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Abstract
Grasping an object is a very basic operation performed by humans. In order to effectively emulate
human behaviour, a robot must be able to perform efficient grasps. Before a successful grasp operation,
a push operation might be needed in order to separate tightly packed or cluttered objects. Previous
work focuses on performing just the grasp operation, which fails in scenarios where the objects are
tightly packed, since the target object might be out of bounds for the robot gripper. In this project,
we aim to use self-supervised deep reinforcement learning to make the Kuka robot learn efficient
coordination between the pushing and the grasping action. The learning algorithm rewards the agent
when it performs a successful push or a successful grasp operation. This would enable the robot to
perform efficient grasp operations by leveraging the outcome of the push operations.

Introduction
Skilled manipulation benefits from synergies between non-prehensile (e.g. pushing) and prehensile (e.g.
grasping) actions: pushing can help rearrange tightly packed objects to make room for the robot arm
and gripper. Similarly, grasping can help displace objects to make pushing movements more precise
and collision-free.

A considerable amount of research has been for planning of both the push and the grasp operation.
However, these research studies have not tackled these operations in conjunction. Pushing is traditionally
studied for the task of precisely controlling the orientation of an object. This led to scenarios where
tightly packed objects, that could have been grasped easily, were not grasped due to their arrangement.

In our approach, we learn joint pushing and grasping policies through self-supervised deep re-
inforcement learning, unlike prior methods which involved isolated studies and heuristic (and hard
coded) supervised learning techniques. Pushing actions are useful only if, in time, enable grasping.
The policies are trained using an end-to-end a deep network which is provided with visual observations
and outputs expected return (i.e. in the form of Q values) for pushing and grasping actions. The joint
policy then chooses the action with the highest Q value – i.e. , the one that maximizes the expected
success of current/future grasps.

Related Work
Planning non-prehensile motions, such as pushing, has been a topic of research since the inception of
robotic manipulation. Many of the methods rely on modeling assumptions that do not hold in practice.
For instance, non-uniform friction distributions across object surfaces and the variability of friction are
only some of the factors that can lead to erroneous predictions of friction-modeling pushing solutions
in real-world settings. Recent methods have explored data-driven algorithms for learning the dynamics
of pushing, but most of these approaches have focused on the execution of stable pushes for a single
object. Like Pushing, Grasping has also been well studied in the domain of model-based reasoning.
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Combining both non-prehensile and prehensile manipulation policies is interesting and an area of
research that has been much less explored. Dogar et al. [1] present a robust planning framework for
push-grasping to mitigate the failure rate of grasping operations. They include an additional motion
primitive – sweeping – to move around obstacles in clutter. However, the policies in their framework
were largely human engineered. Boularias et al. [2] presented an approach that aligns closely to
our work. Their work uses reinforcement learning for training control policies to select among push
and grasp proposals represented by hand-crafted features. However in order to determine the action
with highest expected reward, the approach uses hand engineered features derived from the visual
representation of the scene.

Techical Approach

Problem Formulation
The task of pushing-for-grasping is modeled as a Markov decision process: at any given state st at time
t, the agent (i.e. robot) chooses and executes an action at according to a policy π(st), then transitions
to a new state st+1 and receives an immediate corresponding reward Rat(st, st+1) The goal of our
robotic reinforcement learning problem is to find an optimal policy π∗ that maximizes the expected
sum of future rewards, given by

Rt =

∞∑
i=t

γRai(si, si+1),

i.e. γ-discounted sum over an infinite-horizon of future returns from time t to ∞. In this work, we
investigate the use of off-policy Qlearning to train a greedy deterministic policy π(st) that chooses
actions by maximizing the action-value function (i.e. Q-function) Qπ(st, at), which measures the
expected reward of taking action at in state st at time t. Formally, our learning objective is to
iteratively minimize the temporal difference error δt of Qπ(st, at) to a fixed target value yt:

δt = |Q(st, at)− yt|

yt = Rat(st, st+1) + γQ(st+1, argmax
a

(Q(st+1, a
′)))

where a′ is the set of all available actions.

Method
State Representation

Each state st is modeled as an RGB-D heightmap image representation of the scene at time t. RGB-D
images from a fixed-mount camera are obtained and the data is projected onto a 3D point cloud,
and orthographically back-project upwards in the gravity direction to construct a heightmap image
representation with both color (RGB) and height-from-bottom. The edges of the heightmaps are
predefined with respect to the boundaries of the robot’s workspace for picking.

Actions

Each action is parameterized as a motion primitive behavior ψ (e.g. pushing or grasping) executed at
the 3D location q projected from a pixel p of the heightmap image representation of the state st:

a = (ψ, q) | ψ ∈ {push, grasp}

The motion primitives for the project are as follows:
Pushing: Denoted a 10cm push in one of k = 16 directions. The trajectory of the push is straight. It
is executed in our experiments using Kuka’s gripper.
Grasping: Denotes a top-down parallel-jaw grasp in one of k = 16 orientations.
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Learning

For the purpose of learning, our Q-function is modeled as two feed-forward fully convolutional networks
(FCNs) φp and φg; one for each motion primitive behavior (pushing and grasping respectively). Each
individual FCN takes in the heightmap image representation of the state st as the input and outputs a
dense pixel-wise map of Q values with the same image size and resolution as that of st, where each
individual Q value prediction at a pixel p represents the future expected reward of executing primitive
ψ at 3D location q where q 7→ p ∈st. To simplify learning oriented motion primitives for pushing
and grasping, we account for different orientations by rotating the input heightmap st into k = 16
orientations (different multiples of 22.5 degree ) and then consider only horizontal pushes (to the right)
and grasps in the rotated heightmaps. Thus, the input to each FCN is k = 16 rotated heightmaps,
and the total output is 32 pixel-wise maps of Q values (16 for pushes in different directions, and 16 for
grasps at different orientations). The action that maximizes the Q-function is the primitive and pixel
with the highest Q value across all 32 pixel-wise maps:

argmax
a′t

(Q(st, a
′
t)) = argmax

(ψ,p)

(φp(st), φg(st))

Rewards

Our reward scheme for reinforcement learning is simple. We assign Rg(st, st+1) = 1 if a grasp is
successful (computed by thresholding on the antipodal distances between gripper fingers after a grasp
attempt) and Rp(st, st+1) = 0.5 for pushes that make detectable changes to the environment (where
changes are detected if the sum of differences between heightmaps exceeds some threshold).

Figure 1: KUKA in a VREP environment

Evaluation

Midterm Goal
The goal decided for our midterm was to get the Kuka robot perform basic pushing, pulling and
grasping on a single object.
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Status of the Midterm Goal
Since we started with an entirely new Simulation environment (V-REP), we havent been able to achieve
the midterm goal fully, but have achieved certain components of the same.

• Able to achieve simple kinematic movements of the Kuka robotic arm. These movements include
moving the arm forward, upward and given a reachable point in the robot’s workspace, the tip of
the arm can reach the aforementioned point. The robot arm tries reaching the point within 60
attempts by modifying its orientation, after which it receives a timeout.

• Able to achieve basic collision detection and avoidance so that the Kuka arm does not collide
with itself.

• Able to perform closing and opening of the gripper present on the right arm of the Kuka robot.

• Able to obtain the mesh files and place the objects in the workplace used by the Princeton
research team. However, there are some issues with the orientation of the robot and placing the
objects.

Status of the Final Goal
• The paper was successfully replicated to work on a KUKA robot arm.

• Due to GPU constraints, the model was not trained to its full capability and was trained on a
CPU for 48 hours straight, amounting to approximately 1351 training iterations.

• During each training iteration, 10 objects were placed randomly on the mat, and the KUKA
robot tried pushing and grasping operations in order to earn rewards and update its policy.

• Due to the less training, the grasp success rate is around 20% for the robot arm, but it performs
arguably well on a collection of small objects and is able to grasp most of the objects.

Figure 2: Grasp Success rate wrt Number of training steps

Conclusion
This project aims to enable a KUKA robotic arm to learn the coordination between pushing and
grasping operations in order to declutter a set of objects and separate them. The main idea behind
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the approach was to use Deep Reinforcement Learning to train the arm using different reward values
for ther Push and the Grasp operation. At the end, the project demonstrates that the KUKA robotic
arm is capable of learning strategies that would enable synchronization between the pushing and the
grasping actions.

However, there are still a few challenges in the approach that are not tackled in this project. At
times, the KUKA arm pushes almost all of the objects out of its scope thereby rendering them in a
position where a future grasp or a push. Another major roadblock is that training for the project is
very GPU intensive and the CPU training time is a lot (around 3 minutes for one action). Lastly,
the robot arm tries grasping objects with a wrong orientation of the gripper. For example, trying to
grasp really wide objects from the wide side, instead of the other side. Hopefully, these issues could be
resolved in the future by implementing hand crafted features or training for more time.
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