Formal Dialogue Model for
Language Grounding Error Recovery

Natasha Danas

May 15, 2019

Abstract

To enable humans to talk to robots, natural language (NL) commands need to be grounded
into a more decidable goal specification, such as linear temporal logic (LTL), which the robot
can then execute. While no language grounding technique currently boasts probable approx-
imate correctness (PAC) guarantees, the incorrect groundings of NL commands may not be
entirely inaccurate all of the time. If we expand our view from one grounding to a set of
grounding variants, formal methods techniques and the human in the loop can enable the
robot to perform grounding repair, as long as at least one correct goal specification is in the
set. Maximal semantic differencing allows the robot to ask clarifying questions about the
grounding variants via maximally independent concrete examples, instead of logical forms the
user cannot be expected to understand. The user can then provide feedback about the exam-
ples, that clarifies which hidden LTL grounding is the correct goal specification for their NL
command. When the grounding technique can meet this 1-correct-in-top-n assumption, and
the n is not too large to over burden the maximal semantic differencing or human in the loop,
the robot can now repair itself in a wide array of contexts that would otherwise be failures.
The human clarifications can be fed back into the grounding model, to enable the robot to
learn through conversation with the human indefinitely.

1 Introduction

To enable humans to talk to robots, NL commands need to be grounded into a more decidable
goal specification, which the robot can then execute. The current state of the art grounds these
commands into LTL [6]. A Partially Observable Markov Decision Process (POMDP) then in-
terprets the goal specification into a task instance: concrete examples of the LTL formula being
satisfied (positive) or not satisfied (negative) through particular robot behavior. The commands
are grounded via a neural network sequence-to-sequence model, that is trained to handle arbitrary
NL commands, using data from a crowd-sourced corpus. Crowd-source workers are shown positive
and negative task instances, who provide NL commands in return, which are then associated with
the hidden LTL formula that produced the task instances. The set of correct NL-LTL groundings
is augmented by permuting the domain of the command, such as changing the color of the room.

While the latest, about to be published, sequence-to-sequence model achieves 83% grounding
accuracy on commands that it trained on, its grounding accuracy drops to 78% on the held-out
commands. However, while no language grounding technique currently boasts PAC guarantees,
the incorrect LTL groundings of NL commands may not be entirely inaccurate all of the time. We



generate grounding variants and use maximal semantic differencing, enabling the user to repair to
a correct LTL goal specification by examining a set of clarifying task instances.

Example Command GLTL Expression
Go to the green room. e
Go into the red room. OR
Enter blue room via green room. O(GANOB)
Go through the yellow or red room,

and enter the blue room O((RVY)AOB)
Go to the blue room but avoid the red room. OB A -UOR
While avoiding yellow navigate to green. OG A -0OY

Scan for blocks and insert any found into bin.
Look for and pick up any non red cubes and
put them in crate.

O((SU—A) A OA)
O((SU~Nr) A ONg)

Figure 1: Sample Corpus, followed by a positive and negative task instances of oG A =Y.

Within the sequence-to-sequence model, grounding variants are generated by computing the
k-most-likely LTL encodings of each token in the originating NL n-token sequence. We product
each token encoding together, to produce a large batch of variants.

Standard semantic differencing is used for change impact analysis between only two specifica-
tions. For example, semantic differencing can be used to look at the change impact between two
firewall policies: what packets are now dropped that used to be accepted, and vice-versa [4]. We
define maximal semantic differencing as change impact analysis between any number of specifica-
tions. Our implementation enables us turn a set of LTL formulae into a set of task instances that
describe each formula most independently from the others. If even one task instance satisfies their
NL command, the robot can use the LTL goal specification(s) described by the task instance to
repair what would otherwise be a failure.

However, we have made a strong assumption: the possibly correct grounding set contains at
least one correct LTL goal specification. We would like to make the set as large as possible, to
maximize our chances of repair, without maximal semantic differencing taking too long to report
back to the user, or the user being over-burdened with examples. We measure the effectiveness of
this approach by answering the following research questions:

1. How does increasing the number of grounding variants increase accuracy?

2. How do the number of grounding variants and grid-world environment affect the time to
perform maximal semantic differencing?

We evaluate grounding variant accuracy by computing the position of the correct LTL grounding
in the variants, for each NL command. The data is cross-validated by isolating a test set, 20%
of all the collected NL commands, outside of the training set. The distribution of correct variant
positions is calculated for both data sets. Maximal semantic differencing performance is evaluated
over three hand written grid worlds, of varying grid sizes and number of groundings.



2 Related Work

Lignos, Hadas Kress-Gazit, and others [8] define a similar formal dialogue to our approach, allowing
a user to control a robot through a search-and-rescue environment via NL commands. However,
in the case of a grounding error, their dialogue only points out the parts of the NL specification
that need to be restated. Instead, we present concrete examples to clarify the groundings, to avoid
asking the user to continually restate their intentions.

Boteanu, Hadas Kress-Gazit, and others [2], present a grounding model that can not only
synthesize full robot controllers, but verify that the resulting controllers respect hard-coded as-
sumptions about the environment, and the interpretation of the user’s stated goals. However, the
verification stage is dependent only on the instructions stated by the user, and cannot determine
whether the instructions progress towards the user’s intended goal. While we have not developed
a synthesizer from high level goal specifications to low level controllers, we can do so according to
their approach. Our approach will improve accuracy of interpreting the users intentions, putting
us one step closer to actually verifying whether the instructions progress towards the correct goal.

Boteanu, Hadas Kress-Gazit, and others [I] use a formal methods approach to perform goal
specification repair for unsatisfiable scenarios only, using hard-coded natural language interactions
to weaken contradictory assumptions about the environment. In most cases, satisfiability is not
enough context to detect semantic errors. That is, even incorrectly grounded goals are often
still satisfiable, and possibly equisatisfiable to a correct grounding, for a given environment. Our
approach covers this ignored majority of semantic error cases.

3 Technical Approach

3.1 Grounding Variant Generation

Within the sequence-to-sequence model, grounding variants are generated by computing the k-
most-likely LTL encodings of each token in the originating NL n-token sequence. The training of
the decoder and encoder, as well as the decoding-encoding algorithm are otherwise unchanged. We
product each token encoding together, to produce at most n* LTL formulae: a majority of which
are not grammatically correct, due to the nature of the language model.

Figure 2: Token variants for “Go to the green room only after you go through the red room.”
which should be grounded to “F ( red_room ) U ( green_room )”



In fact, only 80% of the top-1 groundings end up being grammatically correct LTL: even
when the encoding-decoding algorithm remains unchanged, sequence-to-sequences models do not
necessarily embed natural language sequences into valid LTL expressions. Because of this, we
avoid token variants that impact the embedding structure, by not varying opening and closing
parentheses.

3.2 Standard Semantic Differencing

Semantic differencing is a specification modelling technique used within a class of formal methods
tools called model finders, such as Alloy [7]. One can use a model finder to specify the robot’s en-
vironment and behavior, then find models: concrete task instances that satisfy a goal specification.
Note, the stochastic or partially-observable features are left out of the environment specification,
as these tools are useful for knowledge bases and high-level planning— not for real-time task and
motion planning which is left to POMDP-based approaches.

To introduce standard semantic differencing, let us consider two grounding variants for “avoid
the blue room until you go to landmark 1”: the correct grounding ((—blue_room) U landmark_1)
and the incorrect grounding ((—landmark_1) U blue_ room).
abstract sig Grid {

x: one Int,
y: one Int

and
and
and
and

one sig g2w2s extends Grid {} {x = -
one sig g2wls extends Grid {} {x =
one sig g2w00 extends Grid {} {x = -
one sig g2wln extends Grid {} {x =

<< <<
[T

[NENENEN]

1} abstract sig Thing { at: set Grid }
.2} abstract sig Room extends Thing {}

-1} abstract sig Wall extends Room {} {}
abstract sig Landmark extends Thing {}

and
and

one sig glw2s extends Grid {} {x = -
one sig glwls extends Grid
one sig glwo0 extends Grid {} {x = -
one sig glwln extends Grid {} {x = -

-~
oo}
-~
X
"
RSN
m
3
2
<< <<
wowonon
)
2

and

-2} one sig Rooml extends Room {} { at
-1} one sig Room2 extends Room {} { at
1} one sig Room3 extends Room {} { at

and
and
and
and

one sig g002s extends Grid {} {
one sig g001s extends Grid {} {
one sig g0000 extends Grid {} {
one sig g00ln extends Grid {} {

g2w2s+g2wls+g2w00+glw2s+glwls+glwo0 }
g2wln+glwln+g001n }
gleln+gle00+glels+gle2s }

[T
cooo
<< <<
[T
)
2

and
and
and
and

one sig gle2s extends Grid {} {
one sig glels extends Grid {} {
one sig gle00 extends Grid {} {
one sig gleln extends Grid {} {

-2} one sig Walll extends Wall {} { at = g000O+g001s+g002s }

wowonon
i
<< <<
wowonon

n

3 ;;e sig Landmarkl extends Landmark {} { at = g2w00 }
Figure 3: Alloy definition of a 4x4 grid on the left, with the rooms/walls/landmarks on the right.

First we define the grid world, which consists of a set of grid coordinates. Each grid coordinate
has an x and y position, represented as an Integer. Then we define the objects in the grid world,
which all reside in a subset of the grid coordinates. Finally we define our robot agent, who can
move location over time. We have to constrain the robot’s starting position, that they can never
move into walls, and that at every time step they must stay or move in one direction.

We also express the LTL goals in first order logic, which luckily has universal and existential
quantification over time to make up for not supporting native LTL quantification. We can then
semantically analyze and differentiate these goals by asking Alloy for task instances that satisfy
both (describes commonality), and just one of each instance (describes independence). In this case,
the first command (A and B) is satisfiable, the second command (A and not B) is unsatisfiable,
and the third command (B and not A) is satisfiable.

By the results of these three commands, we can conclude that notRoom1Until Landmarkl
implies notLandmark1lUntil Room1 for this specific environment: due to the fact Landmarkl is
located in Rooml. For other pairs of LTL goal specifications or other environments, we may



sig Time {}
one sig Robot { where: Time -> one Grid } {
where[first] = gle2s
all t:Time | where[t] not in Wall.at
all t:Time-last | stay[t,t.next] or west[t,t.next] or east[t,t.next] or north[t,t.next] or south[t,t.next]

}

pred stay[t:Time, st:Time] { Robot.where[st] = Robot.where[t] }

pred west[t:Time, st:Time] { Robot.where[st].y = Robot.where[t].y and Robot.where[st].x = minus[Robot.where[t].x, 1] }
pred east[t:Time, st:Time] { Robot.where[st].y = Robot.where[t].y and Robot.where[st].x = add[Robot.where[t].x, 1] }
pred north[t:Time, st:Time] { Robot.where[st].x = Robot.where[t].x and Robot.where[st].y = add[Robot.where[t].y, 1] }
pred south[t:Time, st:Time] { Robot.where[st].x = Robot.where[t].x and Robot.where[st].y = minus[Robot.where[t].y, 1] }

pred notRoomlUntilLandmarkl { some u:Time | {
all t:u.”prev-u | Robot.where[t] not in Rooml.at
Robot.where[u] in Landmarkl.at
1}
pred notLandmarklUntilRooml { some u:Time | {
all t:u.”prev-u | Robot.where[t] not in Landmarkl.at
Robot.where[u] in Rooml.at
1}
run {notRoomlUntillLandmarkl and notLandmarklUntilRooml} for 2 Int, 10 Time
run {notRoomlUntilLandmarkl and (not notLandmarklUntilRooml)} for 2 Int, 10 Time
run {(not notRoomlUntilLandmarkl) and notLandmarklUntilRooml} for 2 Int, 10 Time

Figure 4: Alloy definition of robot agent, two LTL variants, and solver commands.

instead conclude that some goal specifications are unsatisfiable (have no satisfying task instances),
are equisatisfiable (same set of task instances), are partially independent (some common and
independent task instances), or some goals are completely independent (only independent task
instances).

3.3 Maximal Semantic Differencing

We define maximal semantic differencing as change impact analysis between any number of speci-
fications, as opposed to just two. Our implementation enables us turn a set of LTL formulae into
a set of task instances that describe each formula most independently from the others. We do this
by extending Alloy to support soft constraints, which can be optionally satisfied unlike the usual
hard constraints.

// satisfy ~ ( red_room ) & ( green_room ), minimize satisfaction of others
run {

Robot.where[first] = g3w4s

soft (not notRedRoomUntilGreenRoom)

soft (not eventuallyRedRoomUntilGreenRoom)

// satisfy ~ ( red_room ) U ( green_room ), minimize satisfaction of others
run {

Robot.where[first] = g3w4s

notRedRoomUntilGreenRoom

::;: g::: :x:z:::}}izﬁ::z;gg;;iig{g:gz:;glm) soft (not eventuallyGreenRoomUntilGreenRoom)

soft (not notRedRoomAndGreenRoom) notRedRoomAndGreenRoom

soft (not eventuallyRedRoomAndGreenRoom) soft (not eventuallyRedRoomAndGreenRoom)

soft (not notGreenRoomAndGreenRoom) soft (not notGreenRoomAndGreenRoom)
} for 3 Int, 11 Time, 5 Thing } for 3 Int, 15 Time, 5 Thing
// satisfy F ( red_room ) U ( green_room ), minimize satisfaction of others iﬁnsitISfy F ( red_room ) & ( green_room ), minimize satisfaction of others
run {

Robot.where[first] = g3w4s
soft (not notRedRoomUntilGreenRoom)
soft (not eventuallyRedRoomUntilGreenRoom)
soft (not eventuallyGreenRoomUntilGreenRoom)
soft (not notRedRoomAndGreenRoom)
eventuallyRedRoomAndGreenRoom
soft (not notGreenRoomAndGreenRoom)
} for 3 Int, 15 Time, 5 Thing
// satisfy ~ ( green_room ) & ( green_room ), minimize satisfaction of others

run {

Robot.where[first] = g3w4s
soft (not notRedRoomUntilGreenRoom)
eventuallyRedRoomUntilGreenRoom
soft (not eventuallyGreenRoomUntilGreenRoom)
soft (not notRedRoomAndGreenRoom)
soft (not eventuallyRedRoomAndGreenRoom)
soft (not notGreenRoomAndGreenRoom)
} for 3 Int, 11 Time, 5 Thing
// satisfy F ( green_room ) U ( green_room ), minimize satisfaction of others

run {
Robot.where[first] = g3w4s
soft (not notRedRoomUntilGreenRoom)
soft (not eventuallyRedRoomUntilGreenRoom)
eventuallyGreenRoomUntilGreenRoom
soft (not notRedRoomAndGreenRoom)
soft (not eventuallyRedRoomAndGreenRoom)
soft (not notGreenRoomAndGreenRoom)
} for 3 Int, 15 Time, 5 Thing

}

Robot.where[first] = g3w4s
soft (not notRedRoomUntilGreenRoom)
soft (not eventuallyRedRoomUntilGreenRoom)
soft (not eventuallyGreenRoomUntilGreenRoom)
soft (not notRedRoomAndGreenRoom)
soft (not eventuallyRedRoomAndGreenRoom)
notGreenRoomAndGreenRoom

for 3 Int, 15 Time, 5 Thing

Figure 5: Modified Alloy LTL goals and maximal semantic differencing as soft constraints.



Alloy turns each first-order relational logic constraint into propositional logic, via an efficient
universe instantiation algorithm in its compiler named Kodkod [10]. To get an intuition for the
compilation, quantified formulas can be grounded to quantifier free formulas by simply filling in the
quantifiers for each possible combination of atoms in the universe. Additionally, relational algebra
and logically connected formulas can be translated into set theory queries. From these grounded
formulas, we can produce an equisatisfiable set of propositional formulas, by defining a variable
for every possible set theory operation over the universe, and mapping over each operation in the
grounded formulas. Kodkod’s compact boolean circuit compilation process is an optimization of
this naive approach. The resulting propositional logic formulae are then passed to a SAT solver
[9], to find a satisfying assignment: the model or task instance.

File Instance Theme Window

The Alloy Evaluator allows you to type i A= A= = ﬁ
in Alloy expressions and see their values.

For example, univ shows the list of all atoms. H
(You can press UP and DOWN to recall old inputs). ‘

Txt Table Tree Close Evaluator

Robot.where

Time® |g3w4s®

Time! |g2wds®

Time1®|g2eln®

Timez |glwds®

Time3 [glw3s®

Time* |glw2s®

Time® |g@@2s®

Time® |go@ls®

Time’ |glels®

Time® [g2els®

Time® |g2e00®

Figure 6: Satisfying model for the first maximal semantic difference in the previous figure.

We enable soft constraint solving by extending the underlying SAT solver to MaxSAT [5], which
allows us to define soft propositional constraints, that may or may not be satisfied in the resulting
model. Our particular implementation uses Z3 for MaxSAT, a performant theorem prover with a
wide array of features [3]. We enable soft constraint expression in Alloy, by defining a new type
of quantified formula (keyword soft) in the lexer, parser, and abstract syntax tree. During the
compilation process, Kodkod caches each propositionally grounded subformula as a circuit, with a
label, which is a propositional variable only true if the circuit is also true. We simply cache the soft
circuits and labels seperately, and make sure to write them out as soft propositional clauses when
the MaxSAT solver is invoked. Alloy then produces models of the mix of hard and soft constraints
as usual.

4 Evaluation

4.1 Grounding Variant Accuracy

By expanding our view to the top-10 batch generated variants, we recover correct groundings for
0.77% of the training data and 4.45% for test data. This accuracy can be seen as the area under
the peaks in the middle of each line plot. However, in order to generate those top-10, we must



generate a space of variants two orders of magnitude greater than this: only 2% of the groundings
end up being grammatically correct. This results in a performance hit of a few seconds to generate
the thousands of mostly junk grounding variants.

1000

num correct
num correct

0 5 10 15 20 01 2 3 4 5 6 7 8 9 101

variant position variant position

Figure 7: Distribution of positions of correct LTL grounding. Vertical axis is log-scale, the right-
most points are the count of still incorrect groundings. Training data on left, test data on right.

For the most part, we are only able to recover from “one-off” semantic errors, where either
an LTL operator or primitive (room, landmark, etc) are the only incorrect portion of the ground-
ing. The remaining training errors are more complex, thus this variant generation technique is
quite ineffective. However, many of the errors on commands not seen during training are in this
class, which is good since we would rather learn over unknown commands rather than known
misconceptions.

4.2 Maximal Semantic Differencing Performance

We break down maximal semantic differencing performance into three metrics: translation time,
UNSAT solve time, and SAT solve time. We pay a cost of one translation time, plus one solve
time per variant, depending on whether the query is satisfiable or not.

Gridworld Trajectory Number of Translation UNSAT SAT
Size Length Variants time Solve time Solve time
(time size) (queries) (average over | (average over | (average over
all queries) UNSAT SAT queries)
queries)

16 ~5 2 166 ms 202 ms 528 ms

64 ~10 6 1186 ms 299 ms 1774 ms

256 ~20 12 11 sec 21 sec 128 sec

Figure 8: Performance of Maximal Semantic Differencing for three hand-written specifications.



Quadrupling the size of the grid world (doubling each coordinate space) roughly increases each
query by an order of magnitude. UNSAT queries take an order of magnitude less time than SAT
queries. Since each query is either UNSAT or SAT, we can view UNSAT solve time as a lower
bound, and SAT solve time as an upper bound. So, in order to process 10 variants for an 8x8 grid
world, we have to wait 3-20 seconds to produce every maximally independent task instance.

5 Conclusion

We expand our view from one NL-LTL grounding to a set of grounding variants, produced by
searching through the less likely token encodings in the sequence-to-sequence language model. We
perform maximal semantic differencing in a modified model finding process within Alloy, that allows
the robot to ask clarifying questions about the grounding variants via maximally independent
concrete examples, instead of logical forms the user cannot be expected to understand. While
we have yet to produce an full end-to-end implementation, these two ends enable the user to
provide feedback about the examples, that clarifies which hidden LTL grounding is the correct
goal specification for their NL command. For a reasonably sized 8x8 grid, with 3-20 seconds of the
user’s time, the robot can now repair itself in 1% of the training cases and 5% of the test cases,
which would otherwise be a failure.

While Alloy is great for usability, its age limits it’s ability to access the latest in solver per-
formance. Working directly with a theorem prover (such as Z3) or a model checker with model
finding capabilities should reduce time to perform maximal semantic differencing. Also, enabling
incremental solving of multiple semantic differencing queries will reduce average query time by an
order of magnitude, as the SAT solver will not need to re-load and re-solve much of the search
problem shared between queries. We may also be able to implement maximal semantic differencing
directly into an MDP planner.

The weakest end of this system is currently the variant generation. We will first finish im-
plementing and evaluating beam search, as an alternative to the current batch searching method.
Additionally, we will compare the sequence-to-sequence model to other language grounding mod-
els. We aim to implement and evaluate against a seq-to-seq extension, and a language model that
is more likely to produce grammatically correct variants.

Essentially, this approach allows us to filter incorrect groundings via environment context and
some user input. This variant generation and filtering to correct grounding approach becomes
more powerful as we develop more sound ways to filter variants through contexts. We will attempt
to filter based on spoken context via paraphrasing. By training a duplicate language model in
reverse direction, we can embed each variant back into natural language. Due to the differences in
the embedding spaces, this will not result in an identity function, and the discrepancies from the
identity may be enough to filter even more variants before performing semantic differencing.



Research Artifacts

e Sequence-to-Sequence Grounding Variant Modifications:
[https://github.com /transclosure/ltl-amdp|

e Alloy Soft Clause Modifications:
[https://github.com /transclosure/org.alloytools.alloy /tree /add-objectives|

e Maximal Semantic Differencing Specifications:
[https://github.com /transclosure/logic/tree /master/collabrobo]

References

[1]

[10]

Adrian Boteanu, Jacob Arkin, Siddharth Patki, Thomas Howard, and Hadas Kress-Gazit.
Robot-initiated specification repair through grounded language interaction. arXiv preprint
arXiw:1710.01417, 2017.

Adrian Boteanu, Thomas Howard, Jacob Arkin, and Hadas Kress-Gazit. A model for verifi-
able grounding and execution of complex natural language instructions. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2649-2654. IEEE,
2016.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 337—
340. Springer, 2008.

Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl Tschantz. Ver-
ification and change-impact analysis of access-control policies. In Proceedings of the 27th
international conference on Software engineering, pages 196-205. ACM, 2005.

Zhaohui Fu and Sharad Malik. On solving the partial max-sat problem. In International
Conference on Theory and Applications of Satisfiability Testing, pages 252-265. Springer,
2006.

Nakul Gopalan, Dilip Arumugam, LL. Wong, and Stefanie Tellex. Sequence-to-sequence lan-
guage grounding of non-markovian task specifications. In Robotics: Science and Systems,
2018.

Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell Marcus, and Hadas
Kress-Gazit. Provably correct reactive control from natural language. Autonomous Robots,
38(1):89-105, 2015.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat modulo theories:
from an abstract davis—putnam—logemann—loveland procedure to dpll (t). Journal of the ACM
(JACM), 53(6):937-977, 2006.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
632-647. Springer, 2007.



	Introduction
	Related Work
	Technical Approach
	Grounding Variant Generation
	Standard Semantic Differencing
	Maximal Semantic Differencing

	Evaluation
	Grounding Variant Accuracy
	Maximal Semantic Differencing Performance

	Conclusion

