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Abstract: 

In their 2017 FETCH POMDP paper, Whitney, Rosen, et al present a multimodal 
interactive robotic system for approaching reference tasks, a critical problem in human robot 
interaction. Their model provides a strong groundwork for resolving references, integrating 
linguistic information, visual cues, and social feedback with a partially observable markov 
decision process. However, the original system utilizes a substantially simplified underlying 
language model. To more reliably and naturally accommodate the referential power of human 
language, we sought to improve upon that underlying model. We began by replicating the 
linguistic portions of the POMDP’s functioning (language model and question asking). To push 
the capability of the system further, we augmented the language model with understanding of 
given prepositions so that the system could leverage locational information when determining 
which item the speaker wants. In the context of the FETCH POMDP, this is a powerful asset 
since all of the items are laid out in a straightforward horizontal setup. With this additional 
knowledge, the system was able to more quickly determine the user’s desired object, resolving 
references that would have required further clarification in the original language model. 
 
Introduction: 

Reference tasks are a critical and difficult problem in human-robot linguistic interaction. 
They are ubiquitous throughout human language use, and they occur in diverse contexts at 
various levels of abstraction. We refer to single out everything from concrete objects in our 
environment like chairs to abstract conceptual notions like freedom. Though humans are 
generally able to resolve under-specified, context-sensitive references without difficulty, state of 
the art machine approaches have not yet hit that benchmark. In order for machines to interact 
naturally with humans using natural language, improvements to reference resolution are still 
necessary. 

To approach this problem we decided to build on the FETCH-POMDP a multi-modal 
system developed in this lab by Whitney, Rosen, et al. The FETCH-POMDP integrates linguistic 
knowledge, visual cues, and social feedback in order to resolve references in a simple reference 
task. Incorporating this variety of input allows the original FETCH-POMDP to perform robustly in 
the given task, however its individual sub-models are somewhat simplistic. In particular we were 
interested in focusing on the language model, which essentially utilizes word frequency relative 
to a given item vocabulary in order to guess which item is most likely the desired object of the 
speaker. The language that participants use to refer to the items in the task, especially in 
ambiguous cases, is often more complex that what is accounted for by this simple model. In 
particular, given the spatial arrangement of items for the task, participants often make use of 
positional, relational language, identifying the desired object by means of its location relative to 



the other objects. We wanted to improve the FETCH-POMDP in order to accommodate these 
sorts of linguistic phenomena 

The first part of our project was to replicate the linguistic components of the 
FETCH-POMDP. The Partially Observable Markov Decision Process is a framework for 
modeling decision making where an agent has a reward function that is dependent on the state 
of the world. The agent however does not have perfect knowledge of the state of the world, 
instead she must infer probabilities of different states based on what she observes. The agent 
chooses actions to optimize expected reward under this uncertainty. In the context of our limited 
replication of the linguistic components of the FETCH POMDP, the state of the world is the 
agent’s desired object. Our system is trying to discern what that object is based on its 
observations, the user’s input language. The system also incorporates social feedback when it 
is not confident that it knows the participant’s desired object. The POMDP balances the rewards 
and costs of guessing a particular object vs asking a clarifying question to discern whether a 
particular object is the participants desired object. 

In the second part of our project, we built on this model to incorporate more 
sophisticated language understanding. As described above, our interest was in incorporating 
positional and relational understanding so that the system could utilize prepositional relations 
when trying to determine the user’s desired object. In particular, we implemented prepositional 
heuristics as a Bayesian filter on our naive implementation (the basic language model of the 
FETCH-POMDP). These heuristics allowed the system to interpret the meaning of terms like 
“right of” or “near” so that it could identify objects in otherwise ambiguous cases without having 
to resort to question asking clarifications. 

We evaluated our updated model by comparing its ability to resolve references with and 
without prepositions to the original model replication. We found that it performed as well as the 
original model on cases without prepositions and that it could additionally resolve references 
with prepositions that we specified without having to ask for further clarification. To more 
completely evaluate the capabilities of the model, we would have liked to perform a user study 
with a variety of participants and object setups. Unfortunately within the scope of the class we 
did not have time. 
 
Related Work: 

Our work builds on the system developed by Whitney and Rosen in their 2017 paper. To 
integrate the various sources of information that the system utilizes and determine the optimal 
action given an observation, Whitney and Rosen construct a partially observable markov 
decision process (POMDP). POMDPs provide a framework for modeling how agents should act 
under uncertainty given observations of the state of the world. The POMDP is defined in terms 
of a state space, action space, transition function, reward function, and observation function. 
The transition function defines how the model transitions from one state to another given a 
particular action. The reward function defines a utility for each state action pair. Lastly the 
observation function defines the probability of a particular observation given the underlying state 
and an action. The task of the agent is learn a policy, a function from observations to actions, 
that maximizes the expected reward. The details of the particular POMDP which Whitney and 



Rosen defined and which we replicated for our project are included in “Technical Approach” 
section. 
 
 
Technical Approach: 

The transition function for the FETCH-POMDP is deterministic. The model assumes that 
the participant’s desired object does not change within a given trial. The state of the trial also 
reflects any objects that the system asks about in order to clarify whether a particular item is the 
user’s desired item. This begins with a null value and is updated deterministically based on any 
clarifying questions the system asks. We found the same reward function that Whitney and 
Rosen used in the original paper worked well in our replication even with the changes that we 
made to the structure of the POMDP. The reward function gives correct choices strong positive 
weight, incorrect choices strong negative weight, and clarifying questions middle negative 
weights to disincentivize unnecessary question asking. 

The main sophistication of the model lies in the observation function. The model splits a 
linguistic input into two components, the base utterance and response utterance. The base 
utterance encompasses all words that are not part of the response to a clarifying question. The 
probability of the utterance is equal to the product of the probabilities of the words times a base 
utterance probability. There is a small probability assigned to the case where the base utterance 
is empty. The probability of words in the base utterance is determined by a unigram model. The 
unigram model is defined by the following equation: 
 

(w|i ) P d =  |i .vocab[w]| + αd
|i .vocab| + |vocab|αd

 

 
The probability of a particular word w given the true object the participant desires is 

object id, is equal to the number of times w appears in the specified vocabulary for that object 
plus a smoothing parameter alpha, divided by the full size of the vocabulary for that particular 
object plus the full vocab size (for all objects) multiplied by the smoothing parameter. In plain 
English the probability of a word is equal to the frequency that the word appears in the 
vocabulary of the given object plus a smoothing parameter. The smoothing parameter ensures 
that no word has zero probability. This is important because when we take the product of all the 
word probabilities to find the probability of the full utterance, if any of the probabilities were zero, 
the full utterance would have zero probability. All vocabularies for objects are pre-specified. 

The response utterance is a set of either affirmative or negative words in the respective 
aff/neg vocabularies. The probability of each affirmative word is 0.99 if the chosen object 
matches the desired object, and 0.01 otherwise and vice versa. Given that there is no chosen 
object, the probability of any response word is 0.5, thus giving a uniform probability in the 
neutral state to avoid biasing the algorithm. The total response utterance probability is the 
product of the individual utterance probabilities. 

To determine actions, we used a model independent belief sparse sampler. It simulates 
all possible actions multiple times given the last state, observation, and action, and for each of 
the result states using the transition function, we apply this sampling again, creating a simulated 



tree. For our purposes, we have a tree of depth 2. The complexity increases exponentially, so 
more than 2 is not feasible, and 2 is sufficient for FETCH. In those simulated states, an 
observation is sampled given the state and action. The model must provide the sample_obs 
function. For each of the end states, the reward is calculated based on the reward function 
provided by the model, and one step above in the tree, the maximum reward is propagated up, 
and the sampler chooses the action whose max expected reward is the highest. 

After choosing an action, the robot gets a new observation from the user, and using the 
observation probability function in the model described above, a new belief array is calculated, 
where the belief represents the probability of each object being the desired object. 

After calculating a belief update, we have a new belief array, and we apply a Bayesian 
filter to implement the heuristics for positional language. We separated the heuristics into two 
cases, two argument and one argument prepositional phrases. These arguments refer to the 
objects explicitly referenced. X “right of” Y would be a two argument phrase whereas X “on the 
right” would be a one argument phrase (note the one argument case does imply at least one 
other object of comparison, however that argument is implicit). For the two argument case, we 
build a matrix where the row represents the index of the object on the left side of the expression, 
and the column represents the index of the object on the right side of the expression. For each 
cell, the joint probability of those objects is computed by multiplying the unigram probabilities of 
each object, given the sentence is split into the left and right sides of the preposition. Because 
the two argument phrases anchor themselves on the object on the right side of the expression 
and find the other object relative to that, we loop through each column and apply a mask over 
the entire column. The mask would depend on the preposition. “Right of” would have all 0s up to 
and including the current column index, and then have a geometrically decreasing probability 
(we used 0.8 for the base of the exponent) as the object is further away from the current index. 
This encapsulates that we are not looking for objects on the left side, and that what we want is 
likely to be closer to the referenced object than not. “Left of” would have geometrically 
increasing probabilities from the lower indices (lower indices are toward the left on the table and 
higher indices on the right), up to and not including the current column index, and 0 afterwards. 
“Near” would have 0 probability for the current index and geometrically decreasing probability in 
both directions. This is extensible to a 2D or 3D arrangement of objects, as the number of matrix 
dimensions can simply be increased. The run time would still be around n^2 in the number of 
objects as we need to go through every object pair once. 

For the single argument case, we gather up the objects with the highest probability 
(based on the belief array calculated in the update step) until the sum of probabilities passes a 
threshold (we used 0.6). This selected group forms a “context” of likely candidates for the 
heuristic to pick from. The objects in this context are arranged geometrically from left to right. 
Then, given the positional response word “left” or “right”, we increase the probabilities of the 
objects in the context based on their position. If the word was “left”, the further left an object was 
among the gathered ones, the more its probability would increase. If the word was “right” the 
opposite would be true. To increase the probability value of the relevant objects we add to the 
probability of all those objects that we have gathered. The amount that we add decreases 
exponentially as we move farther away from either the right or left (depending on the keyword). 
After we have added this buff to these most probable terms, we renormalize their values with 



the rest of the probabilities to return a valid probability distribution. We return this distribution as 
our belief. 
 
Evaluation: 

To evaluate our new model, we compared the performance of our updated system with 
the performance of the model that we replicated for the midterm checkpoint. We found that 
indeed our updated model was able to utilize prepositional information to resolve references 
faster than the original model. We provide an example below showcasing our model’s ability to 
resolve reference without additional clarification. 
 
For the following setup (one of Whitney and Rosen’s “ambiguous settings”): 

  
 
 
Old model: 

 
 
New model: 

 
 
 



Old model: 

 
 
New model: 

 
 
Each question preceded by a “point” tuple signifies a clarifying question where each question 
preceded by a “pick” tuple signifies the model’s choice for solving the reference task. Though 
both models are able to resolve the references, the new model can do so without asking for 
clarification. The old model needs to clarify with at least one question (in other cases it would 
ask for more). 
 
Additionally, the old model preserves all the capabilities of the new model as a baseline. We can 
see for the standard reference task without prepositional clarifiers they have the same behavior: 
 
Old Model: 

 
 



New Model: 

 
 
The new features add inferential power without taking away from the system’s capacities in any 
way that we are aware of. 
 
Conclusion: 

The FETCH-POMDP explores a critical question in computer human communication, 
how can we use a variety of tools, linguistic, social, and visual to help us resolve references. In 
our project we sought to build on the linguistic components of that framework. After replicating 
the linguistic portions of the original model, we developed a heuristic approach to improve the 
model’s inferential abilities, allowing it to interpret positional information provided in natural 
language with prepositions. We found that our heuristics improved the model’s capabilities 
without detracting from them. However further evaluation would be valuable. Because natural 
language is so flexible there are always unforseen descriptions that act as edge cases. Testing 
the model with a multi-person user study would be the next ideal step for assessing its 
capabilities. 

In addition there are many possible avenues for further developing the capacities of the 
system. The FETCH-POMDP reference task, though interesting is somewhat restricted. The 
objects are presented to the user in an organized line. There is a lot we could do just in terms of 
experimenting with the setup of the problem. Adding to the number of items or changing their 
orientation could change the way that people choose to describe those items, or change the 
way the statistical model accommodates the data. If objects are arranged vertically rather than 
horizontally, people likely won’t use left and right to describe locations. Adding objects and 
words to our vocabulary will change the normalizer for our unigram model in different 
circumstances. Each of these changes could alter expected performance, and it would be 
interesting to experiment with these different settings and see how we might be able to design 
general principles that accommodate many different types of environments. 

One interesting possibility in that vein is thinking about how we manage hyper-parameter 
tuning. The success of our model is notably dependent on the choice of particular 
hyper-parameters (the rewards for different POMDP scenarios, the unigram smoothing 
parameter, the Bayesian filter on particular values) that may need to take different values to 
succeed in different contexts. One interesting avenue for exploration along this line would be to 



see if there was some automated way to tune hyper-parameters to different task setups so that 
the model could perform flexibly without requiring manual re-tuning for each context. 

One of our original interests in pursuing this project was to find ways to integrate this 
framework with probabilistic programming. Though unfortunately we did not have time to fully 
explore that space, we did find fruitful ground for a potential wedding of probabilistic 
programming languages and statistical methods for solving POMDPs. Another potentially 
interesting avenue going forward would be to further explore the ways that PPLs could help us 
better address the difficult problem of solving POMDPs. PPLs offer an expressive and powerful 
language for framing statistical inference with generative models. To solve the FETCH POMDP, 
we used a fairly simple statistical method, but PPLs could give us more sophisticated tools to 
address these computationally intensive problems. 


