
Applying Abstract Markov Decision Process on

Building Domain

Seungchan Kim

May 15th 2018

1 Abstract

Due to its extreme amount of computation, large action-state
spaces has been one of the main challenges in robotic planning and
learning problems. To solve these problems, robot scientists have
suggested hierarchical approaches that decompose a big, compli-
cated task into small, simpler tasks that are computationally more
feasible. One of them is Abstract Markov Decision Process (AMDP),
which provides the hierarchical frameworks of planning problems
and uses abstract states, actions, rewards, transitions, and projec-
tion functions. In this project, I aim to extend the use of AMDP
framework to new simulative domains - construction and build do-
mains. I suggested new definitions for construction and building
domain problems, and tested the effectiveness of AMDP planning
method on building domain by comparing with base planner method
on the same domain.

2 Introduction

Robots often have to deal with complicated environments and
large amount of computations. For example, if a robot’s task is to
pick up multiple objects from different rooms, the robot has to plan
out the policies by comparing future states and optimal actions.
The robot has to decide which rooms to navigate first and which
objects to pick up, and so on, and if the number of objects and
rooms increase, the amount of computation grows combinatorially as
well. To tackle these problems, there have been various approaches

1



that decompose a big, complicated - often unstructured - task into
hierarchies of small, simpler tasks that have their own subgoals.

Abstract Markov Decision Process (Gopalan et al. 2017) is an
approach that shares the similar objective. It decomposes large
planning problems (moving object from one place to another, or
cleaning a room with multiple trashes) into Abstract MDP struc-
tures. In its hierarchical structure, the root task is divided into
smaller problems, each of which has its own subtasks, local rewards
and transition functions. At the very base level, the actions are de-
fined as primitive actions; as the level gets higher and more abstract,
the actions for the level are defined as non-primitive actions. In the
original AMDP paper, this framework was tested on three domains
(two simulative environments: taxi problem and cleanup world prob-
lem, and one real-robotic setting: cleanup task with turtle-bot).

In this project, I wanted to extend the use of AMDP framework
to new domains, which are construction and building domains. For a
robot, construction and building problem requires the policy plan-
ning for ‘assembling objects’. The previous domains that tested
AMDP framework (taxi and cleanup) were more about navigation
and pickup tasks. Construction and building domains ask the robot
questions on how to assemble objects in specific order, or how to
put down objects efficiently according to the given blueprint.

In order to test AMDP framework on these problems, I suggested
a new simulative environment by giving the definitions of states,
actions types, reward and transition functions. With these basic
definitions, I also suggested hierarchies of subtasks for construction
and building domain problems. Due to the lack of time, I couldn’t
test AMDP method on construction domain. But instead, I could
observe the AMDP planning results for building domain, which is
a main part of construction domain. Then I compared the results
with base planner called bounded RTDP.

3 Related Work

AMDP framework (Gopalan, et al 2017) is defined with following
tuples:

< S,A,R, T, ε, F >

2



S is a set of tuples, A is a set of actions, R is reward function (re-
ward when the agent at state s transitions to state s’ after executing
action a), T is a transition function, and ε is a terminal function.
F is a projection function, which only exists in AMDP formalism,
that maps from the lower-level states to higher-level abstract states.

For each problem, AMDP framework needs hierarchical struc-
tures of tasks and subtasks. In AMDP formalism, each subtasks
has its own subgoals, as well as local actions, local states, rewards,
and transitions functions at multiple levels of hierarchy. In taxi do-
main, for example, a taxi agent starts at a random position in 5
by 5 space with multiple rooms and walls. It tries to find a pas-
senger in a certain room, navigates through the rooms, picks up a
passenger, and transports him to the goal location. The taxi agent
decomposes the problem into smaller problems (GET and PUT;
level2), which, respectively, are to find a passenger and transport a
passenger. These two problems are decomposed into even smaller
problems (Pick up, Navigation, Put down; level 1). The very base
level actions, also called as primitive actions, are move (west, east,
north, south), pickup and drop off.

Inspired by this taxi problem, I defined a construction and build-
ing domain. Basically, construction domain is a combination of
object-fetching problem and building problem. In the next section,
I will define the hierarchies for both construction and building do-
mains, but I will focus more on the building domain.

4 Technical Approach

Figure 1: Construction Domain Hierarchies

3



In construction domain, constructor agent takes a blueprint
(β) as an input. The agent divides the task into two separate tasks:
first is Prepare (object fetching) and second is Build. To prepare
means to find the ingredients needed for the construction, as stated
in the blueprint. It searches around the space and navigates through
the rooms to find the necessary ingredients (objects). The base level
actions should be pickup and move(north, south, east, west).

Figure 2: Construction Domain

After prepare task is done (when the agent is ready to start build-
ing the structure), the agent starts building task. It decomposes the
task into Build(i) subtasks, each of which represents building i-th
floor of the structure. For example, if the agent has to build three-
story building, it will decomposes the building task into Build(0),
Build(1), Build(2) tasks. The very base level primitive actions are
move (west, east, south, north) and put down (which is to put the
right ingredient block into the right place).

Prepare task (level 2) in the construction domain is very similar
to the previous domain (taxi domain). Get and Navigation Tasks
at level 1 are similar with the Pickup and Navigation tasks (level
1) in taxi domain. The construction agent - navigating through
the rooms, searching ingredients, gathering them, and moving them
to the building space - is analogous to the taxi agent navigates to
multiple passengers, and transports them to the goal location.

4



Building task is the main component that makes construction
domain more unique (building task is a domain by itself). Let’s
take a look at the building domain with more details. Figure 3 is a
diagram of hierarchy when the robot agent has to build three-story
structure. Just like construction domain, the build task is given a

Figure 3: Building Domain Hierarchies

blueprint β to follow. The robot agent has a blueprint, and accord-
ing to the AMDP hierarchy, the robot starts building the zeroth
floor of the building. Then 1st and 2nd floors are completed. For
each build(i) action, there are primitive actions move and putdown.
The robot agent moves around the space, finds the right position to
put objects, and puts down the object.

For the experiment, states and actions are defined as following:
a state is defined by map and agent. Map defines the entire space
in which robot agent moves around. In our case, we use 3D map
(maxX by maxY by maxZ); for convenience, let’s assume that we
are not building any structures taller than 3-floors. So we define the
size of map as N by N by 3, where N is the maximum width of the
map(x and y directions) and 3 represents the vertical z directions.
Map is composed of each ‘position’ class, which not only contains
the information of x,y,z, coordinate vectors, but also the boolean
vector that represents whether or not the certain position is filled
with a block. If it is true, a block is already positioned in the x,y,z

5



coordinate, and if it is false, the position is empty.
Agent is defined with x,y,z coordinate as well as the blueprint

given to the agent. In this problem, we do not care about the
vertical motion of the robot; hence z is always zero for the agent.
The robot agent can freely move around horizontally in 2D space,
unless it is blocked by wall or by the structure it is building.

Blueprint is defined as an array of component tuples. Each tuple
is composed of the x, y, z coordinates (where the block will be placed
at), and the ingredient type (b - brick, w - wood, g - glass) string.
For example, the following code defines a sample blueprint

Figure 4: Sample Blueprint

whose name is “blueprint1”. There are six components in this
blueprint. At zeroth floor, there are three blocks to build ((x=3,
y=3), (x=3, y=2), (x=2,y=3)), and at first floor, there are two
blocks to build ((x=3,y=3),(x=3,y=2)), and on the second floor,
there is one block to build (x=3,y=3)). The ingredient type for all
blocks, in this case, is ‘b’, which represents ‘brick’. (The types of
ingredients were defined for construction domain, because it would
be more relevant with object-fetching task; in building domain, for
simplicity, let’s just assume that all the ingredient types are the
same.)

As for the primitive actions, there are two types - move and
putdown. Move actions are north, east, south, west actions, and
the robot agent can freely move to the next place, as long as the
target position is within the boundary of the map and the agent
is not blocked by the structure it is currently building. Putdown
actions are limited only when the agent is at the right place; if the

6



agent is right next to the target position (either x or y coordinates),
the agent can possibly put down the object to the position. In other
cases, putdown actions are not allowed.

Moreover, there are two cases of illegal actions for putdown.
When the agent tries to put down a block that was already put
down, or in other words, if it tries to fill in a position coordinate
that was already filled in, we define it as a illegal action. Another
case of illegal actions is when the agent tries to put down a block
to a certain position, while the lower-level position is empty. For
example, if the agent tries to put a block at (x=3,y=3,z=1). But if
there is no block at (x=3,y=3,z=0), in other words, the lower-level
position is empty, then we regard this case as an illegal action.

We give negative rewards (-10) for all illegal actions. For all the
actions we give -1 by default, and if the agent completes the task, we
give +20 rewards to the agent. For convenience, transition dynamics
was set to be deterministic in this project, but we can always set it
as non-deterministic function.

5 Evaluation

First, I tested the building domain by counting average number
of backup operations. Number of backup operation is a meaningful
value to plot, because it contains information of how many Bellman
updates are used in planning, and signifies how much time/computation
are needed for planning.

Figure 5: Number of backup operations vs. Map size

Figure 5 shows a graph between number of backup operations vs

7



map size, when tested with base planner. I tested with four different
map sizes (5 by 5, 7 by 7, 9 by 9, and 11 by 11), and set all the other
factors equally. (The robot agent starts at random initial point, and
the number of blocks in blueprint was 6). As can be seen from the
graph, the number of backup operations increased as the map size
increased; when map size was 5 by 5, average number of backup
operation was less than 200, while the map size was 11 by 11, it
increased to over 1200.

Next, I compared the AMDP method and base planner method
on building domain. For base planner, I used bounded RTDP
method, which is implemented in burlap. Using bounded RTDP,
we can similarly count the number of backup operations during the
policy planning. In order to see the difference between AMDP plan-
ner and base planner, I differentiated the number of blocks used in
building the structure; hence three different blueprints (number of
blocks = 3, 6, 12) were tested. All the other factors were set equally
(size of the map is 9 by 9, etc)

Figure 6: AMDP vs Base Planner

From figure 6, we can compare the number of backup operations
of AMDP method and base planner method. As number of blocks
(in the blueprint) increased, the number of backup operations in-
creased. When number of blocks was 3, both results for AMDP and
base planner methods were around 500 (average number of backup
operations of AMDP was slightly higher than that of base plan-
ner). However, as number of blocks increased, number of backup
operations of AMDP was smaller than that of base planner method;

8



especially, the gap between AMDP and base planner widened when
there are 12 blocks in the blueprint.

As AMDP planning uses hierarchical structures for this domain,
it decomposes a entire building task into a network of sub-tasks
that has subgoals to complete. In this case, I divided the root task
into each of building ith floor of the structure, and it showed that,
when the task gets more complicated (number of blocks increased),
AMDP planner showed better results than base planner.

6 Conclusion

I extended the use of AMDP framework to new domain: building
domain. Building domain is a problem of assembling objects in
specific orders or according to given blueprints. I defined states and
action types, and also defined the abstraction hierarchies for the
problem. Using this hierarchical structure, I implemented AMDP
framework to the planning problem.

To compare the effectiveness of AMDP planner with that of base
planner method, I counted the average number of backup operations
as I tried with different number of blocks in blueprints. AMDP
planner showed better results (less backup operations) for structures
with more blocks.

For future improvements, I think there are various directions to
continue and extend this project. As mentioned earlier, I’ve only
tried to building part of construction domain, and didn’t implement
prepare (object fetching) part. So it would be meaningful to imple-
ment the entire construction domain according to the hierarchy, and
check the effectiveness of AMDP planner. Adding some noises to
the build domain (considering the case in which the built structure
falls or collapses during the construction: how would robot agent
react to it?) and counting/comparing the number of illegal actions
during AMDP and base plannings would be a minor modification
that is worth trying. Comparison with other planning methods (e.g.
MAXQ) would also be a meaningful direction to reach.

9



References

[1] Gopalan, N.; desJardins, M.; Littman, M. L.; MacGlashan, J.;
Squire, S.; Tellex, S.; Winder, J.; and Wong, L. L. 2017. Planning
with abstract Markov decision processes.In International Confer-
ence on Automated Planning and Scheduling.

[2] Bakker, B.; Zivkovic, Z.; and Krose, B. 2005. Hierarchical dy-
namic programming for robot path planning In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems

[3] Jong, N., and Stone, P. 2008. Hierarchical model-based reinforce-
ment learning: R-max+ MAXQ In International Conference on
Machine Learning.

[4] Brown-UMBC Reinforcement Learning and Planning
(BURLAP) tutorial
http://burlap.cs.brown.edu/

10


