
TiltCopter

Filip Bystricky, Yuu Jinnai, Freddie Rice

May 14, 2018

1 Abstract

Today, quadcopters are versatile and have a variety of useful applications in
many fields, but they are limited. There exist alternate designs, but these either
add too little value or are overly complicated. We propose a relatively simple
modification which allows the quadcopter to tilt two of its diagonally opposed
propellers. This modification adds a servo motor to tilt these propellers, as well
as a fifth propeller to help counteract the torques that this introduces. Whereas
normal quadcopters must tilt their entire frames to fly anywhere and can only
hover in one orientation, our design will be able to fly sideways without tilting
its frame, and hover in place while rotating its frame. This should enhance its
ability to explore environments and make it better at many of its existing use
cases.

2 Introduction

Quadcopters are used for all kinds of tasks, including photography, fun, SLAM,
aerial mapping, crop inspection, and delivery, to name a few. Most if not all of
these require a camera, and often some additional equipment to stabilize this
camera. For example, someone using a drone for aerial photography probably
wants the camera to remain steady as the drone flies around. All similar use
cases would benefit from a drone which can keep its camera stable by design.

Most quadcopters today use a traditional 4/6/8 non-tilting rotor design.
While these simple designs can achieve remarkably athletic feats, they have
significant limitations. It is difficult for them to flip upside down, get near walls,
maneuver in tight spaces, and impossible to float in any position other than
right-side up (or perhaps upside down). Furthermore, all movements tilt the
whole frame, including any cameras and sensors. Many consumer quadcopter
designs are forced to make up for this by putting cameras/sensors on stabilized
and/or tilting platforms.

We propose to solve this problem by making two propellers tiltable, so that
the quadcopter can move around by tilting only those two propellers and not its
entire frame. Specifically, our design has an axle running between two diagonally
opposed propellers, which is attached to a servo motor that can rotate the axle

1



180o. The two propellers are attached to the axle rather than to the base, so
when the servo motor rotates the axle, the propellers tilt along the diagonal
axis that runs between them. When this happens, these two propellers exert
some thrust downwards, and some sideways, so while the frame stays level the
drone will fly sideways. Alternatively, the quadcopter can tilt its frame while
simultaneously tilting these two propellers, in order to float in place.

We show the use of our model by simulation and actual experiments. Cur-
rently, we have built and assembled a full prototype of our new design, and are
working to get it flying like a normal quadcopter, without tilting its propellers.
We will complete at least two more prototypes, with a few minor improvements
based on what we have learned so far. We have also implemented a simulation
of our quadcopter’s dynamics model.

3 Related Work

There exist racing quadcopters which are similar to our idea. However, these tilt
all four rotors in the same direction, in order to increase forward speed and keep
the camera level, and don’t have significantly better agility or maneuverability
than normal quadcopters.

[3] proposed a quadcopter model which tilts four of the propellers indepen-
dently. They showed in a simulation that their model (1) gains full controlla-
bility over the quadcopter pose, and (2) use the actuation redundancy (of order
2) to optimize energy efficiency. [4] also proposed a model with four tilting
propellers. They showed that they can move the quadcopter while fixing the
direction of the camera to the ground. [2] showed that the quadcopter can hover
while tilting two of the propellers on an axis with a same angle.

It has been shown that with four additional control parameters, we are
able to control the quadcopter, more efficiently and with more maneuverability.
However, such a design is much more mechanically complex than that of a
normal quadcopter. We believe our idea can achieve significant improvements
without sacrificing too much of the original design’s simplicity.

In terms of SLAM, the state of the art algorithms assume a non-tilting
quadcopter design, and as a result have to deal with significant changes in the
camera orientation as the quadcopter moves around its environment. Thus there
seems to be much room for improvement in the results.

4 Technical Approach

This project involves solving two distinct problems. We solve the mechanical
problem of physically designing the drone, and the mathematical problem of
controlling it.

2



4.1 Design

Our design gives the quadcopter the ability to tilt two of its diagonally opposed
rotors. This enables the quadcopter to spin in place and move around without
tilting its base, keeping its cameras and sensors facing in the same direction. It
also makes it possible for it to hover with its base facing any direction. This
means that it could have one set of sensors, and the ability to point those sensors
in any direction.

When a propeller spins, it creates a torque on the quadcopter in the opposite
direction. And when any spinning object is tilted, it exerts a torque on an axis
which is rotated 90o from the axis of tilting. When the quadcopter tilts its
tiltable propellers, both of these phenomena act to produce a roll torque on the
quadcopter. To counteract this, we add a fifth propeller inside the quadcopter,
facing so that it exerts a roll torque when it spins.

We used OpenJSCAD to design the parts we needed, as well as to design
an arrangement of all the electronics. Figures 1-4 show this model and what it
looks like when the propellers tilt. The green box is a raspberry pi, the blue one
is a battery, the yellow one is a flight controller, and the black one is the servo
motor. If you look closely you’ll see the axle which runs horizontally between
the left and right propellers.

Figure 1: Bird’s eye view of the model, in normal configuration (without tilted
propellers)

3



Figure 2: Bird’s eye view of the model, with propellers tilted by 45o

Figure 3: Bird’s eye view of the model, in normal configuration (without tilted
propellers)

4



Figure 4: Bird’s eye view of the model, with propellers tilted by 70o

4.2 Dynamics Model

Our simulation is based on the following model. First, we define a dynamics
model for a standard quadcopter and our quadcopter. Then, we derive a control
for hovering while the axis is tilted. Based on the hovering controller, we show
a simple PD controller to follow a given trajectory for our model.

4.2.1 Dynamics of a Standard Quadcopter

Our model dymanics follows the assumptions on [2]. Figure 10 shows the body
frame. The rod on the Y axis rotates along with propeller 1 and 3.

Let q be the linear and angular position of the quadcopter body in world
axis. Euler angle transformations are defined by η = [φ θ ψ]: roll, pitch, yaw
angle.

ξ = [x y z]T (1)

η = [φ θ ψ]T (2)

q = [ξ η]T (3)

Vertical forces along the X, Y, Z axes in the world frame are:

5



Figure 5: Body frame of the model. The rod on the Y axis tilts. Figure taken
from [2]

mẍ =
∑

Fi(sφsψ + cφcθcψ) − C1ẋ (4)

mÿ =
∑

Fi(sφsθcψ + cφsψ) − C2ẏ (5)

mz̈ =
∑

Fi(cθcψ) −mg − C3ż (6)

(7)

where sx denotes sinx, cx denotes cosx, m is the total mass of quadcopter,
g is the acceleration by the gravity. C1, C2, C3 are drag coefficients.

Fi are forces produced by the rotors:

Fi = Kfω
2
i (8)

where ωi is the angular velocity of i-th rotor, and Kf is a constant.
Angular accelerations of the quadroter are given by Euler equation:

Ixψ̈ = l(F3 − F1 − C ′
1ψ̇) (9)

Iy θ̈ = l(F4 − F2 − C ′
2θ̇) (10)

Iyφ̈ = M1 −M2 +M3 −M4 − C ′
3φ̇ (11)

(12)

where l is a length of the arm, and C ′
1, C

′
2, C

′
3 are rotational drag coefficients.

Mi are rotational drag produced by angular velocity of rotors:

6



Mi = Kmω
2
i (13)

where, Km is a constant. Thus

Mi = kFi (14)

where k = Km

Kf
.

4.2.2 Dynamics of a Tilting Axis Quadcopter

For a tilting axis quadcopter we have two additional parameter µ and M5. µ is
the tilt angle of the axis with propeller 1 and 3 on. We assume that the propellers
are right on top of the axis so that the forces generated by the propellers are
perpendicular to these respective planes of rotations. M5 is a rotational torque
produced by the fifth rotor to the roll. We assume that the fifth rotor does not
produce a thrust.

mẍ = F1sµcψcθ + F3sµcψcθ (15)

+ F1cµcψsθcφ+ F2cψsθcφ (16)

+ F3cµcψsθcφ+ F4cψsθcφ (17)

+ F1cµsψsφ+ F2sψsφ (18)

+ F3cµsψsφ+ F3sψsφ− C1ẋ (19)

mÿ = F1sµcψcφ+ F3sµsψcθ (20)

+ F1cµsψsθcφ+ F2sψsθsφ (21)

+ F3cµsψsθcφ+ F4sψsθsφ (22)

+ F1cµcψsφ− F2cψsφ (23)

− F3cµcψφ− F4cψsφ− C2ẏ (24)

mz̈ = −F1sµsθ − F3sµsθ (25)

+ F1cµcθcφ+ F2cθcφ (26)

+ F3cµcθcφ+ F4cθcφ (27)

−mg − C3ż (28)

The angular accelerations are determined by Euler equation:

Ixφ̈ = l(F3cµ− F1cµ− C ′
1φ̇) (29)

+ (M1sµ+M3sµ) (30)

Iy θ̈ = l(F4 − F2 − C ′
2θ̇) (31)

+M ′ +M5 (32)

Izψ̈ = l(F1sµ− F3sµ− C ′
3ψ̇) (33)

+ (M1cµ−M2 +M3cµ−M4) (34)

7



where M ′ is a moment produced by the servo motor, and M5 is a rotational
drag produced by the fifth rotor.

4.2.3 Rotor Model

Our rotors are driven by DC-motors which follows the model by [1].

L
di

dt
= u−Ri− keω (35)

J
dω

dt
= τm − τd (36)

where u is a motor input, ke is a back EMF constant, τm is a motor torque, τd
is a motor load, R is a motor internal resistance. We assume that an inductance
of the motor is negligible, thus:

J
dω

dt
= −k

2
m

R
ω − τd +

km
R
u (37)

where I is an input current, I0 is the current with no load on the motor, and
Kt is a constant.

4.2.4 Hovering for a Tilting Model

First we consider the control for hovering. Our model can hover at a place while
tilting the axis. Assume that all four rotors having equal rotational speed (thus
Fi = F ). Let µ be the fixed tilting axis. Then the vertical forces are as follows:

mẍ = F (s(µ− φ) + s(µ− φ) − sφ− sφ) (38)

mÿ = 0 (39)

mz̈ = F (c(µ− φ) + cφ− c(µ+ φ) − cφ) −mg (40)

To hover we need all ẍ, ÿ, z̈ to be zero. Thus,

φ =
µ

2
(41)

The motor speed is given by:

ωi = ωh =

√
mg

4kfc
µ
2

(42)

4.2.5 Control Model

For a simulation we consider a simple PD controller based on the hovering
attitude following the model by [2]. Given the derivations of the angle velocities

of the body, the desired angular velocities of the rotors ωrefi are given as follows:

8




ωref1

ωref2

ωref3

ωref4

 =


1 0 −1 1
1 1 0 −1
1 0 1 1
1 −1 0 −1



ωh + ∆ωf

∆ωφ
∆ωθ
∆ωψ

 (43)

We use the PID controller defined as follows to calculate the desired deriva-
tions of the angle velocities of the body:

∆ωφ = kp,φ(φref − φ) + kd,φ(pref − p) (44)

∆ωθ = kp,θ(θ
ref − θ) + kd,θ(q

ref − q) (45)

∆ωψ = kp,ψ(ψref − ψ) + kd,ψ(rref − r) (46)

(47)

The relationship between the tilt angle µref and the reference roll angle φref

is given as:

µ = 2φrefh + ∆φh (48)

where φh is reference roll angle and ∆φh is a deviation.

∆φh = kp,φh
(φrefh − φ) − kd,φh

(p) (49)

Note that the controller does not make use of the tilt axis for efficiency: for
an efficient flight we should tilt the axis toward the desired direction.

5 Evaluation

5.1 Design

Design-wise, our goal was to design and build a prototype that can fly, tilt two
of its propellers, and has a fifth “roll” propeller. In this, we were successful. We
managed to design several prototypes, all of which were able to fly, tilt two of
their propellers, and had a fifth “roll” propeller. However, we ran into a number
of issues with 3D printed parts breaking, and ended up re-designing parts of our
prototype each time.

Our first prototype, pictured in figure 6, had parts which were too rigid and
did not absorb the shock of crashing well at all. As a result, multiple parts of
it, including the frame, shattered on the first minor crash.

In building this prototype, we also realized that a number of its parts were
unnecessarily heavy, so we bought smaller axles and re-designed the frame and
other 3D printed parts to be thinner and lighter. We also made our first attempt
at 3D printing some shock-absorbing feet to help protect the drone from crashes.
This resulted in our second prototype, pictured in figure 7. Unfortunately, we

9



Figure 6: First prototype (missing some electronics). The far left and near right
propellers tilt along the axis that connects them.

then spent a long while solving software bugs, and when we finally got it to fly
it crashed and some 3D printed parts broke right away.

In the meantime, we managed to get three copies of our frame laser-cut out
of acrylic at the BDW, and assembled our third prototype (pictured in figure 8
with two of its propellers tilted). For this prototype, we redesigned all of the
small 3D-printed parts which broke in previous prototypes to be circular in an
effort to make them capable of absorbing larger shocks. Unfortunately, all of
these parts kept breaking when the drone fell during testing.

Finally, we abandoned hope that 3D printed parts could survive the impact
of the drone crashing, and made our fourth and fifth prototypes (pictured in
figures 9 and 10). These are identical, except that the one with orange propellers
uses packing foam to absorb shock, while the other one uses bundles of zip-ties
to do the same. These ended up working really well, and both prototypes have
survived numerous crashes.

Overall, we completely achieved our hardware design goals with our fourth
and fifth prototypes. Both can fly and tilt two propellers, and both have a fifth
propeller which help them influence their roll.

10



Figure 7: Second prototype

Figure 8: Third prototype

11



Figure 9: Fourth prototype

Figure 10: Fifth prototype

12



5.2 Simulation

5.2.1 Setup

We evaluated our model in a simulation for three tasks. First, we tested if we
can take-off while the rod is tilted. Second, we evaluated our model on following
a given trajectory, comparing against a model without tilting. Third, we ran a
simulation to tilt the rod while hovering at a place.

5.2.2 Taking-off

The first task we consider is to take-off and keep the altitude to a fixed position.
Note that we only keep the altitude but do not fix X and Y positions. For this
task we use a same controller for models.

The videos are available at the following link.

1. a standard model https://youtu.be/vz8QKnq6cmI

2. a model with tilt angle fixed to 15 with a controller for a standard model
https://youtu.be/wdr1r41h1lE

3. a servo model with a controller for a model https://youtu.be/UjDNYp-GJJw

5.2.3 Following a Trajectory

We compare the performance of our model to follow a trajectory. The video
comparing the trajectories of the two models is available at https://youtu.

be/kUVdCoH2x_w. Figure 11 shows the comparison of the RMS errors with and
without tilting. Note that the RMS error for X axis is smaller for the tilt model
than the non-tilt model. This is because the initial position of the quadcopter
is set in a way that it can use tilting to control X position, reducing the errors
on X axis. Figure 12 and 13 show the trajectories and angles of the two models.
The figures suggest that our model is faster to reach the desired position while
it is as stable as the base model. Figure 14 is a simulated camera angle of the
two models. The camera angle is defined as an angle of the Z axis of the body
frame and the Z axis of the world frame. Our hypothesis is that our model
can keep the camera angle more stable while moving. So far we did not see an
evidence to support the claim: the camera angles of the two models are roughly
the same stability.

To understand the strength of the tilting, we additionally implemented and
evaluated a model which can tilt both of the rods. The video is available at
https://youtu.be/VQUDTOCBM_0.

5.2.4 Tilt and Hover

As explained in Section 4.2.5 our tilt model enables to tilt the body angle while
stabilizing at a point. We ran a simulation to tilt the rod angle to 10 degree while
hovering at a point. The video is available at https://youtu.be/-aFCNNM8tF0.

13



(a) X, Y, Z (b) Total

Figure 11: RMS errors with and without tilting. Figure on the left shows the
errors for altitude, x, and y axis. Figure on the right shows the sum over three
axis. A model with a tilt axis is achieving lower errors. The tilt model has lower
error on X axis.

(a) Altitude (b) X (c) Y

Figure 12: Comparison of trajectories by the model with and without tilting.
The tilt model converges to the desired X position faster than the non-tilting
model.

(a) Roll (b) Pitch (c) Yaw

Figure 13: Comparison of angles by the model with and without tilting. We
observed that our model is as stable as the standard model without tilting.

14



Figure 14: Comparison of camera angle by the model with and without tilting.
We did not observe a significant difference in camera stability between the two
models.

5.3 Flight

We have managed to get our prototype off the ground, but unfortunately broke
a couple of propellers and 3D printed parts during PID tuning. We made some
design improvements to prevent further breaking, such as foam feet instead of
plastic feet to prevent the drone components from breaking. We were able to
get our prototype to fly like a normal quadcopter, then we were able to get it to
fly for around 20 seconds with a 10 degree tilt. We started to face issues with
the camera not understanding velocity at higher tilt angles, so we put it into
the motion capture system. Unfortunately, we failed to find the right change
of basis between the coordinate system of the drone and the coordinate system
of the motion capture system due to our limited understanding of quaternions,
Eigen and VRPN. We did have one configuration that almost worked, but with
a flipped-z axis, which meant that the drone could not determine its height.
That being said, from what we could infer from our test flights, the standard
PID control works well enough for the tilt drone at low angles. It was, however,
important to only tilt the drone’s axis once the drone was in the air, otherwise
the drone takes off at high speed toward one direction. This effect is most
notable at higher angles, such at 20 and above. We also encountered a large
number of issues with the ADC chips. We had to replace 3 of them throughout
the course of our design.

https://youtu.be/MLazhQg-RlY

6 Conclusion

Our final tilt drone design is a great platform for future research in the area. In
the end, the code had too many bugs to give us everything we wanted, but the
project as a whole gave some insights into new directions for quadcopter flight.
Even though we missed some of our ambitious goals, this is not a lost project.
We are convinced that the platform can be tuned to provide as dynamic flight
as that of the simulation.

15



6.1 Future Work

Future work should start with finishing our original goals. It could use our
project as a starting point to develop the code and perfect the design for a
drone which can controllably fly around without tilting its base, or hover in
place while tilting its base. We have shown that these work in simulation, but
there is still work left to get them to work on a real prototype. Additionally,
with some effort the design could be made much smaller and lighter.

In the slightly longer term, future work should develop a more standard
platform for developing highly configurable drones. It should follow the SpaceX
model of developing a prototype that can be reused after multiple failed exper-
iments. We found that our first drone could only sustain one flight. Around
15-20 man hours of work had led to a broken bunch of wires and plastic. We had
learned our lesson and decided to throw components at the ground to make sure
that they wouldn’t break during flight. This saved somewhere in the range of 2
drones worth of time. This resulted in our final drones being much more toler-
ant to large falls and led to a large number of iterations per drone. However, we
think that even more time could be saved if an engineer could build a dynamic
drone with multiple tilting axis that was tolerant to crashes at relatively high
speeds. From there, future drones could

Even longer term work could attempt to make further design modifications,
perhaps adding even more degrees of freedom and exploring the maneuverability
benefits thereof. It could explore which modified designs are possible to build,
program, fly, and which designs are better at which applications.

References

[1] Design and control of an indoor micro quadrotor. In Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
volume 5, pages 4393–4398. IEEE, 2004.

[2] A. Nemati and M. Kumar. Modeling and Control of a Single Axis Tilting
Quadcopter. pages 3077–3082, 2014.

[3] M. Ryll, H. H. Bulthoff, and P. R. Giordano. Modeling and control of a
quadrotor UAV with tilting propellers. 2012 IEEE International Conference
on Robotics and Automation, pages 4606–4613, 2012.

[4] F. Senkul and E. Altug. Modeling and control of a novel tilt - Roll ro-
tor quadrotor UAV. 2013 International Conference on Unmanned Aircraft
Systems, ICUAS 2013 - Conference Proceedings, pages 1071–1076, 2013.

16


