timbre embedding
of the input and corresponding clip in the outpout audio., The pitch reward is
done by with the same process, but directly from the chromograph, Chr(ct),
which gives us information for the magnitute of each pitch in a song. Because
this is done in a sliding scale for each three seconds it can be also be seen as
the sum: ∑

t

d(TE(It), TE(Ot)) + d(Chr(It), Chr(Ot))

However we also want to incentivize the agent to finish interpolating the whole
song, so there is a length coefficient added that is lowest when the input and
output audios match in length.(

− ||I| − |O||
|I|

+ 1

)∑
t

d(Embed(It), Embed(Ot))

3

5 Evaluation

Our goal in building with the technical approach we used was to first find a
general heuristic for the type of sound recognition we were trying to do. The
general idea being that two values that are relatively near each other should
have recognizable features that are similar. The MCTS framework lends itself to
doing this as we create a single class of objects, samples, whose many attributes
we keep track of.

The reinforcement learning agent was built in the DAW taking advantage
of certain built in tools including the abilities to: programmatically add and
remove media files, export files on the fly, and log any changes made over the
file’s lifetime. Taking advantage of the DAW’s api enables us to more easily
alter and keep the status of the tracks we work with.

We know that we’ve primarily achieved our goal because we currently have
the framework for our transition: a runnable RL agent to transition from state
to state as it adds and removes samples from tracks in a DAW project. Addi-
tionally, we’ve built the convolutional network for finding the embedding of a
slice of audio.

6 Conclusion

In this project, we‘ve utilized several machine learning methods to train an AI
to perform sample interpolation. A learned mel-spectrogram based embedding
and a chromogram are used to calculate reward. This agent acts on the state
a working DAW project, and adding and removing samples in 48x real time.
Using straightforward state and action items that mimic that state and actions
by musical producers, Monte Carlo Tree Search explores the action space for a
state that “sounds like” the inspiration audio.

There are a few ways to improve our existing version. Investing in an op-
timizing our planner would do us well since there are other ways to search the
problem that can include additional information we may already have for sam-
ples and instruments. However even sticking with MCTS, there are graph struc-
tures that are better tuned to less specific branching. Intentionally slimming
the action space in some capacity could have a major impact on the runtime of
the system.

Currently, our interaction with the DAW is rather limited, as it is only used
to insert samples and export final outputs. A more advanced version would
have actions like clipping samples and adding audio effects. For this proof of
concept, we decided not to add this, but human producers do more than just
insert.

Nonetheless, JacqueesBot has lots of potential as a tool for easy and acces-
sible music production.

4

