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ABSTRACT
Robots inevitably fail, often without the ability to recover
autonomously. We demonstrate an approach for enabling
a robot to recover from failures by communicating its need
for specific help to a human partner using natural language.
Our approach automatically detects failures, then generates
targeted spoken-language requests for help such as “Please
give me the white table leg that is on the black table.” Once
the human partner has repaired the failure condition, the
system resumes full autonomy. We present a novel inverse
semantics algorithm for generating effective help requests.
In contrast to forward semantic models that interpret nat-
ural language in terms of robot actions and perception, our
inverse semantics algorithm generates requests by emulating
the human’s ability to interpret a request using the General-
ized Grounding Graph (G3) framework. To assess the effec-
tiveness of our approach, we present a corpus-based online
evaluation, as well as an end-to-end user study, demonstrat-
ing that our approach increases the effectiveness of human
interventions compared to static requests for help.

1. INTRODUCTION
Robotic capabilities such as robust manipulation, accu-

rate perception, and fast planning algorithms have led to re-
cent successes such as robots that can fold laundry [Maitin-
Shepard et al., 2010], cook dinner [Bollini et al., 2012], and
assemble furniture [Knepper et al., 2013]. However, when
robots execute these tasks autonomously, failures often oc-
cur due to perceptual errors, manipulation failures, and other
issues. A key aim of current research is reducing the inci-
dence of these types of failures but eliminating them com-
pletely remains an elusive goal.

When failures occur, a human can often intervene to help
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Figure 1: A robot engaged in assembling an IKEA
LACK table requests help using natural language. A
vague request such as “Help me” is challenging for a
person to understand. Instead, this paper presents
an approach for generating targeted requests such
as “Please hand me the black table leg.”

a robot recover. When the human is familiar with the robot
and its task as well as its common failure modes, they can of-
ten provide this help without an explicit request. However,
if a person is unfamiliar with the robotic system and not
knowledgeable about its capabilities and limitations, they
might not know how to help the robot recover from a fail-
ure. This situation will occur frequently when robots in-
teract with untrained users in the home. Moreover, even
trained users who are deeply familiar with the robot’s capa-
bilities may experience problems during times of high cog-
nitive load, such as a human supervising a large team of
robots on a factory floor.

To address these problems, we propose an alternative ap-
proach to recovering from the inevitable failures which occur
when robots execute complex tasks in real-world environ-
ments: when the robot encounters failure, it verbally re-
quests help from a human partner. After receiving help, it
continues executing the task autonomously. The contribu-
tion of our paper is a family of algorithms for formulating
the pithiest unambiguous natural language request so that
a human not otherwise cognitively engaged can render ap-
propriate aid.

Our algorithm generates natural language requests for
help by searching for an utterance that maximizes the proba-
bility of a correspondence between the words in the language
and the action the robot desires the human to perform, mak-
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Figure 2: During autonomous assembly, circumstances occasionally arise that the robot cannot correct. When
the arrangement of parts does not permit the robot to reach its target, it may request human assistance (a).
After this brief human intervention (b), autonomous operation resumes (c).

ing use of the G3 (Generalized Grounding Graph) model
of a person’s language understanding faculty [Tellex et al.,
2011]. When understanding language, the G3 framework
maps from linguistic symbols to low-level motor actions and
perceptual features that the robot encounters in the envi-
ronment. In this paper, we invert the model, mapping from
a desired low-level motor action that the robot would like
the human to execute to a symbolic linguistic description.
By modeling the probability of a human misinterpreting the
request, the robot is able to generate targeted requests that
humans follow more quickly and accurately compared to
baselines involving either generic requests (e.g., “Help me”)
or template-based non-context-specific requests.

As a test domain, we focus on a human-robot team as-
sembling pieces of IKEA furniture, shown in Figure 1. We
evaluate our approach using a corpus-based evaluation with
Amazon Mechanical Turk as well as a user study. The
corpus-based approach allows us to efficiently test the per-
formance of different algorithms and baselines. The user
study assesses whether we have met our engineering goals
in the context of an end-to-end system. Our evaluation
demonstrates that the inverse semantics language genera-
tion system improves the speed and accuracy of a human’s
intervention when a human-robot team is engaged in a furni-
ture assembly task and also improves the human’s subjective
perception of their robotic teammates.

2. RELATED WORK
Traditional methods for generating language rely on a

dedicated language-generation system that is not integrated
with a language-understanding framework [Jurafsky and Mar-
tin, 2008, Reiter and Dale, 2000]. These approaches typically
consist of a sentence planner combined with a surface real-
izer to guide decision making of what to say, but contain no
principled model of how an instruction-follower would com-
prehend the instruction [Striegnitz et al., 2011, Garoufi and
Koller, 2011, Chen and Mooney, 2011]. Our approach dif-
fers in that it generates by inverting a module for language
understanding.

Some previous work has approached the generation prob-
lem by inverting a semantics model. Golland et al. [2010] use
a game-theoretic approach combined with a semantics model
to generate referring expressions. Our approach, in contrast,
uses probabilistic grounded semantics yielding emergent bi-
ases towards shorter sentences unless a longer, more descrip-
tive utterance is unambiguous. Goodman and Stuhlmüller
[2013] describes a rational speech-act theory of language un-
derstanding, where the speaker chooses actions that max-

imize expected global utility. Similarly, recent work has
used Dec-POMDPs to model implicatures and pragmatics
in language-using agents [Vogel et al., 2013a,b] but with-
out focusing on grounded, situated language as in this pa-
per. There is a deep connection between our models and
the notion of legibility and predictability for grasping, as
defined by Dragan and Srinivasa [2013]. Roy [2002] presents
an algorithm for generating referring expressions in a two-
dimensional geometric scene which uses an ambiguity score
to assess the quality of candidate descriptions. Our algo-
rithm, in contrast, generates complete requests rather than
noun phrases and asks the listener to follow a complex re-
quest rather than simply selecting an object.

Our approach views the language generation problem as
inverse language understanding, building on the G3 approach
described by Tellex et al. [2011]. A large body of work
focuses on language understanding for robots [MacMahon
et al., 2006, Dzifcak et al., 2009, Kollar et al., 2010, Ma-
tuszek et al., 2012]. The G3 framework particularly lends
itself to inversion because it is a probabilistic framework
which explicitly models the mapping between words in lan-
guage and aspects of the external world, so metrics based
on entropy may be used to assess the quality of generated
utterances.

Cooperative human-robot activities, including assembly,
have been broadly studied [Wilson, 1995, Simmons et al.,
2007, Dorais et al., 1998, Fong et al., 2003]. These archi-
tectures permit various granularities of human intervention
through a sliding autonomy framework. A failure triggers
the replay of video of the events preceding failure, from
which the human must obtain situational awareness. In con-
trast, our approach leverages natural language to convey to
the user exactly how the problem should be resolved.

3. ASSEMBLING FURNITURE
Our assembly system comprises a team of KUKA youBots,

which collaborate to assemble pieces of IKEA furniture [Knep-
per et al., 2013]. A team of robots receives assembly in-
structions encoded in a STRIPS-style planning language. A
centralized executive takes as input the symbolic plan and
executes each plan step in sequence. Each symbolic action
corresponds to a manipulation or perception action to be
performed by one or two robots. To assemble the simple
LACK table, execution of the 48-step plan takes approxi-
mately ten minutes when no failures occur. In our experi-
ments, failures occurred at a rate of roughly one every two
minutes. Since perception is not a focus of this paper, we
employ a VICON motion capture system to track the loca-



function conditions satisfied(` – list of conditions)

1: q ←World state
2: for all c ∈ ` do
3: if c not satisfied in q then
4: a← generate remedy action(c) . See Section 3.2
5: generate help request(a) . See Section 4
6: while c not satisfied do
7: if time > 60 then . wait up to 60 seconds
8: return false
9: return true

function executive(g – goal state)

1: repeat
2: p← symbolic plan(g) . p – list of actions
3: f ← true . f – are we finished?
4: while p 6= ∅ do
5: s← p[0] . first plan step
6: if conditions satisfied(s.preconditions) then
7: s.execute()
8: if not conditions satisfied(s.postconditions) then
9: f ← false

10: else
11: f ← false

12: p.retire(s) . s succeeded; remove it from p

13: until f . no actions failed

Figure 3: A simple executive algorithm generates
robot actions and help requests.

tion of each participating robot, human and furniture part
during the assembly process. Thus the team is aware of the
steps to assemble the furniture. When the team detects a
failure, they request help using one of the approaches de-
scribed in Section 4. Figure 3 shows the algorithm used to
control the robots and request help.

3.1 Detecting Failures
To detect failures, the system compares the expected state

of the world to the actual state, as sensed by the perceptual
system (line 6 of the executive function). We represent
the state, q, as a vector of values for logical predicates. For
example, elements of the state for the IKEA LACK table
include whether the robot is holding each table leg, whether
the table is face-up or face-down, and whether each leg is
attached to the table. In the furniture assembly domain,
we compute the state using the tracked pose of every rigid
body known to a VICON system, including each furniture
part, each robot chassis and hand, and each human. The
VICON state, x ∈ Rn, is continuous and high-dimensional.
We implemented a function f that maps x onto the lower-
dimensional state vector q. The system recomputes q fre-
quently, since it may change independently of any deliber-
ate robot action, such as by human intervention or from an
unintended side-effect.

Prior to executing each action, the assembly executive ver-
ifies the action’s preconditions against q. Likewise, following
each action, the postconditions are verified. Any unsatisfied
condition indicates a failure and triggers the assembly ex-
ecutive to pause the assembly process and initiate error re-
covery. For example, the robot must be grasping a table leg
before screwing it into the hole. If it tries and fails to pick
up a leg, then the post-condition for the “pick up” action
will not be satisfied in q and detects a failure.

3.2 Recovery Strategy
When a failure occurs, its description takes the form of

an unsatisfied condition. The system then asks the human
for help to address the problem. The robot first computes
actions that, if taken, would resolve the failure and enable

it to continue assembling the piece autonomously. The sys-
tem computes these actions using a pre-specified model of
physical actions a person could take to rectify failed precon-
ditions. Remedy requests are expressed in a simple symbolic
language. This symbolic request, a, specifies the action that
the robot would like the person to take to help it recover
from failures. However these symbolic forms are not appro-
priate for speaking to an untrained user. In the following
section, we explore a series of approaches that take as in-
put the symbolic request for help and generate a language
expression asking a human for assistance.

4. ASKING FOR HELP FROM A HUMAN
PARTNER

Once the system computes a symbolic representation of
the desired action, a, it searches for words, Λ, which effec-
tively communicate this action to a person in the particular
environmental context, M , following line 5 of the condi-
tions_satisfied function. This section describes various
approaches to the generate_help_request function which
carries out this inference. Formally, we define a function h
to score possible sentences:

argmax
Λ

h(Λ, a,M) (1)

The specific function h used in Equation 1 will greatly
affect the results. We define three increasingly complex ap-
proaches for h which lead to more targeted natural language
requests for help by modeling the ability of the listener to un-
derstand it. The contribution of this paper is a definition for
h using inverse semantics. Forward semantics is the problem
of mapping between words in language and aspects of the
external world; the canonical problem is enabling a robot to
follow a person’s natural language commands [MacMahon
et al., 2006, Kollar et al., 2010, Tellex et al., 2011, Matuszek
et al., 2012]. Inverse semantics is the reverse: mapping be-
tween specific aspects of the external world (in this case, an
action that the robot would like the human to take) and
words in language. To apply this approach we use the G3

model of natural language semantics. Previously, we used
the G3 framework to endow the robot with the ability to
follow natural language commands given by people. In this
paper, instead, we use G3 as a model for a person’s ability
to follow natural language requests.

The inference process in Equation 1 is a search over pos-
sible sentences Λ. We define a space of sentences using a
context-free grammar (CFG). The inference procedure cre-
ates a grounding graph for each candidate sentence using
the parse structure derived from the CFG and then scores
it according to the function h.

4.1 Understanding Language
This section briefly describes the model for understanding

language; then the following sections describe how to invert
it. When understanding language, the G3 framework im-
poses a distribution over groundings in the external world,
γ1 . . . γN , given a natural language sentence Λ. Groundings
are the specific physical concepts that are referred to by the
language and can be objects (e.g., a table leg or a robot),
places (e.g., a particular location in the world), paths (e.g.,
a trajectory through the environment), or events (e.g., a
sequence of actions taken by the robot). Each grounding
corresponds to a particular constituent λi ∈ Λ. For ex-
ample, for a sentence such as “Pick up the table leg,” the



λ1

“Pick up”

γ1

φ1

λ2

“the table leg.”

φ2

γ2

Figure 4: Grounding graph for the request, “Pick
up the table leg.” Random variables and edges are
created in the graphical model for each constituent
in the parse tree. The λ variables correspond to lan-
guage; the γ variables correspond to groundings in
the external world. Edges in the graph are created
according to the parse structure of the sentence.

grounding for the phrase “the table leg” corresponds to an
actual table leg in the external world, and the grounding for
the entire sentence corresponds to the actions of a person as
they follow the request. Understanding a sentence in the G3

framework amounts to the following inference problem:

argmax
γ1...γN

p(γ1 . . . γN |Λ,M) (2)

The environment model M consists of the robot’s loca-
tion along with the locations and geometries of objects in
the external world. The computed environment model de-
fines a space of possible values for the grounding variables,
γ1 . . . γN . A robot computes the environment model using
sensor input; in the domain of furniture assembly, the system
creates the environment model using input from VICON.

To factor the model, we introduce a correspondence vec-
tor, Φ, as in Tellex et al. [2011]. Each entry φi ∈ Φ corre-
sponds to whether linguistic constituent λi ∈ Λ corresponds
to the groundings associated with that constituent. For ex-
ample, the correspondence variable would be True for the
phrase “the white table leg” and a grounding of a white leg,
and False if the grounding was a different object, such as a
black table top. We assume that γ1 . . . γN are independent
of Λ unless Φ is known. Introducing Φ enables factorization
according to the structure of language with local normal-
ization at each factor over a space of just the two possible
values for φi.

The optimization then becomes:

argmax
γ1...γN

p(Φ|Λ, γ1 . . . γN ,M) (3)

We factor the expression according to the compositional
syntactic structure of the language Λ.

argmax
γ1...γN

∏
i

p(φi|λi, γi1 . . . γik ,M) (4)

This factorization can be represented as a directed graph-
ical model where random variables and edges in the model
are created according to the structure of the language. We
refer to one of these graphical models as a grounding graph.
Figure 4 shows an example graphical model; the details of
the factorization are described by Tellex et al. [2011].

4.2 Speaking by Reflex

The simplest approach from the assembly executive’s per-
spective is to delegate diagnosis and solution of the problem
to the human with the simple fixed request, Λ = “Help me.”
This algorithm takes into account neither the environment
or the listener when choosing what to say. We refer to this
algorithm as S0.

4.3 Speaking by Modeling the Environment
Next, we describe a more complex model for speaking,

that takes into an account a model of the environment, but
not a model of the listener. We compute this model using
the G3 framework. The system converts the symbolic action
request a to a value for the grounding variable, γa ∈ Γ. This
variable, γa, corresponds to the entire sentence; we refer to
the value of γa as γ∗a . It then searches for the most likely
sentence Λ according to the semantics model. Equation 1
becomes:

argmax
Λ

h(Λ, γ∗a ,M) (5)

To speak using a model of the environment, the robot
searches for language that best matches the action that the
robot would like the human to take. It does not consider
other actions or groundings in any way when making this
determination. Formally:

h(Λ, γ∗a ,M) = max
Γ|γa=γ∗a

p(Λ|Γ,M) (6)

With the correspondence variable, this function is equivalent
to:

h(Λ, γ∗a ,M) = max
Γ|γa=γ∗a

p(Φ|Λ,Γ,M) (7)

We refer to this metric as S1 because the speaker does
not model the behavior of the listener at all, but simply
tries to say something that matches the desired action γ∗a in
the environment with high confidence.

4.4 Speaking by Modeling the Listener and
the Environment

The previous S1 metric scores shorter, ambiguous phrases
more highly than longer, more descriptive phrases. For ex-
ample, “the white leg” will always have a higher score than
“the white leg on the black table” because the corresponding
grounding graph for the longer sentence is identical to the
shorter one except for an additional factor, which causes the
overall probability for the more complex graph to be lower
(or at most equal). However, suppose the robot team needs
a specific leg; for example, in Figure 5, the robots might
need specifically the leg that is on the black table. In this
case, if the robot says “Hand me the white leg,” the person
will not know which leg to give to the robot because there
are several legs in the environment. If the robot instead said,
“Please hand me the white leg that is on the black table,”
then the person will know which leg to give to the robot.

To address this problem, we augment our robot with a
model of the listener’s ability to understand a request in
the particular environment. More specifically, rather than
simply maximizing the probability of the action given the
request, we minimize the uncertainty a listener would expe-
rience when using the G3 model to interpret the request.We
refer to this metric as S2 because it includes a model of
the listener’s uncertainty in its computation. The S2 met-
ric measures the probability that the listener will correctly



understand the requested action γ∗a :

h(Λ, γ∗a ,M) = p(γa = γ∗a |Φ,Λ,M) (8)

To compute this metric, we marginalize over values of Γ,
where γa = γ∗a :

h(Λ, γ∗a ,M) =
∑

Γ|γa=γ∗a

p(Γ|Φ,Λ,M) (9)

We factor the model with Bayes’ rule:

h(Λ, γ∗a ,M) =
∑

Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)

p(Φ|Λ,M)
(10)

We rewrite the denominator as a marginalization and con-
ditional distribution on Γ′:

h(Λ, γ∗a ,M) =
∑

Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)p(Γ′|Λ,M)

(11)

The denominator is constant so we can move the summation
to the numerator:

h(Λ, γ∗a ,M) =

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)p(Γ|Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)p(Γ′|Λ,M)

(12)

Next we assume that p(Γ|Λ,M) is constant, K, for all Γ, so
it can move outside the summation. This term is constant
because Γ and Λ are independent when we do not know Φ:

h(Λ, γ∗a ,M) =
K ×

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)

K ×
∑

Γ′ p(Φ|Γ′,Λ,M)
(13)

The constant K cancels, yielding:

h(Λ, γ∗a ,M) =

∑
Γ|γa=γ∗a

p(Φ|Γ,Λ,M)∑
Γ′ p(Φ|Γ′,Λ,M)

(14)

This equation expresses the S2 metric. It finds a sentence,
Λ, that minimizes the entropy of the distribution over γa
given Λ by modeling the ability of the listener to under-
stand the language. Specifically, note that computing the
denominator of Equation 14 is equivalent to the problem of
understanding the language in the particular environment
because the system must assess the mapping between the
language Λ and the groundings Γ′ for all possible values for
the groundings. In our implementation we use the G3 frame-
work to compute an approximation for this term. In prac-
tice, the inference step is expensive, so we limit the overall
number of language candidates to the top 10 most confi-
dent, as in our previous work of following natural language
commands [Tellex et al., 2011].

4.5 Training
To train the model, we collected a new dataset of natu-

ral language requests given by a human to another human
in the furniture assembly domain. We created twenty-one
videos of a person executing a task involved in assembling
a piece of furniture. For example, one video shows a per-
son screwing a table leg into a table, and another shows a
person handing a table leg to a second person. The people
and objects in the video are tracked with VICON, so each
video has an associated context consisting of the locations,
geometries, and trajectories of the people and objects. We

“Help me” (S0) “Help me.”
Templates “Please hand me part 2.”
G3 S1 “Give me the white leg.”

G3 S2
“Give me the white leg that is on the
black table.”

Hand-written Request
“Take the table leg that is on the table
and place it in the robot’s hand.”

Figure 5: Scene from our dataset and the requests
generated by each approach.

asked annotators on Amazon Mechanical Turk to view the
videos and write a natural language request they would give
to ask one of the people to carry out the action depicted in
the video. Then we annotated requests in the video with
associated groundings in the VICON data. The corpus con-
tains 326 requests with a total of 3279 words. In addition
we generated additional positive and negative examples for
the specific words in our context-free grammar.

4.6 Template Baseline
As a baseline, we implemented a template-based algo-

rithm with a lookup table of requests given to a human
helper, similar to the approach of Fong et al. [2003] among
others. These generic requests take the following form:

• “Place part 2 where I can see it,”

• “Hand me part 2,” and

• “Attach part 2 at location 1 on part 5.” (i.e. screw in
a table leg)

Note that the use of first person in these expressions refers
to the robot. Since VICON does not possess any semantic
qualities of the parts, they are referred to generically by
part identifier numbers. Such templates can be effective in
simple situations, where the human can infer the part from
the context. However, the ambiguity can become hard to
track. At best, the programmer could encode a look-up
table of semantic descriptors, such as “white leg” instead of
“part 2,” but even in this case, the template baseline can be
expected to falter in complex situations with multiple white
legs.

5. EVALUATION
The goal of our evaluation was to assess whether our al-

gorithms increase the effectiveness of a person’s help, or in
other words, to enable them to more quickly and accurately
provide help to the robot. To evaluate whether our algo-
rithms enable a human to accurately provide help compared
to baselines, we use an online corpus-based evaluation. In
addition we conducted a user study to assess whether our



Table 1: Fraction of Correctly Followed Requests

Metric % Success 95% Confidence

Chance 20.0
“Help me” Baseline (S0) 21.0 ±8.0
Template Baseline 47.0 ±5.7
G3 Inverse Semantics with S1 52.3 ±5.7
G3 Inverse Semantics with S2 64.3 ±5.4
Hand-Written Requests 94.0 ±4.7

leading algorithm improves the speed and accuracy of a per-
son’s help to a team of robots engaged in a real-world as-
sembly task.

5.1 Corpus-Based Evaluation
Our online evaluation used Amazon Mechanical Turk (AMT)

to measure whether people could use generated help requests
to infer the action that the robot was asking them to per-
form. We presented a worker on AMT with a picture of
a scene, showing a robot, a person, and various pieces of
furniture, together with the text of the robot’s request for
help. Figure 5 shows an example initial scene, with several
different requests for help generated by different algorithms,
all asking the human to carry out the same action. Next, we
asked the worker to choose an action that they would take
that best corresponds to the natural language request. Since
the worker was not physically in the scene and could not di-
rectly help the robot, we instead showed them videos of a
human taking various actions in the scene and asked them
to choose the video that best matched the request for help.
We chose actions to film based on actions that would re-
cover from typical failures that the robots might encounter.
A trial consists of a worker viewing an initial scene paired
with a request for help and choosing a corresponding video.

We created a dataset consisting of twenty trials by con-
structing four different initial scenes and filming an actor
taking five different actions in each scene. For each trial we
generated requests for help using five different methods. We
present results for the four automatic methods described in
Section 4, as well as a baseline consisting of hand-written re-
quests which we created by experimentation on AMT to be
clear and unambiguous. For the “help me” and hand-written
baselines, we issued each of the twenty generated requests
to five subjects, for a total of 100 trials. We issued each
request in the template and G3 approaches to fifteen users
for a total of 300 trials. Results appear in Table 1.

Our results show that the “Help me” baseline performs at
chance, whereas the template baseline and the G3 inverse
semantics model both improved performance significantly.
The S1 model may have improved performance over the tem-
plate baseline, but these results do not rise to the level of
statistical significance. The S2 model, however, realizes a
significant improvement, p = 0.002 by Student’s t-test, due
to its more specific requests, which model the uncertainty
of the listener. These results demonstrate that our model
successfully generates help requests for many conditions.

5.2 User Study
In our experiment, humans and robots collaborated to

assemble pieces of IKEA furniture. The study split 16 par-
ticipants into two conditions, using a between-subjects de-
sign, with 8 subjects in each condition. In the baseline
condition, robots requested help with the S0 approach, us-

Figure 7: Initial configuration for the user study.
The user is seated behind the whiteboard in the
background.

ing only the words “Please help me.” In the test condi-
tion, robots requested help using the S2 inverse semantics
metric. Our goal was to assess whether our system meets
our engineering goals: for a user with limited situational
awareness, the end-to-end human/robot furniture assembly
system would show increased effectiveness when generating
requests using the inverse semantics metric (S2) compared
to the “help me” metric (S0). The accompanying video is
online at http://youtu.be/2Ts0W4SiOfs.

We measure effectiveness by a combination of objective
and subjective measures. The objective measures are most
important, as they directly indicate the ability of our ap-
proach to improve effectiveness of the complete human-robot
team. We report two objective measures: efficiency – the
elapsed time per help request, and accuracy – the number
of error-free user interventions. Taken together, these mea-
sures show how effectively the human’s time is being used by
the robots. We also report two subjective measures derived
from a post-trial survey, as well as our observations of the
subjects and their own written feedback about the system,
to gain an understanding of their view of the strengths and
weaknesses of our approach.

5.2.1 Procedure
Subjects in each condition were gender-balanced and had

no significant difference in experience with robots or furni-
ture assembly. To familiarize users with the robot’s capa-
bilities, we gave them a list of actions that might help the
robots. During preliminary trials, subjects had problems
when handing parts to the robot (called a hand-off), so we
demonstrated this task and then gave each user the oppor-
tunity to practice. The entire instruction period lasted less
than five minutes, including the demonstration. During the
experiment, we instructed users to focus on a different as-
sembly task and only help the robots when requested.

For each subject, the robot team started from the same
initial conditions, shown in Figure 7. Some failures were in-
evitable given the initial conditions (e.g., a table top turned
upside down; a part on a table out of the robots’ reach.)
Other failures happened naturally (e.g., a table leg that
slipped out of a robot’s gripper.) When a failure occurred
during assembly, the robot team first addressed the person
by saying, “Excuse me.” Next, the system generated and
spoke a request for help through an on-board speaker and
also projected it on a large screen to remove dependence



Take the table leg that is on the table and

place it in the robot’s hand.

Take the table leg that is under the table

and place it in the robot’s hand.

Take the table leg that is next to the

table and place it in the robot’s hand.

Pick up the table leg that is on the table

and hold it.

Take the table leg that is on the table and

place it on the floor in front of the

robot.

(a)

Screw the white table leg into the hole in

the table top.

Screw the black table leg into the hole in

the table top.

Take the white table leg and insert it in

the hole, but do not screw it in.

Move the white table leg over near the

table top.

Take the table top and place it near the

white table leg on the floor.

(b)

Take the white table leg that is next to

the table and put it in front of the

robot.

Take the black table leg that is next to

the table and put it in front of the

robot.

Take the black table leg that is far away

from the table and put it in front of

the robot.

Take the white table leg that is on top of

the table and place it in the robot’s

hand.

Pick up the white table leg next to the

table and hold it.

(c)

Take the white table, flip it over, and set

it down in place.

Take the black table, flip it over, and set

it down in place.

Take the white table and move it near the

robot, keeping it upside-down.

Pick up the white table and hold it.

Take the white table, flip it over, and put

it in the robot’s hand.

(d)

Figure 6: The four initial scenes from the evaluation dataset, together with the hand-written help requests
used in our evaluation.

on understanding synthesized speech. Finally, the human
intervened in whatever way they felt was most appropriate.

After communicating a help request, the robots waited up
to 60 seconds for the user to provide help, while monitoring
whether the precondition that triggered the failure had been
satisfied. If the the environment changed in a way that
satisfied the request, the robot said “Thank you, I’ll take
it from here,” and we counted the person’s intervention as
successful. In cases where the allotted time elapsed, the
robot instead said “Never mind, I’ll take it from here,” and
moved on to a different part of the assembly process. These
instances were recorded as failed interventions. For each
intervention, we recorded the time elapsed and number of
actions the human took in attempting to solve the problem.

Each trial ran for fifteen minutes. Although we tried to
limit experimenter intervention, there were several problems
with the robotic assembly system that required expert assis-
tance. Experimenters intervened when either of two situa-
tions arose: potential damage to the hardware (19 times), or
an infinite loop in legacy software (15 times). In addition,
software running on the robots crashed and needed to be
restarted 5 times. In the future, we plan to address these is-
sues using methods for directing requests to the person most
likely to satisfy them, rather than only targeting requests at
untrained users.

5.2.2 Results and Discussion
Over the course of the study, the robots made 102 help

requests, of which 76 were satisfied successfully within the
60-second time limit. The most common request type was
the hand-off, comprising 50 requests. For the non-hand-off
requests, we observed a significant improvement in inter-
vention time for the test condition (25.1 sec) compared to
baseline (33.3 sec) with p = 0.092 by t-test. For hand-off
requests, differences in elapsed time between the two condi-
tions did not rise above the level of statistical significance.
After observing the trials, we noticed that subjects found it
difficult to successfully hand a part to the robot, despite our
initial training.

To assess accuracy of interventions, we observed the initial
action attempted for each intervention and whether it was
the action desired by the robot. In ambiguous situations, the
user often tried one or more methods of helping the robot

before arriving at the correct solution or running out of time.
For the baseline“Help me”case, the user led with the correct
action in 57.1% of interventions, compared to 77.6% for the
test method, p = 0.039 by t-test. This difference indicates
that the inverse semantics method enabled the robot to more
successfully communicate its needs to the human compared
to the baseline, thus enabling the person to efficiently and
effectively aid the robot.

We observed a difference in a third objective measure,
the overall success rate, although the difference failed to
reach statistical significance. Baseline condition users satis-
fied 70.3% of the robot’s requests within 60 seconds, whereas
80% of inverse semantics requests did so, p = 0.174 by t-test.
Many users failed to successfully help the robot due to the
difficulty of handoffs or due to other issues in the robotic
system, pointing to the many non-linguistic factors affect-
ing the success of our system.

We also report two subjective measures derived from a
post-trial survey. We asked users to score the robot’s ef-
fectiveness at communicating its needs on a 5-point Likert
scale. Users found the natural language condition much
more effective than the baseline condition with a signifi-
cance of p = 0.001 by Kruskal-Wallis test. Second, we asked
whether users felt more effective working with the robots on
two assembly tasks at once, or working alone on one kit at
a time. Users preferred parallelism significantly more in the
natural language condition than in the baseline condition,
with a significance of p = 0.056 by Kruskal-Wallis test.

Together, these results show that the inverse semantics
method often improved the speed and accuracy of human
subjects as they provided help to the robot team. Moreover,
our subjective results show that humans felt that the robots
were more effective at communicating when they used the
inverse semantics system and that they were more effective
when working with the robotic team. Qualitatively, subjects
preferred the language generation system; Figure 8 shows
comments from participants in the study in each condition:
even when users successfully helped the robots in the base-
line condition, they frequently complained that they did not
know what the robot was asking for.

Despite these promising successes, important limitations
remain. A significant problem arose from the ability of the
robots’ to accept handoffs from minimally trained human



“Help me” Baseline

“I think if the robot was clearer or I saw it assemble the desk before, I
would know more about what it was asking me.”

“Did not really feel like ‘working together as a team’ – For more com-
plex furniture it would be more efficient for robot to say what action the human
should do?”

“The difficulty is not so much working together but the robots not being
able to communicate the actual problem they have. Also it is unclear which
ones of the robots has the problem.”

G3 Inverse Semantics with S2

“More fun than working alone.”

“I was focused on my own task but could hear the robot when it needed
help.... However, I like the idea of having a robot help you multitask.”

“There was a sense of being much more productive than I would have
been on my own.”

Figure 8: Comments from participants in our study.

users. Our results suggest that improving the nonverbal
communication that happens during handoff would signifi-
cantly improve the overall effectiveness of our system. Sec-
ond, a significant limitation of the overall system was the
frequent intervention by the experimenters to deal with un-
expected failures. Both of these conditions might be mod-
ified by a more nuanced model of the help that a human
teammate could provide. For example, if the robots could
predict that handoffs are challenging for people to success-
fully complete, they might ask for a different action, such as
to place the part on the ground near the robot. Similarly, if
the robots were able to model the ability of different people
to provide targeted help, they might direct some requests to
untrained users, and other requests to“level 2” tech support.
The different types of interventions provided by the exper-
imenters compared to the subjects points to a need for the
robots to model specific types of help that different people
can provide, as in Rosenthal et al. [2011].

5.3 Conclusion
The goal of our evaluation was to assess the effective-

ness of various approaches for generating requests for help.
The corpus-based evaluation compares the inverse semantics
method to several baselines in an online evaluation, demon-
strating that the inverse semantics algorithm significantly
improves the accuracy of a human’s response to a natural
language request for help compared to baselines. Our end-
to-end evaluation demonstrates that this improvement can
be realized in the context of a real-world robotic team in-
teracting with minimally trained human users. This work
represents a step toward the goal of mixed-initiative human-
robot cooperative assembly.

Our end-to-end evaluation highlights the strength of the
system, but also its weakness. Robots used a single model
for a person’s ability to act in the environment; in reality, dif-
ferent people have different abilities and willingness to help
the robot. Second, because the robots spoke to people, re-
questing help, some subjects responded by asking clarifying
questions. Developing a dialog system capable of answering
questions from people in real time could provide disambigua-
tion when people fail to understand the robot’s request. As
we move from robot-initiated to mixed-initiative communi-
cation, the reliance on common ground and context increases
significantly. Since our models can be expected to remain
imperfect, the demand for unambiguous sentences becomes
less satisfiable. In the long term, we aim to develop robots
with increased task-robustness in a variety of domains by

leveraging the ability and willingness of human partners to
assist robots in recovering from a wide variety of failures.
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