
Introduction to Computational Linguistics

Eugene Charniak and Mark Johnson

2

DRAFT of 7 July, 2013, page 2

Contents

1 Language modeling and probability 7

1.1 Introduction . 7
1.2 A Brief Introduction to Probability 8

1.2.1 Outcomes, Events and Probabilities 8
1.2.2 Random Variables and Joint Probabilities 9
1.2.3 Conditional and marginal probabilities 10
1.2.4 Independence . 12
1.2.5 Expectations of random variable 13

1.3 Modeling documents with unigrams 14
1.3.1 Documents as sequences of words 14
1.3.2 Language models as models of possible documents . . . 15
1.3.3 Unigram language models 16
1.3.4 Maximum likelihood estimates of unigram parameters . 17
1.3.5 Sparse-data problems and smoothing 19
1.3.6 Estimating the smoothing parameters 22

1.4 Contextual dependencies and n-grams 24
1.4.1 Bigram language models 25
1.4.2 Estimating the bigram parameters Θ 28
1.4.3 Implementing n-gram language models 30
1.4.4 Kneser-Ney Smoothing 31
1.4.5 The noisy channel model 34

1.5 Exercises . 35
1.6 Programming problem . 36
1.7 Further Reading . 37

2 Machine Translation 39

2.1 The fundamental theorem of MT 40
2.2 The IBM Model 1 noisy-channel model 42

3

4 CONTENTS

2.2.1 Estimating IBM model 1 parameters with EM 47
2.2.2 An extended example 53
2.2.3 The mathematics of IBM 1 EM 54

2.3 IBM model 2 . 57
2.4 Phrasal machine translation 61
2.5 Decoding . 63

2.5.1 Really dumb decoding 64
2.5.2 IBM model 2 decoding 66

2.6 Exercises . 69
2.7 Programming problems . 71
2.8 Further reading . 73

3 Sequence Labeling and HMMs 75

3.1 Introduction . 75
3.2 Hidden Markov models . 76
3.3 Most likely labels and Viterbi decoding 80
3.4 Finding sequence probabilities with HMMs 86
3.5 Backward probabilities . 89
3.6 Estimating HMM parameters 92

3.6.1 HMM parameters from visible data 92
3.6.2 HMM parameters from hidden data 93
3.6.3 The forward-backward algorithm 94
3.6.4 The EM algorithm for estimating an HMM 97
3.6.5 Implementing the EM algorithm for HMMs 97

3.7 MT parameters from forward-backward 98
3.8 Smoothing with HMMs . 100
3.9 Part-of-speech induction . 103
3.10 Exercises . 106
3.11 Programming problems . 106
3.12 Further reading . 107

4 Parsing and PCFGs 109

4.1 Introduction . 109
4.1.1 Phrase-structure trees 109
4.1.2 Dependency trees . 111

4.2 Probabilistic context-free grammars 113
4.2.1 Languages and grammars 113
4.2.2 Context-free grammars 114

DRAFT of 7 July, 2013, page 4

CONTENTS 5

4.2.3 Probabilistic context-free grammars 116
4.2.4 HMMs as a kind of PCFG 118
4.2.5 Binarization of PCFGs 120

4.3 Parsing with PCFGs . 122
4.4 Estimating PCFGs . 127

4.4.1 Estimating PCFGs from parse trees 128
4.4.2 Estimating PCFGs from strings 128
4.4.3 The inside-outside algorithm for CNF PCFGs 129
4.4.4 The inside-outside algorithm for binarized grammars . 133

4.5 Scoring Parsers . 134
4.6 Estimating better grammars from treebanks 137
4.7 Programming A Parser . 139
4.8 Exercises . 141
4.9 Programming Assignment . 142

5 Topic Modeling and PLSA 143

5.1 Topic Modeling . 143
5.2 Probabilistic Latent Semantic Analysis 144
5.3 Learning PLSA parameters . 147
5.4 Programming assignment . 148

DRAFT of 7 July, 2013, page 5

6 CONTENTS

DRAFT of 7 July, 2013, page 6

Chapter 1

Language modeling and

probability

1.1 Introduction

Which of the following is a reasonable English sentence: ‘I bought a rose’ or
‘I bought arose’1?

Of course the question is rhetorical. Anyone reading this text must have
sufficient mastery of English to recognize that the first is good English while
the second is not. Even so, when spoken the two sound the same, so a
computer dictation system or speech-recognition system would have a hard
time distinguishing them by sound alone. Consequently such systems employ
a language model, which distinguishes the fluent (i.e., what a native English
speaker would say) phrases and sentences of a particular natural language
such as English from the multitude of possible sequences of words.

Virtually all methods for language modeling are probabilistic in nature.
That is, instead of making a categorical (yes-or-no) judgment about the
fluency of a sequence of words, they return (an estimate of) the probability of
the sequence. The probability of a sequence is a real number between 0 and 1,
and high-probability sequences are more likely to occur than low-probability
ones. Thus a model that estimates the probability that a sequence of words
is a phrase or sentence permits us to rank different sequences in terms of
their fluency; it can answer the question with which we started this chapter.

In fact, probabilistic methods are pervasive in modern computational lin-

1 c©Eugene Charniak, Mark Johnson 2013

7

8 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

guistics, and all the major topics discussed in this book involve probabilistic
models of some kind or other. Thus a basic knowledge of probability and
statistics is essential and one of the goals of this chapter is to provide a basic
introduction to them. In fact, the probabilistic methods used in the language
models we describe here are simpler than most, which is why we begin this
book with them.

1.2 A Brief Introduction to Probability

Take a page or two from this book, cut them into strips each with exactly
one word, and dump them into an urn. (If you prefer you can use a trash
can, but for some reason all books on probability use urns.) Now pull out a
strip of paper. How likely is it that the word you get is ‘the’? To make this
more precise, what is the probability that the word is ‘the’?

1.2.1 Outcomes, Events and Probabilities

To make this still more precise, suppose the urn contains 1000 strips of
paper. These 1000 strips constitute the sample space or the set of all possible
outcomes, which is usually denoted by Ω (the Greek letter omega). In discrete
sample spaces such as this, each sample x ∈ Ω is assigned a probability P(x),
which is a real number that indicates how likely each sample is to occur. If
we assume that we are equally likely to choose any of the strips in the urn,
then P(x) = 0.001 for all x ∈ Ω. In general, we require that the probabilities
of the samples satisfy the following constraints:

1. P(x) ∈ [0, 1] for all x ∈ Ω, i.e., probabilities are real numbers between 0
and 1, and

2.
∑

x∈Ω P(x) = 1, i.e., the probabilities of all samples sum to one.

Of course, many of these strips of paper have the same word. For example,
if the pages you cut up are written in English the word ‘the’ is likely to appear
on more than 50 of your strips of paper. The 1000 strips of paper each
correspond to a different word token or occurrence of a word in the urn, so
the urn contains 1000 word tokens. But because many of these strips contain
the same word, the number of word types (i.e., distinct words) labeling these
strips is much smaller; our urn might contain only 250 word types.

DRAFT of 7 July, 2013, page 8

1.2. A BRIEF INTRODUCTION TO PROBABILITY 9

We can formalize the distinction between types and tokens by using the
notion of a random event. Formally, an event E is a set of samples, i.e.,
E ⊆ Ω, and the probability of an event is the sum of the probabilities of the
samples that constitute it:

P(E) =
∑

x∈E

P(x)

We can treat each word type as an event.

Example 1.1: Suppose Ethe is the event of drawing a strip labeled ‘the’, that
|Ethe| = 60 (i.e., there are 60 strips labeled ‘the’) and that P(x) = 0.001 for all
samples x ∈ Ω. Then P(Ethe) = 60× 0.0001 = 0.06.

1.2.2 Random Variables and Joint Probabilities

Random variables are a convenient method for specifying events. Formally, a
random variable is a function from the sample space Ω to some set of values.
For example, to capture the type-token distinction we might introduce a
random variable W that maps samples to the words that appear on them,
so that W (x) is the word labeling strip x ∈ Ω.

Given a random variable V and a value v, P(V=v) is the probability of
the event that V takes the value v, i.e.:

P(V=v) = P({x ∈ Ω : V (x) = v})

Notation: It is standard to capitalize random variables and use lower-cased
variables as their values.

Returning to our type-token example, P(W=‘the’) = 0.06. If the random
variable intended is clear from the context, sometimes we elide it and just
write its value, e.g., P(‘the’) abbreviates P(W=‘the’). Similarly, the value
of the random variable may be elided if it is unspecified or clear from the
context, e.g., P(W) abbreviates P(W=w) where w ranges over words.

Random variables are useful because they let us easily construct a variety
of complex events. For example, suppose F is the random variable mapping
each sample to the first letter of the word appearing in it and S is the random
variable mapping samples to their second letters (or the space character if
there is no second letter). Then P(F=‘t’) is the probability of the event in

DRAFT of 7 July, 2013, page 9

10 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

which the first letter is ‘t’ and P(S=‘h’) is the probability of the event in
which the second letter is ‘h’.

Given any two events E1 and E2, the probability of their conjunction
P(E1, E2) = P(E1 ∩ E2) is called the joint probability of E1 and E2; this is
the probability of E1 and E2 occurring simultaneously. Continuing with our
example, P(F=‘t’, S=‘h’) is the joint probability that the first letter is ‘t’
and that the second letter is ‘h’. Clearly, this must be at least as large as
P(‘the’).

1.2.3 Conditional and marginal probabilities

Now imagine temporarily moving all the strips whose first letter is ‘q’ into
a new urn. Clearly this new urn has a different distribution of words from
the old one; for example, P(F=‘q’) = 1 in the sample contained in the new
urn. The distributions of the other random variables change as well; if our
strips of paper contain only English words then P(S=‘u’) ≈ 1 in the new urn
(because ‘q’ is almost always followed by ‘u’ in English).

Conditional probabilities formalize this notion of temporarily setting the
sample set to a particular set. The conditional probability P(E2 | E1) is the
probability of event E2 given that event E1 has occurred. (You can think
of this as the probability of E2 given that E1 is the temporary sample set).
P(E2 | E1) is defined as:

P(E2 | E1) =
P(E1, E2)

P(E1)
if P(E1) > 0

and is undefined if P(E1) = 0. (If it is impossible for E1 to occur then it makes
no sense to speak of the probability of E2 given that E1 has occurred.) This
equation relates the conditional probability P(E2 | E1), the joint probability
P(E1, E2) and the marginal probability P(E1). (If there are several random
variables, then the probability of a random variable V on its own is sometimes
called the marginal probability of V , in order to distinguish it from joint and
conditional probabilities involving V .) The process of adding up the joint
probabilities to get the marginal probability is called marginalization.

Example 1.2: Suppose our urn contains 10 strips of paper (i.e., our sample space
Ω has 10 elements) that are labeled with four word types, and the frequency of

DRAFT of 7 July, 2013, page 10

1.2. A BRIEF INTRODUCTION TO PROBABILITY 11

each word is as follows:

word type frequency

‘nab’ 1
‘no’ 2
‘tap’ 3
‘tot’ 4

Let F and S be random variables that map each strip of paper (i.e., sample) to the
first and second letters that appear on them, as before. We start by computing
the marginal probability of each random variable:

P(F=‘n’) = 3/10

P(F=‘t’) = 7/10

P(S=‘a’) = 4/10

P(S=‘o’) = 6/10

Now let’s compute the joint probabilities of F and S:

P(F=‘n’, S=‘a’) = 1/10

P(F=‘n’, S=‘o’) = 2/10

P(F=‘t’, S=‘a’) = 3/10

P(F=‘t’, S=‘o’) = 4/10

Finally, let’s compute the conditional probabilities of F and S. There are two ways
to do this. If we condition on F we obtain the following conditional probabilities:

P(S=‘a’ | F=‘n’) = 1/3

P(S=‘o’ | F=‘n’) = 2/3

P(S=‘a’ | F=‘t’) = 3/7

P(S=‘o’ | F=‘t’) = 4/7

On the other hand, if we condition on S we obtain the following conditional prob-
abilities:

P(F=‘n’ | S=‘a’) = 1/4

P(F=‘t’ | S=‘a’) = 3/4

P(F=‘n’ | S=‘o’) = 2/6

P(F=‘t’ | S=‘o’) = 4/6

DRAFT of 7 July, 2013, page 11

12 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

Newcomers to probability sometimes have trouble distinguishing between
the conditional probabilities P(A | B) and P(B | A), seeing both as express-
ing a correlation between A and B. However, in general there is no reason
to think that they will be the same. In Example 1.2

P(S=‘a’ | F=‘n’) = 1/3

P(F=‘n’ | S=‘a’) = 1/4

The correct way to think about these is that the first says, “if we restrict
consideration to samples where the first letter is ‘n’, then the probability of
that the second letter is ‘a’ is 1/3.” However, if we restrict consideration to
those samples whose second letter is ‘a’, then the probability that the first
letter is ‘n’ is 1/4. To take a more extreme example, the probability of a
medical diagnosis D being “flu”, given the symptom S being “elevated body
temperature”, is small. In the world of patients with high temperatures,
most just have a cold, not the flu. But vice versa, the probability of high
temperature given flu is very large.

1.2.4 Independence

Notice that in the previous example, the marginal probability P(S=‘o’) of
the event S=‘o’ differs from its conditional probabilities P(S=‘o’ | F=‘n’)
and P(S=‘o’ | F=‘t’). This is because these conditional probabilities re-
strict attention to different sets of samples, and the distribution of second
letters S differs on these sets. Statistical dependence captures this interac-
tion. Informally, two events are dependent if the probability of one depends
on whether the other occurs; if there is no such interaction then the events
are independent.

Formally, we define independence as follows. Two events E1 and E2 are
independent if and only if

P(E1, E2) = P(E1) P(E2).

If P(E2) > 0 it is easy to show that this is equivalent to

P(E1 | E2) = P(E1)

which captures the informal definition of independence above.

DRAFT of 7 July, 2013, page 12

1.2. A BRIEF INTRODUCTION TO PROBABILITY 13

Two random variables V1 and V2 are independent if and only if all of the
events V1=v1 are independent of all of the events V2=v2 for all v1 and v2.
That is, V1 and V2 are independent if and only if:

P(V1, V2) = P(V1) P(V2)

or equivalently, if P(V2) > 0,

P(V1 | V2) = P(V1)

Example 1.3: The random variables F and S in Example 1.2 on page 10 are
dependent because P(F | S) 6= P(F). But if the urn contained only four strips
of paper showing ‘nab’, ‘no’, ‘tap’ and ‘tot’, then F and S would be independent
because P(F | S) = P(F) = 1/2, no matter what values F and S take.

1.2.5 Expectations of random variable

If a random variable X ranges over numerical values (say integers or reals),
then its expectation or expected value is just a weighted average of these
values, where the weight on value X is P(X). More precisely, the expected
value E[X] of a random variable X is

E[X] =
∑

x∈X

x P(X=x)

where X is the set of values that the random variable X ranges over. Condi-
tional expectations are defined in the same way as conditional probabilities,
namely by restricting attention to a particular conditioning event, so

E[X | Y=y] =
∑

x∈X

x P(X=x | Y=y)

Expectation is a linear operator, so if X1, . . . , Xn are random variables then

E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn]

Example 1.4: Suppose X is a random variable generated by throwing a fair
six-sided die. Then the expected value of X is

E[X] =
1

6
+

2

6
+ . . .+

6

6
= 3.5

Now suppose that X1 and X2 are random variables generated by throwing two fair
six-sided dice. Then the expected value of their sum is

E[X1 +X2] = E[X1] + E[X2] = 7

DRAFT of 7 July, 2013, page 13

14 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

In this book we frequently deal with the expectation of an event V , such
as that in some translation the English word ‘cat’ is translated to the French
word ‘chat.’ In this case the “value” of the event occurring is one, and thus
the expectation of how often the event occurs is simply the sum over each
member of the sample space (in our case each pair English word, French
word) of the probably of the event occurring. That is:

E[V] =
∑

x∈X

1 · P(X=x)

=
∑

x∈X

P(X=x)

1.3 Modeling documents with unigrams

Let’s think for a moment about language identification — determining the
language in which a document is written. For simplicity, let’s assume we
know ahead of time that the document is either English or French, and we
need only determine which; however the methods we use generalize to an
arbitrary number of languages. Further, assume that we have a corpus or
collection of documents we know are definitely English, and another corpus
of documents that we know are definitely French. How could we determine
if our unknown document is English or French?

If our unknown language document appeared in one of the two corpora
(one corpus, two corpora), then we could use that fact to make a reasonably
certain identification of its language. But this is extremely unlikely to occur;
there are just too many different documents.

1.3.1 Documents as sequences of words

The basic idea we pursue here is to sort the documents in each of the corpora
into smaller sequences and compare the pieces that occur in the unknown
language document with those that occur in each of the two known language
corpora.

It turns out that it is not too important what the pieces are, so long as
there is likely to be a reasonable overlap between the pieces that occur in the
unknown language document and the pieces that occur in the corresponding
corpus. We follow most work in computational linguistics and take the pieces

DRAFT of 7 July, 2013, page 14

1.3. MODELING DOCUMENTS WITH UNIGRAMS 15

to be words, but nothing really hinges on this (e.g., you can also take them
to be characters).

Thus, if W is the set of possible words then a document is a sequence
w = (w1, . . . , wn) where n (the length of the document) may vary and each
piece wi ∈ W . (Note that we generally use bold-faced symbols (e.g., w) to
denote vectors or sequences.)

A few technical issues need to be dealt with when working on real doc-
uments. Punctuation and typesetting information can either be ignored or
treated as pseudo-words (e.g., a punctuation symbol is regarded as a one-
character word). Exactly how to break up a text into words can also be
an issue: it is sometimes unclear whether something is one word or two:
for example, is ‘doesn’t’ a single word or is it ‘does’ followed by ‘n’t’? In
many applications it does not matter exactly what you do so long as you are
consistent.

It also often simplifies matters to assume that the set of possible words
is finite. We do so here. You might think this is reasonable — after all, a
dictionary seems to list all the words in a language — but if we count things
such as geographical locations and names (especially company and product
names) as words (and there’s no reason not to), then it is clear that new
words are being coined all the time.

A standard way to define a finite set of possible words is to collect all
the words appearing in your corpus and declare this set, together with a
novel symbol (say ‘∗U∗’, but any novel sequence of characters will do) called
the unknown word, to be the set of possible words. That is, if W0 is the
set of words that appear in your corpus, then the set of possible words is
W = W0 ∪ {∗U∗}. Then we preprocess every document by replacing every
word not in W0 with ‘∗U∗’. The result is a document in which every word
is a member of the finite set of possibilities W .

1.3.2 Language models as models of possible docu-

ments

Now we set about building our language models. Formally a language model is
a probability distribution over possible documents that specifies the probabil-
ity of that document in the language (as opposed to all the other documents
that one might encounter).

More specifically, let the sample space be the set of possible documents

DRAFT of 7 July, 2013, page 15

16 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

and introduce two random variables N and W , where W = (W1, . . . ,WN) is
the sequence of words in the document and N is its length (i.e., the number
of words). A language model is then just a probability distribution P(W).

But which one? Ideally we would like P(W) to be the “true” distribution
over documents W , but we don’t have access to this. (Indeed, it is not
clear that it even makes sense to talk of a “true” probability distribution
over English documents.) Instead, we assume we have a training corpus of
documents d that contains representative samples from P(W) and that we
use to learn P(W). We also assume that P(W) is defined by a specific
mathematical formula or model. This model has some adjustable or free
parameters θ, and by changing these we define different language models. We
use d to estimate or set the values of the parameters θ in such a way that the
resulting language model P(W) is (we hope) close to the true distribution
of documents in the language.

Notation: We designate model parameters with Greek letters. However, we
use Greek letters for other things as well. The meaning should always
be clear.

1.3.3 Unigram language models

Finding the best way to define a language model P(W) and to estimate its
parameters θ is still a major research topic in computational linguistics. In
this section we introduce an extremely simple class called unigram language
models. These are not especially good models of documents, but they can
often be good enough to perform simple tasks such as language identification.
(Indeed, one of lessons of computational linguistics is that a model doesn’t
always need to model everything in order to be able to solve many tasks
quite well. Figuring out which features are crucial to a task and which can
be ignored is a large part of computational linguistics research.)

A unigram language model assumes that each word Wi is generated in-
dependently of the other words. (The name “unigram” comes from the fact
that the model’s basic units are single words; in section 1.4.1 on page 25 we
see how to define bigram and trigram language models, whose basic units are
pairs and triples of words, respectively.) More precisely, a unigram language
model defines a distribution over documents as follows:

P(W) = P(N)
N∏

i=1

P(Wi) (1.1)

DRAFT of 7 July, 2013, page 16

1.3. MODELING DOCUMENTS WITH UNIGRAMS 17

where P(N) is a distribution over document lengths and P(Wi) is the prob-
ability of word Wi. You can read this formula as an instruction for gener-
ating a document W : first pick its length N from the distribution P(N)
and then independently generate each of its words Wi from the distribution
P(Wi). Models that can be understood as generating their data in this way
are called generative models. The “story” of how we generate a document
by first picking the length, etc., is called a generative story about how the
document could have been created.

A unigram model assumes that the probability of a word P(Wi) does not
depend on its position i in the document, i.e., P(Wi=w) = P(Wj=w) for
all i, j in 1, . . . , N . This means that all words are generated by the same
distribution over words, so we only have one distribution to learn. This
assumption is clearly false (why?), but it does make the unigram model
simple enough to be estimated from a modest amount of data.

We introduce a parameter θw for each word w ∈ W to specify the prob-
ability of w, i.e., P(Wi=w) = θw. (Since the probabilities of all words must
sum to one, it is necessary that the parameter vector θ satisfy

∑
w∈W θw = 1.)

This means that we can rewrite the unigram model (1.1) as follows:

P(W=w) = P(N)
N∏

i=1

θwi
. (1.2)

We have to solve two remaining problems before we have a fully specified
unigram language model. First, we have to determine the distribution P(N)
over document lengths N . Second, we have to find the values of the param-
eter vector θ that specifies the probability of the words. For our language
identification application we assume P(N) is the same for all languages, so
we can ignore it. (Why can we ignore it if it is the same for all languages?)

1.3.4 Maximum likelihood estimates of unigram pa-

rameters

We now turn to estimating the vector of parameters θ of a unigram language
model from a corpus of documents d. The field of statistics is concerned
with problems such as these. Statistics can be quite technical, and while we
believe every practicing computational linguist should have a thorough grasp
of the field, we don’t have space for anything more than a cursory discussion
here. Briefly, a statistic is a function of the data (usually one that describes

DRAFT of 7 July, 2013, page 17

18 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

or summarizes some aspect of the data) and an estimator for a parameter is a
statistic whose value is intended to approximate the value of that parameter.
(This last paragraph is for those of you who have always wondered where in
“probability and statistics” the first leaves off and the second begins.)

Returning to the problem at hand, there are a number of plausible es-
timators for θ, but since θw is the probability of generating word w, the
“obvious” estimator sets θw to the relative frequency of word w in the corpus
d. In more detail, we imagine that our corpus is one long sequence of words
(formed by concatenating all of our documents together) so we can treat d
as a vector. Then the maximum likelihood estimator sets θw to:

θ̂w =
nw(d)

n◦(d)
(1.3)

Notation: nw(d) is the number of times that word w occurs in d and
n◦(d) =

∑
w∈W nw(d) is the total number of words in d. More gener-

ally, ◦ as a subscript to n is always a count over all possibilities.

Notation: Maximum likelihood distributions are indicated by a “caret” over
the parameter name.

Example 1.5: Suppose we have a corpus size n◦(d) = 107. Consider two words,
‘the’ and ‘equilateral’ with counts 2·105 and 2, respectively. Their maximum like-
lihood estimates are 0.02 and 2·10−7.

We shall see there are good reasons not to use this estimator for a unigram
language model. But first we look more closely at its name — the maximum
likelihood estimator for θ.

The maximum likelihood principle is a general method for deriving esti-
mators for a wide class of models. The principle says: to estimate the value
of a parameter θ from data x, select the value θ̂ of θ that makes x as likely
as possible. In more detail, suppose we wish to estimate the parameter θ of
a probability distribution Pθ(X) given data x (i.e., x is the observed value
for X). Then the maximum likelihood estimate θ̂ of θ is value of θ that
maximizes the likelihood function Lx(θ) = Pθ(x). (The value of the likeli-
hood function is equal to the probability of the data, but in a probability
distribution the parameter θ is held fixed while the data x varies, while in the
likelihood function the data is fixed while the parameter is varied. To take
a more concrete example, imagine two computer programs. One, F(date),

DRAFT of 7 July, 2013, page 18

1.3. MODELING DOCUMENTS WITH UNIGRAMS 19

takes a date and returns the lead article in the New York Times for that
date. The second, G(newspaper), returns the lead article for June 2, 1946
for whatever newspaper is requested. These are very different programs, but
they both have the property that F(6.2.1946)=G(NYT).)

To get the maximum likelihood estimate of θ for the unigram model, we
need to calculate the probability of the training corpus d. It is not hard to
show that the likelihood function for the unigram model (1.2) is:

Ld(θ) =
∏

w∈W

θnw(d)
w

where nw(d) is the number of times word w appears in d, and we have
ignored the factor concerning the length of d because it does not involve θ

and therefore does not affect θ̂. To understand this formula, observe that it
contains a factor θw for each occurrence of word w in d.

You can show using multivariate calculus that the θ̂ that simultaneously
maximizes LD and satisfies

∑
w∈W θw = 1 is nothing other than the relative

frequencies of each w, as given in (1.3).

Example 1.6: Consider the “document” (we call it ♥) consisting of the phrase
‘I love you’ one hundred times in succession:

L♥(θ) = (θi)
ni(♥)·(θlove)

nlove(♥)·(θyou)
nyou(♥)

= (θi)
100·(θlove)

100·(θyou)
100

The θws in turn are all 100/300=1/3, so

L♥(θ) = (1/3)100·(1/3)100·(1/3)100

= (1/3)300

1.3.5 Sparse-data problems and smoothing

Returning to our example of language models for language identification,
recall that our unknown document is very likely to contain words that don’t
occur in either our English or French corpora. It is easy to see that if w is
a word that does not appear in our corpus d then the maximum likelihood
estimate θ̂w = 0, as nw(d) = 0. And this, together with Equation 1.2 on
page 17, means that P(w) = 0 if the document w contains an unknown
word.

DRAFT of 7 July, 2013, page 19

20 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

To put this another way, in Section 1.3.1 we said that we would define
W , our vocabulary, as all the words in our training data plus ∗U∗. By defi-
nition, ∗U∗ does not appear in our training data, so the maximum likelihood
estimate assigns it zero probability.

This is fatal in many applications, including our language identification
task. Just because a word does not appear in our corpus d does not mean it
cannot appear in the documents we want to classify. This is what is called
a sparse-data problem: our training data d does not have the exact range of
phenomena found in the documents we ultimately intend to analyze. And the
problem is more general than unknown words: it turns out that maximum
likelihood estimates θ̂ have a tendency for over-fitting, i.e., modeling the
training data d accurately but not describing novel data well at all. More
specifically, maximum likelihood estimators select θ to make the training
data d as likely as possible, but for our language classification application
we really want something else: namely, to make all the other documents we
haven’t yet seen from the same language as d as likely as possible.

The standard way to address over-fitting is by smoothing. If you think of
a probability function as a landscape with peaks and valleys, smoothing is a
kind of Robin-Hood process that steals mass from the rich peaks and gives
it to the poor valleys, all the while ensuring that the resulting distribution
still sums to one. In many computational linguistic applications, maximum
likelihood estimators produce distributions that are too tightly tuned to their
training data and smoothing often improves the performance of models on
novel data. There are many ways to smooth and the precise method used
can have a dramatic effect on the performance. But while there are many
different ways to redistribute, in computational linguistics as in economics,
only a few of them work well!

A popular method for smoothing the maximum likelihood estimator in
(1.3) is to add a positive number αw called a pseudo-count to each word w’s
empirical frequency nw(d) in (1.3), readjusting the denominator so that the
revised estimates of θ still sum to 1. (You can view the pseudo-counts α

as counts coming from hypothetical or pseudo-data that are added to the
counts n(d) that we get from the real data.) This means that our smoothed

maximum likelihood estimator θ̃ is:

θ̃w =
nw(d) + αw

n◦(d) + α◦
(1.4)

where α◦ =
∑

w∈W αw is the sum over all words of the pseudo-counts. With

DRAFT of 7 July, 2013, page 20

1.3. MODELING DOCUMENTS WITH UNIGRAMS 21

this estimator, θ̃w for all w is always greater than zero even if nw(d) = 0, so
long as αw > 0. This smoothing method is often called add-alpha smoothing.

Notation: A tilde over parameter values indicates that the parameters de-
fine a smoothed distribution.

It is standard to bin or group words into equivalence classes and assign the
same pseudo-count to all words in the same equivalence class. This way we
have fewer pseudo-count parameters to estimate. For example, if we group
all the words into one single equivalence class, then there is a single pseudo-
count value α = αw that is used for all w ∈ W and only a single parameter
need be estimated from our held-out data. This works well for a surprising
number of applications. Indeed, often the actual value of α is not critical
and we just set it to one. (This is called add-one smoothing or alternatively
Laplace smoothing.)

Example 1.7: Let us assume that all w get the same smoothing constant. In
this case Equation 1.4 simplifies to;

θ̃w =
nw(d) + α

n◦(d) + α|W|
.

Suppose we set α = 1 and we have |W| = 100, 000 and n◦(d) = 107. As in Example
1.5, the two words ‘the’ and ‘equilateral’ have counts 2·105 and 2, respectively.
Their maximum likelihood estimates again are 0.02 and 2·10−7. After smoothing,
the estimate for ‘the’ hardly changes

θ̃the =
2·105 + 1

107 + 105
≈ 0.02

while the estimate for ‘equilateral’ goes up by 50%:

θ̃equilateral =
2 + 1

107 + 105
≈ 3·10−7

Of course, we now face another estimation problem, because we need to
specify the values of the pseudo-counts α. It is reasonable to try to estimate
these from our data d, but in this case maximum likelihood estimations are
of no use: they are just going to set α to zero!

On reflection, this should be no surprise: if w does not occur in the data d,
then the maximum likelihood estimator sets θ̂w = 0 because to do otherwise
would “waste” probability on w. So if we select α in our smoothed estimator

DRAFT of 7 July, 2013, page 21

22 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

to maximize the likelihood of d then αw = 0 for exactly the same reason.
In summary, setting θw = 0 when nw(d) = 0 is an eminently sensible thing
to do if we are concerned only with maximizing the likelihood of our data
d. The problem is that our data d is not representative of the occurrence or
non-occurrence of any specific word w in brand new documents.

One standard way to address this problem is to collect an additional
corpus of training documents h, the held-out corpus, and use them to set
the smoothing pseudo-count parameters α. This makes sense because one of
the primary goals of smoothing is to correct, or at least ameliorate, problems
caused by sparse data, and a second set of training data h gives us a way of
saying just how bad d is as a representative sample. (The same reasoning
tells us that h should be “fresh data”, disjoint from the primary training
data d.)

In fact, it is standard at the onset of a research project to split the
available data into a primary training corpus d and a secondary held-out
training corpus h, and perhaps a third test set t as well, to be used to
evaluate different models trained on d and h. For example, we would want
to evaluate a language identification system on its ability to discriminate
novel documents, and a test set t disjoint from our training data d and h

gives us a way to do this. Usually d is larger than h as it needs to estimate
many parameters (for the unigram model, the total number of word types),
while typically h sets very few (one if all the α’s are the same). Similarly
the we need less testing than training data. A standard split might be 80%
for training and 10% each for the held-out and testing sets.

1.3.6 Estimating the smoothing parameters

We now describe how to use a held-out corpus h to estimate the pseudo-
countsα of the smoothed maximum likelihood estimator described on page 20.
We treat h, like d, as a long vector of words obtained by concatenating all
of the documents in the held-out corpus. For simplicity we assume that all
the words are grouped into a single bin, so there is a single pseudo-count
α = αw for all words w. This means that our smoothed maximum likelihood
estimate (1.4) for θ simplifies to Equation 1.5.

Example 1.8: Suppose our training data d is ♥ from Example 1.6 and the held-
out data h is ♥′, which consists of eight copies of ‘I love you’ plus one copy each of
‘I can love you’ and ‘I will love you’. When we preprocess the held-out data both
‘can’ and ‘will’ become ∗U∗, so W = { i love you ∗U∗}. We let α = 1.

DRAFT of 7 July, 2013, page 22

1.3. MODELING DOCUMENTS WITH UNIGRAMS 23

Now when we compute the likelihood of ♥′ our smoothed θs are as follows:

θ̃i =
100 + 1

300 + 4

θ̃love =
100 + 1

300 + 4

θ̃you =
100 + 1

300 + 4

θ̃∗U∗ =
1

300 + 4

These are then substituted into our normal likelihood equation.

We seek the value α̂ of α that maximizes the likelihood Lh of the held-out
corpus h for reasons explained in section 1.3.5 on page 19.

α̂ = argmax
α

Lh(α)

Lh(α) =
∏

w∈W

(
nw(d) + α

n◦(d) + α|W|

)nw(h)

(1.5)

Argmax (pronounced just as it is spelled) is the abbreviation of “argument
maximum”. argmaxx f(x) has as its value the value of x that makes f(x) as
large as possible. Consider the function f(x) = 1− x2. Just a bit of thought
is required to realize that the maximum of f(x) is 1 and occurs when x = 0,
so argmaxx 1− x2 = 0.

With that out of the way, let us return to the contemplation of Equation
1.5. This formula simply says that the likelihood of the held-out data is the
product of the probability of each word token in the data. (Make sure you see
this.) Again we have ignored the factor in Lh that depends on the length of
h, since it does not involve α. If you plug in lots of values for α you find that
this likelihood function has a single peak. (This could have been predicted in
advance.) Thus you can try out values to home in on the best value. A line-
search routine (such as Golden Section search) does this for you efficiently.
(Actually, the equation is simple enough that α̂ can be found analytically.)
But be aware that the likelihood of even a moderate-sized corpus can become
extremely small, so to avoid underflow you should compute and optimize the
logarithm of the likelihood rather than the likelihood itself.

DRAFT of 7 July, 2013, page 23

24 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

1.4 Contextual dependencies and n-grams

The previous section described unigram language models, in which the words
(or whatever the basic units of the model are) are each generated as inde-
pendent entities. This means that unigram language models have no way of
capturing contextual dependencies among words in the same sentence or doc-
ument. For a comparatively simple task like language identification this may
work fine. But remember the example at the start of this chapter where a
speech recognition system would want to distinguish the fluent ‘I saw a rose’
from the disfluent ‘I saw arose.’

In fact, there are a large number of different kinds of contextual depen-
dencies that a unigram model does not capture. There are clearly dependen-
cies between words in the same sentence that are related to syntactic and
other structure. For example, ‘students eat bananas’ is far more likely than
‘bananas eat students’, mainly because students are far more likely to be
eaters than eaten while the reverse holds for bananas, yet a unigram model
would assign these two sentences the same probability.

There are also dependencies that hold intersententially as well as intrasen-
tentially. Some of these have to do with topicality and discourse structure.
For example, the probability that a sentence contains the words ‘court’ or
‘racquet’ is much higher if a preceding sentences contains ‘tennis’. And while
the probability of seeing any given name in the second half of a random doc-
ument is very low, the probability of seeing a name in the second half of
a document given that it has occurred in the first half of that document is
generally many times higher (i.e., names are very likely to be repeated).

Methods have been proposed to capture all these dependencies (and many
more), and identifying the important contextual dependencies and coming up
with language models that capture them well is still one of the central topics
in computational linguistics. In this section we describe how to capture one
of simplest yet most important kinds of contextual dependencies: those that
hold between a word and its neighbors. The idea is that we slide a window of
width n words over the text, and the overlapping sequences of length n that
we see through this window are called n-grams. When n=2 the sequences are
called bigrams and when n=3 the sequences are called trigrams. The basic
idea is illustrated for n=2 in Figure 1.1.

It turns out that a surprising number of contextual dependencies are
visible in an n-word window even for quite small values of n. For exam-
ple, a bigram language model can distinguish ‘students eat bananas’ from

DRAFT of 7 July, 2013, page 24

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 25

⊳ students eat bananas ⊳

Figure 1.1: The four bigrams extracted by a bigram language from the sen-
tence ‘students eat bananas’, padded with ‘⊳’ symbols at its beginning and
end.

‘bananas eat students’. This is because most linguistic dependencies tend to
be local in terms of the word string, even though the actual dependencies
may reflect syntactic or other linguistic structure.

For simplicity we focus on explaining bigram models in detail here (i.e.,
n=2), but it is quite straightforward to generalize to larger values of n. Cur-
rently most language models are built with n = 3 (i.e., trigrams), but models
with n as high as 7 are not uncommon. Of course, sparse-data problems be-
come more severe as n grows, and the precise smoothing method used can
have a dramatic impact on how well the model generalizes.

1.4.1 Bigram language models

A bigram language model is a generative model of sequences of tokens. In our
applications the tokens are typically words and the sequences are sentences
or documents. Informally, a bigram language model generates a sequence
one word at a time, starting with the first word and then generating each
succeeding word conditioned on the previous one.

We can derive the bigram model via a sequence of equations and sim-
plifying approximations. Ignoring the length of W for the moment, we can
decompose the joint probability of the sequence W into a product of condi-
tional probabilities (this operation is called the chain rule and is used many
times in this text):

P(W) = P(W1, . . . ,Wn)

= P(W1)P(W2|W1) . . .P(Wn|Wn−1, . . . ,W1) (1.6)

where n is the length of W . Now we make the so-called Markov assumption,
which is that

P(Wi | Wi−1, . . . ,W1) = P(Wi | Wi−1) (1.7)

DRAFT of 7 July, 2013, page 25

26 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

for all positions i ∈ 2, . . . , N . Putting (1.6) and (1.7) together, we have:

P(W) = P(W1)
n∏

i=2

P(Wi | Wi−1) (1.8)

In addition, we assume that P(Wi | Wi−1) does not depend on the position
i, i.e., that P(Wi | Wi−1) = P(Wj | Wj−1) for all i, j ∈ 1, . . . n.

We can both simplify the notation and generate the length of W if we
imagine that each sequence is surrounded or padded with special stop symbols
‘⊳’ that appear nowhere else in the string. What we mean by this is that
if w = (w1, . . . , wn) then we define w0 = wn+1 = ⊳. We generate the first
word in the sentence with the context ‘⊳’ (i.e., P(W1) = P(W1|⊳), and stop
when we generate another ‘⊳’, which marks the end of the sequence. The
stop symbol ‘⊳’ thus has a rather strange status: we treat ‘⊳’ as a token, i.e.,
⊳ ∈ W , even though it never appears in any sequence we generate.

Notation: The ⊳ symbol can be used for both the start and end of a se-
quence. However, sometimes we find it clearer to use ⊲ for the start.
Nothing depends on this.

In more detail, a bigram language model is defined as follows. If W =
(W1, . . . ,Wn) then

P(W) =
n+1∏

i=1

P(Wi | Wi−1) (1.9)

where

P(Wi=w′ | Wi−1=w) = Θw,w′ for all i in 1, 2, . . . , n+ 1

and Θ = {Θw,w′ : w,w′ ∈ W} is a matrix of parameters specifying the
conditional probability of w′ given it is preceded by w. Just as in the unigram
model, we assume that these conditional probabilities are time-invariant, i.e.,
they do not depend on i directly. Because probabilities must sum to one, it
is necessary that

∑
w′∈W Θw,w′ = 1 for all w ∈ W .

Notation: We have many situations in which the parameters of a model
are conditional probabilities. Here the parameter is the conditional
probability of word given the previous word. Naturally such parameters
have two subscripts. We order the subscripts so that the first is the
conditioning event (here the previous word (w)) and the second is the
conditioned event (w′).

DRAFT of 7 July, 2013, page 26

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 27

Example 1.9: A bigram model assigns the following probability to the string
‘students eat bananas’.

P(‘students eat bananas’) = Θ⊳,students Θstudents,eat

Θeat,bananas Θbananas,⊳

In general, the probability of a string of length n is a product of n+1 conditional
probabilities, one for each of the n words and one for the end-of-sentence token
‘⊳’. The model predicts the length of the sentence by predicting where ‘⊳’ appears,
even though it is not part of the string.

This generalizes to n-gram models as follows. In an n-gram model each
wordWi is generated conditional on the n−1 word sequence (Wi−n+1 . . .Wi−1)
that precedes it, and these conditional distributions are time-invariant, i.e.,
they don’t depend on i. Intuitively, in an n-gram model (Wi−n+1 . . .Wi−1)
form the conditioning context that is used to predict Wi.

Before going on, a typical misconception should be nipped in its bud.
Most students seeing the bigram (or n-gram) model for the first time think
that it is innately directional. That is, we start at the beginning of our
sentence and condition each word on the previous one. Somehow it would
seem very different if we started at the end and conditioned each word on the
subsequent one. But, in fact, we would get exactly the same probability! You
should show this for, say, ‘students eat bananas’. (Write down the four con-
ditional probabilities involved when we use forward bigram probabilities, and
then backward ones. Replace each conditional probability by the definition
of a conditional probability. Then shuffle the terms.)

It is important to see that bigrams are not directional because of the
misconceptions that follow from thinking the opposite. For example, suppose
we want a language model to help a speech recognition system distinguish
between ‘big’ and ‘pig’ in a sentence ‘The big/pig is ...’. Students see that
one can make the distinction only by looking at the word after big/pig, and
think that our bigram model cannot do it because somehow it only looks at
the word before. But as we have just seen, this cannot be the case because
we would get the same answer either way. More constructively, even though
both of big/pig are reasonably likely after ‘the’, the conditional probabilities
P(is|big) and P(is|pig) are very different and presumably strongly bias a
speech-recognition model in the right direction.

(For the more mathematically inclined, it is not hard to show that under

DRAFT of 7 July, 2013, page 27

28 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

a bigram model, for all i between 1 and n:

P(Wi=wi | Wi−1=wi−1,Wi+1=wi+1) =
Θwi−1,wi

Θwi,wi+1∑
w∈W Θwi−1,w Θw,wi+1

which shows that a bigram model implicitly captures dependencies from both
the left and right simultaneously.)

1.4.2 Estimating the bigram parameters Θ

The same basic techniques we used for the unigram model extend to the
bigram and higher-order n-gram models. The maximum likelihood estimate
selects the parameters Θ̂ that make our training data d as likely as possible:

Θ̂w,w′ =
nw,w′(d)

nw,◦(d)

where nw,w′(d) is the number of times that the bigram w,w′ appears any-
where in d (including the stop symbols ‘⊳’), and nw,◦(d) =

∑
w′∈W nw,w′(d) is

the number of bigrams that begin with w. (Except for the odd cases of start
and stop symbols, nw,◦(d) = nw(d), i.e., the number of times that w appears
in d). Intuitively, the maximum likelihood estimator is the obvious one that
sets Θw,w′ to the fraction of times w′ was seen immediately following w.

Example 1.10: Looking at the ♥′ corpus again, we find that

Θ̂⊳,i = 1

Θ̂i,love = 0.8

Θ̂i,will = 0.1

Θ̂i,can = 0.1

Θ̂can,love = 1

Θ̂will,love = 1

Θ̂love,you = 1

Θ̂you,i = 0.9

Θ̂you,⊳ = 0.1

The sparse-data problems we noticed with the unigram model in S ec-
tion 1.3.5 become more serious when we move to the bigram model. In

DRAFT of 7 July, 2013, page 28

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 29

general, sparse-data problems get worse as we work with n-grams of larger
size; if we think of an n-gram model as predicting a word conditioned on the
n− 1 word sequence that precedes it, it becomes increasingly common that
the conditioning n − 1 word sequence occurs only infrequently, if at all, in
the training data d.

For example, consider a word w that occurs only once in our training
corpus d (such word types are extremely common). Then nw,w′(d) = 1
for exactly one word w′ and is 0 for all other words. This means that the
maximum likelihood estimator is Θ̂w,w′ = 1, which corresponds to predicting
that w can be followed only by w′. The problem is that we are effectively
estimating the distribution over words that follow w from the occurrences of
w in d, and if there are only very few such occurrences then these estimates
are based on very sparse data indeed.

Just as in the unigram case, our general approach to these sparse-data
problems is to smooth. Again, a general way to do this is to add a pseudo-
count βw,w′ to the observations nw,w′ and normalize, i.e.:

Θ̃w,w′ =
nw,w′(d) + βw,w′

nw,◦(d) + βw,◦
(1.10)

where βw,◦ =
∑

w′∈W βw,w′ . While it is possible to follow what we did for
the unigram model and set βw,w′ to the same value for all w,w′ ∈ W , it is
usually better to make βw,w′ proportional to the smoothed unigram estimate

θ̃w′ ; this corresponds to the assumption that, all else equal, we’re more likely
to see a high-frequency word w′ following w than a low-frequency one. That
is, we set βw,w′ in (1.10) as follows:

βw,w′ = β θ̃w′

where β is a single adjustable constant. Plugging this back into (1.10), we
have:

Θ̃w,w′ =
nw,w′(d) + β θ̃w′

nw,◦(d) + β
(1.11)

Note that if β is positive then βw,w′ is also, because θ̃w′ is always positive.
This means our bigram model will not assign probability zero to any bigram,
and therefore the probability of all strings are strictly positive.

Example 1.11: Suppose w is ‘redistribute’ and we consider two possible next
words w′, ‘food’ and ‘pears’, with (assumed) smoothed unigram probabilities 10−4

and 10−6 respectively. Let β be 1.

DRAFT of 7 July, 2013, page 29

30 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

Suppose we have never seen the word ‘redistribute’ in our corpus. Thus
nw,w′(d) = nw,◦(d) = 0 (why?). In this case our estimate of the bigram prob-
abilities reverts to the unigram probabilities.

Θ̃redistribute,food =
0 + 10−4

0 + 1

Θ̃redistribute,pears =
0 + 10−5

0 + 1

If we have seen ‘redistribute’ (say 10 times) and ‘redistribute food’ once we get:

Θ̃redistribute,food, =
1 + 10−4

10 + 1

Θ̃redistribute,pears =
0 + 10−5

10 + 1

The first is very close to the maximum likelihood estimate of 1/10, while the second
goes down to about 10−6.

We can estimate the bigram smoothing constant β in the same way we
estimated the unigram smoothing constant α, namely by choosing the β̂
that maximizes the likelihood of a held-out corpus h. (As with the unigram
model, h must differ from d, otherwise β̂ = 0.)

It is easy to show that the likelihood of the held-out corpus h is:

Lh(β) =
∏

w,w′∈W

Θ̃
nw,w′ (h)

w,w′ (1.12)

where Θ̃w,w′ is given by (1.10), and the product in (1.12) need only range
over the bigrams (w,w′) that actually occur in h. (Do you understand why?)
Just as in the unigram case, a simple line search can be used to find the value
β̂ of β that optimizes the likelihood (1.12).

1.4.3 Implementing n-gram language models

It usually simplifies things to assign each word type its own unique integer
identifier, so that the corpora d and h can be represented as integer vectors,
as can their unigram counts n(d) and n(h).

Typically, the n-grams extracted from a real corpus (even a very large
one) are sparse in the space of possible n-word sequences. We can take

DRAFT of 7 July, 2013, page 30

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 31

advantage of this by using hash tables or similar sparse maps to store the
bigram counts nw,w′(d) for just those bigrams that actually occur in the data.
(If a bigram is not found in the table then its count is zero.) The parameters
θ̂w and Θ̂w,w′ are computed on the fly.

As we mentioned earlier, because the probability of a sequence is the
product of the probability of each of the words that appear in it, the proba-
bility of even just a moderately long sequence can become extremely small.
To avoid underflow problems, it is wise to compute the logarithm of these
probabilities. For example, to find the smoothing parameters α and β you
should compute the logarithm of the likelihoods rather than just the likeli-
hoods themselves. In fact, it is standard to report the negative logarithm of
the likelihood, which is a positive number (why?), and smaller values of the
negative log likelihood correspond to higher likelihoods.

1.4.4 Kneser-Ney Smoothing

In many situations, bigram and trigram language models definitely included,
best practice is to use Kneser-Ney smoothing (KN). We first specify how it
computed, and then look at it more closely to understand why it works so
well.

Remember where we left off with bigram language models. In Equation
1.11. smoothing was accomplished by adding the terms β θ̃w′ and β to the nu-
merator and denominator respectively, where θ̃w′ is the unigram probability
estimate for w′.

In KN we change this to

Θ̄w,w′ =
nw,w′(d) + β κw′

nw,◦(d) + β

That is, we replace the smooth unigram estimate of w′, by a new parameter
κw′ . We compute κ from our training data, where kw′(d) is the number of
different word types that precede w′ in d and we set

κw =
kw(d)

k◦(d)
.

Our use of the dot notation here is the same as in previous notation,

k◦(d) =
∑

w′

kw′(d)

DRAFT of 7 July, 2013, page 31

32 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

and thus the denominator is a normalization factor and κw is a probability
distribution.

Now for the intuition. We start with the observation that the more of-
ten you depend on smoothing to prevent zero probabilities, the larger the
smoothing parameter should be. So one would require a larger β to mix in
unigrams if we had 100,000 words of data than if we had, say 107 words.
By “require” here we mean of course that the log-likelihood function for our
data would have a maximum value with larger β.

Now consider two words, say ‘Francisco’ and ‘report’, and assume that
they both occur fifty times in our corpus. Thus their smoothed unigram
probabilities are the same. But suppose we see two new bigrams, one ending
in ‘Francisco’, the other in ‘report.’ If we use unigrams to smooth, these new
bigrams will themselves get the same probability. (Make sure you see why.)

But assigning them equal probability is a very bad estimate. In fact, new
bigrams ending in ‘report’ should be much more common than those ending
in ‘Francisco.’ Or to put it another way, we said that a smoothing parameter
should be in rough proportion to how often we need to use it to prevent zeros
in the data. But we almost never need to back off because of a new word
preceding ‘Francisco’ because, to a first approximation, all the word tokens
preceding it are of the same word type: ‘San’.

This is not true for ‘report.’ In its fifty tokens we might see it preceded
by ‘the’ and ‘a’, say, ten times each, but we will have many words that have
preceded it only once, e.g., ‘financial,’ ‘government,’ and ‘dreadful.’ This is
certain to continue when we look at the test data, where we might encounter
‘January’, ‘I.B.M.’, etc. KN is designed to capture this intuition by backing
off not to the unigram probability, but to a number proportional to the
number of different types than can precede the word.

Example 1.12: Suppose in a million word corpus we have forty thousand word
types. Some plausible k numbers for ‘Francisco’ and ‘report’ might be:

kFrancisco(d) = 2

kreport(d) = 32

k◦(d) = 100, 000

We will set β to one. A new bigram probability ending in ‘Francisco’, say ‘Pedro Francisco’

DRAFT of 7 July, 2013, page 32

1.4. CONTEXTUAL DEPENDENCIES AND N-GRAMS 33

would get the probability estimate:

Θ̄Pedro,Fransisco =
0 + 1 ◦ 2

0 + 1 · 100000

=
1

50000

whereas the equivalent number for ‘January report’ is 1/3125.

If you are anything like your authors, you still might be having trouble
getting your head around KM smoothing. Another good way to understand
it is to look at how your algorithms would change if you converted from
smoothing with unigrams to KN. Suppose you have a function that, given
a bigram, updates the training parameters, e.g., addBigram(wi−1, wi). It
would look something like this:

1. nwi−1,wi
+ = 1

2. nwi
+ = 1

3. nw◦
+ = 1

Here is the function for KN smoothing:

1. If nwi−1,wi
= 0

(a) kwi
+ = 1

(b) kw◦
+ = 1

2. nwi−1,wi
+ = 1

3. nwi
+ = 1

That is, instead of incrementing the back-off counters for every new word,
you do it only when you have not seen its bigram before.

One last point. Just as we previously smoothed unigram counts with α
to account for unknown words, we need to do so when using KN. That is,
rather than κw we use κ̃w, where

κ̃w =
kw(d) + α

k◦(d) + α|W|

DRAFT of 7 July, 2013, page 33

34 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

1.4.5 The noisy channel model

We first noted the need for language modeling in conjunction with speech
recognition. We did this in an intuitive way. Good speech recognition needs
to distinguish fluent from disfluent strings in a language, and language models
can do that.

In fact, we can recast the speech recognition problem in a way that makes
language models not just convenient but (almost) inevitable. From a proba-
bilistic point of view, the task confronting a speech recognition system is to
find the most likely string S in a language given the acoustic signal A. We
write this formally as follows:

argmax
S

P(S|A) (1.13)

We now make the following transformations on this term:

argmax
S

P(S|A) = argmax
S

P(S)P(A|S)

P(A)

= argmax
S

P(S)P(A|S) (1.14)

If you ignore the “argmaxS” in the first line, this is just Bayes’ law. You
should be able to derive it by starting with the definition of conditional
probability and then using the chain law on the numerator.

In the second line we drop the P(A) in the denominator. We can do this
because as we vary the S to find the maximum probability the denominator
stays constant. (It is, remember, just the sound signal we took in.)

Now consider the two terms on the right-hand side of Equation 1.14. The
first is our language model, the second is called the acoustic model. That
a language model term arises so directly from the definition of the speech-
recognition problem is what we meant when we said that language modeling
is almost inevitable. It could be avoided, but all serious speech-recognition
systems have one.

This set of transformations has its own name, the noisy channel model,
and it is a staple of NLP. Its name refers to it is origins in communication
theory. There a signal goes in at one end of a communication channel and
comes out at the other slightly changed. The process that changes it is called
noise. We want to recover the clean message C given the noisy message N .
We do so using the noisy channel model:

P(C|N) ∝ P(C)P(N |C) ⇒ argmax
C

P(C|N) = argmax
C

P(C)P(N |C)

DRAFT of 7 July, 2013, page 34

1.5. EXERCISES 35

The first term is is called a source model (a probabilistic model of the input,
or source), while the second is called a channel model (a model of how noise
affects the communication channel). When we talk about speech recognition
we replace these terms with the more specific language model and acoustic
model.

1.5 Exercises

Exercise 1.1: In what follows w and w′ are word types and d is a end-of-
sentence padded corpus. True or false:

1. If nw(d) = 1 then there exists exactly one w′ such that nw,w′ = 1.

2. If there is exactly one w,w′ pair such that nw,w′ = 1, then nw(d) = 1.

3. Under an unsmoothed unigram model with parameters θ trained from
a corpus c, if Ld(θ) = 0 then there must be a w such that nw(d) > 0
and nw(c) = 0.

Exercise 1.2: Consider a corpus d comprising the following sentences:

The dog bit the man
The dog ate the cheese
The mouse bit the cheese
The mouse drank coffee
The man drank tea

Assuming each sentence is padded with the stop symbol on both sides and
ignoring capitalization, compute the smoothed bigram probability of “The
mouse ate the potato”. Use α = 1 and β = 10. Show how you compute the
smoothed bigram probabilities for all five words.

Exercise 1.3: Consider the bigram model described by the following equa-
tions:

P(W) =
n+1∏

i=1

P(Wi | Wi−2)

We assume here that our sentences are padded with two stop symbols. Ex-
plain why this model should not do as well as the one presented in this
chapter.

DRAFT of 7 July, 2013, page 35

36 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

Exercise 1.4: Once you have seen how a bigram model extends a unigram
model, it should not be too difficult to imagine how a trigram model would
work. Write down equations for a soothed trigram language model.

Exercise 1.5: A common method of smoothing is deleted interpolation. For
a bigram model, rather than Equation 1.11 we would use the following:

Θ̃w,w′ = λ·
nw,w′(d)

nw,◦(d)
+ (1− λ)θ̃w′

1. Show that if 1 ≥ λ ≥ 0,
∑

w′ Θ̃w,w′ = 1 for all w.

2. As with α, we can set λ by maximizing the likelihood of held-out data.
As the amount of training data goes up, would we expect λ to increase
or decrease?

Exercise 1.6: True or false:

• In a bigram model the best value for alpha is independent of the value
for beta (for beta’s greater than zero naturally.)

• The best value for beta is independent of the value of alpha.

Explain.

1.6 Programming problem

Problem 1.1: Distinguishing good from bad English

Write a program that can, at least to some degree, distinguish between
real English and the output of a very bad French-to-English machine transla-
tion system. The basic idea is that you create a language model for English,
and then run it on both the good and bad versions of sentences. The one
that is assigned the higher probability is declared to be the real sentence.
This assignment guides you through the steps involved in doing this.

The /course/cs146/asgn/langmod/data/ directory contains the data
we use to train and test the language models. (This data comes from the
Canadian Hansard’s, which are parliamentary proceedings and appear in
both English and French. Here we just use the English.) These files have
one sentence per line and have been tokenized, i.e., split into words. We

DRAFT of 7 July, 2013, page 36

1.7. FURTHER READING 37

train our language model using english-senate-0.txt as the main training
data. We also need held-out training data to set the smoothing parameters.
english-senate-2 is the test data. Set the alphas and betas using the de-
velopment data, english-senate-1.txt. Your model assigns a probability
to each sentence, including the ⊳padding at the end.

1. Create a smoothed unigram language model with the smoothing pa-
rameter α = 1. Compute the log probability of our language-model
test data english-senate-2.txt.

2. Now set the unigram smoothing parameter α to optimize the likelihood
of the held-out data as described in the text. What values of α do you
find? Repeat the evaluation described in the previous step using your
new unigram models. The log probability of the language-specific test
data should increase.

3. Now try distinguishing good from bad English. In good-bad.txt we
have pairs of sentences, first the good one, then the bad. Each sentence
is on its own line, and each pair is separated from the next with a blank
line. Try guessing which is which using the language model. This
should not work very well.

4. Now construct smoothed bigram models as described in the text, set-
ting β = 1, and repeat the evaluations, first on the testing text to see
what log probability you get, and then on the good and bad sentences.

5. Set the bigram smoothing parameter β as described in the text, and
repeat both evaluations. What values of β maximize the likelihood of
the held-out data?

6. Lastly, use the smoothed bigram model to determine good/bad sen-
tences.

1.7 Further Reading

If you turn to the end of this book you will not find a list of references. In
research papers such lists have two purposes — they are pointers to further
reading, and they help give credit where credit is due. In textbooks, however,

DRAFT of 7 July, 2013, page 37

38 CHAPTER 1. LANGUAGE MODELING AND PROBABILITY

this second point is much less important. Furthermore, the topics in a book
such as this have been covered in hundreds or thousands, of papers.

Giving the reader guides to further reading is still important, but these
days tools such as Google Scholar work very well for this task. They are
far from perfect, but it seems to us that they are more reliable than lists of
references based upon your authors’ memories. Thus we assume you have
a tool like Google Scholar, and our goal now is to make sure you have the
right key words to find important papers in various subdisciplines of language
modeling (LM). Here are a few.

Naturally the best key words are language modeling. Also unigram, bi-
gram, Kneser Ney

Adaptation in LM is changing the probability of words depending on their
context. If in reading an article you encounter the words ‘money’ and ‘bank’,
you are more likely to see the word ‘stock’ than ‘piano.’ You are also more
likely to see ‘money’ and ‘bank’ a second time, in which case it might be a
good idea to store recently seen words in a cache. Such adaptation is one
kind of long-range dependency in LM.

A quite different approach are models based on neural nets.
A very good smoothing method that does not require held-out data is

Good-Turing smoothing.
LM is used in many tasks other than speech recognition. Information

retrieval is a general term for finding information from documents relating to
some topic or question. It is often useful to characterize it in terms of LM.
Other tasks that involve LM are spam detection and hand-writing recognition.
However, after speech recognition, the most prominent application is surely
machine translation, the topic of the next chapter.

DRAFT of 7 July, 2013, page 38

Chapter 2

Machine Translation

In the early 1960s the philosopher Bar-Hillel published a famous attack on
work in machine translation or MT. He made two main points: first, MT
required a machine to understand the sentence to be translated, and sec-
ond, we were so far from designing programs that could understand human
language that we should put off MT into the indefinite future.

On the first point, Bar-Hillel’s argument was conclusive. He simply
pointed out that even a very simple example, like translating “The baby
picked up a pen”, is difficult because ‘pen’ has two meanings (or, in NLP
terminology, word senses): “writing instrument” and “animal/baby pen”. If
the target language (the language into which we are translating) does not
have a word with exactly these two senses, it is necessary to disambiguate
‘pen’. (To “disambiguate” is to make unambiguous, in this case to decide
which word sense was intended.) Word-sense disambiguation is an ongoing
research issue. Furthermore, once we see one example like this it is not hard
to think of many more.

Thus, perfect MT does require understanding the text, and thus such a
program is still in the future. But perhaps the really difficult MT problems
do not occur very often. That seems to be the case: readable MT, MT
with only a few debilitating mistakes, now seems within our grasp. Certainly
the progress over the last ten-fifteen years has been phenomenal. That this
progress has been largely fueled by the new statistical approaches is one of the
best selling points for statistical NLP. In this chapter we look at (elementary)
MT from the statistical perspective. In doing so we also hope to motivate
some of the mathematical techniques used throughout this book, particularly
the expectation maximization algorithm (EM for short).

39

40 CHAPTER 2. MACHINE TRANSLATION

The key idea behind statistical MT is quite simple. If we want to translate
between, say, French and English we first obtain a French-English parallel
corpus — a text in which each sentence expressed in French is aligned with
an English sentence meaning the same thing. The first such corpus to be
used for MT was the so-called Canadian Hansard’s — the proceedings of
the Canadian parliament, which by Canadian law must be published in both
English and French no matter which language was used by the speakers
in parliament. (It is called Hansard’s after the British printer who first
published the proceedings of the British parliament.)

Now suppose we want to know which English word (or words) are the
translations of the French word ‘pain’. (The most common translation is
‘bread’.) To make this concrete, let us further suppose that our “corpus”
consisted of the following French/English pairs:

J ’ai acheté du pain I bought some bread
J ’ai acheté du beurre I bought some butter
Nous devons manger le pain blanc We must eat the white bread

(In French ‘j’ai’ is a single word. However when tokenizing French is it useful
to split it in two, much as on page 15 we discussed splitting ‘doesn’t’ into
‘does’ and ‘n’t’.)

As we go through the corpus looking for French sentences with ‘pain’ in
them, we check the words in the corresponding English sentence. Here we
arranged it so that the word ‘bread’ is the only word common between the
first and last sentences. In general things will not be so easy, but it is not
hard to believe that you will find ‘bread’ occurring with great regularity as
a possible translation of ‘pain’, and that at the very least it would become
one of your top candidates.

Statistical MT follows from this simple observation.

2.1 The fundamental theorem of MT

Now let us start at the beginning and develop this idea more precisely.

Notation: Here F is a random variable denoting a French (or foreign) sen-
tence, with f being a possible value, and E is a random variable
denoting an English sentence. We use M for the length of F , so
F =< F1, . . . Fm >. Similarly, L is the length of E =< E1 . . . El >. We
also typically use j to index over English sentences and k over French.

DRAFT of 7 July, 2013, page 40

2.1. THE FUNDAMENTAL THEOREM OF MT 41

1. We must eat the white bread

2. We must eat the bread white

3. We eat must the bread white.

Figure 2.1: Some possible translations of “Nous devons manger le pain blanc”

From a probabilistic point of view, MT can be formalized as finding the
most probable translation e of a foreign language string f , which is

argmax
e

P(e | f).

As noted in 1.4.5, the noisy-channel model is often a good way to approach
“argmax”-type problems, and we do this here:

argmax
e

P(e | f) = argmax
e

P(e)P(f | e). (2.1)

This equation is often called the fundamental theorem of machine translation.
The first term on the right is a language model, as discussed in Chapter 1.
The second term is the translation model. It encodes the procedure for
turning English strings into French ones.

At first glance, this second term looks counterintuitive. On the left we
have the term P (e | f) and we turn this into a problem requiring that we
estimate P (f | e). Given that it is just as hard to translate from English
into French as the other way around, it is not obvious that the noisy-channel
model has gained us much.

Nevertheless, this factorization is useful because the translation and lan-
guage models capture different kinds of dependencies, and (2.1) tells us how
these should be combined. To see this, let us consider the third sentence in
our fake “corpus” in the introduction: “Nous devons manger le pain blanc”.
Consider the several possible English translations in Figure 2.1. The first is
the correct translation, the second is the word-by-word translation, and the
last permutes the second two words instead of the last two.

In our current state of knowledge, our translation models are very poor
at ordering the words in the translation and at picking the best words for a
particular context. Thus it would not be surprising if the translation model
picked the incorrect literal translation in Figure 2.1 as the best and the other

DRAFT of 7 July, 2013, page 41

42 CHAPTER 2. MACHINE TRANSLATION

two as equally likely variants. On the other hand, the overlapping windows
of even a simple trigram language model should have no problem assigning
the first a comparatively high probability and the others dramatically lower
ones. Thus by multiplying the two probabilities, our program has a much
better chance of getting the correct result.

A second important advantage of the noisy-channel formulation is that,
while the translation model P(F |E) needs to be trained from parallel data
(which always is in short supply), the language model P(E) can be trained
from monolingual data, which is plentiful. Thus it permits us to train our
translation system from a wider range of data, and simply adding more train-
ing data usually results in more accurate translations (all other factors equal).

In the last chapter we covered language modeling. Here we start with the
translation model.

2.2 The IBM Model 1 noisy-channel model

We now turn to a very simple model for P(F |E) known as IBM model 1, so
called because it was the first of five ever more complex MT models defined
by a group at IBM in the early 1990s.

This model makes a number of simplifying assumptions that more com-
plex models remove. These assumptions mean that model 1 is not a partic-
ularly accurate channel model, but it is very simple and easy to train. (We
show how to relax one of these assumptions when we explain IBM model 2
in 2.3.)

IBM model 1 assumes that each French word fk is the translation of
exactly one English word in e, say ej. That is, we assume fk is independent
of all the other words in e given the word ej.

This assumption is less restrictive than it may seem at first. We don’t
insist that k = j, so the French words don’t need to be in the same order
as the English words they correspond to. We also don’t require a one-to-
one mapping between English and French words, so each English word can
correspond to zero, one, or several French words. We can also give French
words some of the same flexibility by assuming that each English sentence e
contains an additional invisible null word (also called a spurious word) ‘∗N∗’
that generates words in f that aren’t translations of any actual word in e.
(The ∗N∗ is assumed to be e0, the “zeroth” word of the English sentence.)

None of the IBM models give up the “one English word” assumption, but

DRAFT of 7 July, 2013, page 42

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 43

more recent work does. This work, to be discussed at the end of this chapter,
assumes that multiword phrases, rather than individual words, are the basic
atomic units of translation.

We formalize this word-to-word translation idea in terms of word align-
ments. A word alignment a from a French sentence f of length m to an
English sentence e of length l is a vector of length m where eak is the English
word that translates to fk. That is, ak is a position in e, i.e., an integer
between 0 and l.

Example 2.1: In our toy corpus in the introduction,

J ’ai acheté du pain I bought some bread
J ’ai acheté du beurre I bought some butter
Nous devons manger le pain blanc We must eat the white bread

the alignment for the first sentence pair is

< 1, 0, 2, 3, 4 >

Note how the second French word aligns with the zeroth English word, the spurious
word. The ‘ai’ is needed to express past tense in French, and there is no word
corresponding to it in the English. Otherwise the translation is word-for-word.

The correct alignment for the third sentence is:

< 1, 2, 3, 4, 6, 5 >

Again the alignment is close to word-for-word, except that it switches the order of
between ‘pain blanc’ and ‘white bread’.

To give another example, suppose the person who translated this into French
had deleted ‘devons’, the translation of ‘must’. Then we would have an alignment

< 1, 3, 4, 6, 5 >

Notice the alignment vector is now of length five rather than six, and none of the
French words align to ‘must’.

We introduce alignments into our probability equations using marginaliza-
tion. That is:

P(f | e) =
∑

a

P(f ,a | e) (2.2)

As explained in Chapter 1, if you have joint probability P(C,D) you can sum
over all possible values of D to get the probability of C. Here, we obtain

DRAFT of 7 July, 2013, page 43

44 CHAPTER 2. MACHINE TRANSLATION

the probability P(f |e) by marginalizing over A. We then separate f and a

using the chain rule:

P(f | e) =
∑

a

P(a | e)P(f | a, e) (2.3)

It is useful to introduce a bit of terminology. Our parallel corpus gives
us just the English and French words, E,F . We say that these random
variables are visible variables, since we see their values in our data. On the
other hand, the alignment random variable A is not visible: it is a hidden
variable because our parallel corpus is aligned only with respect to sentences,
not words, so we do not know the correct value of A. Hidden variables are
useful when they give us a useful way to think about our data. We see in
ensuing sections how A does this.

Example 2.2: Some examples of P(a | e) are in order. So suppose we are
aligning an e/f pair in which both are of length six. English and French have very
similar word order so, all else being equal, the most probable alignment might be
< 1, 2, 3, 4, 5, 6 >. In our “the white bread” example we came close to this except
the order of the last two words was exchanged, < 1, 2, 3, 4, 6, 5 >. This should
have a probability lower than 1 to 6 in order, but still relatively high.

At the other extreme, it is easy to make up alignments that should have
very low probability when we are aligning two six-word sentences. Consider
< 6, 5, 4, 3, 2, 1 > — the French sentence is ordered in the reverse of the English.
An even sillier alignment would be < 1, 1, 1, 1, 1, 1 >. This says that the entire
French translation is based upon the first word of the English, and the rest of the
English was completely ignored. There is nothing in the definition of an alignment
function that forbids this.

Even though many silly alignments should be assigned very low proba-
bilities, IBM model 1 assumes that all the ℓm possible word alignments of e
and f are equally likely! Thus removing this assumption is one of the ma-
jor improvements of more sophisticated noisy-channel models for machine
translation. In particular, this is done in IBM model 2 discussed in section
2.3.

Nevertheless, IBM model 1 does remarkably well, so let’s see how the
equal-probability assumption plays out. We now plug the IBM model 1
assumption into (2.3) and get our “model 1 equation”.

First. note that once we condition on a, we can break apart the proba-
bility of f into the probabilities for each word in f , fk. That is, we can now

DRAFT of 7 July, 2013, page 44

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 45

say

P(f | e,a) =
m∏

k=1

P(fk | ea(k)).

Substituting this into equation 2.3 gives us:

P(f | e) =
∑

a

P(a | e)
m∏

k=1

P(fk | ea(k))

= P(m | ℓ)ℓ−m
∑

a

m∏

k=1

P(fk | ea(k)). (2.4)

In (2.4) we replaced P(a | e) (the probability for alignment a) by P(m |
ℓ)ℓ−m. First. note that there are ℓm possible alignments, and they all have
the same probability. This probability is ℓ−m. However, initially we are only
“given” (condition on) e from which we can get l, its length. Thus we must
“guess” (assign a probability to)m, the length of f . Hence the term P(m | l).

Example 2.3: Suppose f = ‘Pas fumer’ and e = ‘No smoking’. Here l = m = 2,
so the probability of any one alignment is 1

4P(M = 2 | L = 2). Next consider the
length term. A plausible value for P(2 | 2) would be 0.4. That is, a substantial
fraction of French two-word sentences get translated into two-word English ones.
So the product of the terms outside the summation in 2.4 would be 0.1.

Equation 2.4 describes a generative model in that, given an English sen-
tence e, it tells us how we can generate a French sentence f along with
its associated probability. As you may remember, in Chapter 1 we talked
about a generative “story” as a good way to explain equations that describe
generative models. Here is the associated generative story .

Given a sentence e of length ℓ, we can generate a French sentence f of
length m using the following steps and their associated probabilities.

1. Choose the length m of the French sentence f . This gives us the
P(m | l) in Equation 2.4.

2. Choose a word alignment a at random from the ℓm possible alignments.
This give us the ℓ−m portion.

DRAFT of 7 July, 2013, page 45

46 CHAPTER 2. MACHINE TRANSLATION

3. Generate each French word Fk, k = 1, . . . ,m from the English word eak
it is aligned to with probability P(fk | ea(k)). (This gives us

∏m

k=1 P(fk |
ea(k)).)

This gives one way to generate f from e — the way corresponding to the
chosen alignment a. We can generate f in lots of ways, each one correspond-
ing to a different alignment. In Equation 2.4 we sum over all of these to get
the total probability of P(f |e).

From this story we see immediately that the IBM model 1 channel model
has two sets of parameters. One set is the estimate of the conditional prob-
ability P(m|ℓ) of generating a French sentence of length m from an English
sentence of length ℓ. The most straightforward way to get this is to use
the maximum likelihood estimator. First go through the parallel corpus and
count how often an English sentence of length ℓ is paired with a French
sentence of length m. In our usual way, we call this nℓ,m. Then to get the
maximum likelihood estimation we divide this by how often an English length
ℓ appears in the corpus, nℓ,◦. We call these parameters ηℓ,m = nℓ,m/nℓ,◦.

The second set of parameters is the conditional probabilities P(f |e) of
generating the French word f given that it is aligned to the English word e,
henceforth referred to as τe,f .

After substituting the model parameter estimations into our IBM model 1
equation, we get this:

P(f | e) = ηℓ,mℓ
−m
∑

a

m∏

k=1

τea(k),fk . (2.5)

All the terms of this equation are either known or easily estimated except
for the τ ’s. We turn to this next.

Example 2.4: If f is ‘J’ai acheté du pain’ then P(f | e) will be the same if e is
‘I bought some bread’ or ‘Bought I some bread’. Basically, this is a consequence
of the assumption that all alignments are equally likely. More immediately, we
can see this from Equation 2.5. Both English versions have ℓ = 4 so ηℓ,mℓ−m is
the same for both translations. Then in the first case a1 =< 1, 0, 2, 3, 4 > while
a2 =< 2, 0, 1, 3, 4 >. With these alignments the product of τea(k),fk will be the
same, differing only in the order of multiplication.

On the other hand, consider the two possible translations ‘I bought some bread’
and ‘I bought bread’. (In most cases the second of these would be the preferred
translation because the ‘du’ in the French version is grammatically obligatory. It

DRAFT of 7 July, 2013, page 46

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 47

J ’ai acheté du pain < 1, 0, 2, 3, 4 > I bought some bread
J ’ai acheté du beurre < 1, 0, 2, 3, 4 > I bought some butter
Nous devons manger le pain blanc < 1, 2, 3, 4, 6, 5 > We must eat the white bread

Figure 2.2: A word-aligned version of our toy corpus

does not have any meaning of its own and thus need not be translated.) Now the
translation model probabilities will differ. First, for comparable sentences French
tends to use more words than English by about 10%, so while η4,4 will probably
be larger than η3,4 the difference will be small. The next term, however, ℓ−m, will
be larger for the shorter English sentence (4−4 vs. 3−4). The difference in word
probabilities will be due to the difference in alignments of ‘du’ in the French to
‘some’ in the first English version and ∗N∗ in the second. Thus the first has the
term τsome,du and the second τ∗N∗,du. Both these translation pairs are reasonably
likely, but in our model τ∗N∗,du will typically be smaller because the null word
has quite a few translations but ‘some’ has fewer, and thus each one will be more
probable. Thus we would typically expect the translation model to slightly prefer
the more wordy English. On the other hand, a good English language model would
distinctly prefer the shorter English, and this would most likely tip the balance in
favor of ‘I bought bread’.

2.2.1 Estimating IBM model 1 parameters with EM

We attack the τ problem by noting that it would be easy to estimate τ from
a word-aligned parallel corpus, i.e., a corpus that specifies the word alignment
a for the English-French sentences. Figure 2.2 shows such an alignment for
our toy corpus.

Note how the alignment allows us to read off how often each French word
is paired with each English, and from that it is easy to get a maximum
likelihood estimate of all the τe,f . The maximum likelihood estimator for τe,f
is just the number of times e aligns to f divided by the number of times e
aligns with anything. Or, more formally:

ne,f (a) =
∑

k:fk=f

[[eak = e]] . (2.6)

where [[condition]] is the indicator function for condition, i.e., it is 1 if
condition is true and 0 otherwise. Then the maximum likelihood estima-

DRAFT of 7 July, 2013, page 47

48 CHAPTER 2. MACHINE TRANSLATION

tor τ is just the relative frequency, i.e.:

τ̂e,f =
ne,f (a)

ne,◦(a)
(2.7)

where ne,◦ =
∑

f ne,f (a) is the number of times that e is aligned to any
French word in a (this is not necessarily the same as the number of times
e appears in the training corpus). These two equations combine to say, in
effect: go through the corpus counting how often e aligns with f and then
take the maximum likelihood estimate to get the corresponding probability.

Example 2.5: In Figure 2.2 all the τ ’s are 1, because each English word is
aligned to a unique French word. Suppose that we made a mistake and aligned
‘bread’ with ‘must’ in the third sentence. Then τbread,pain would be 1

2 because
bread is aligned with pain once, and bread is paired with anything two times.

Now, let us suppose that the folks who created our word-aligned corpus
were not always confident that they could align the words correctly and that
when they were unsure they labeled alignments with probabilities: e.g., they
think e2 aligns with f2, but it might be e1, so they assign a probability of 0.9
to the first and 0.1 to the second. What do we do when the alignments are
not yes or no, but more or less confident?

There are several possibilities. One is simply to ignore any alignment with
confidence less than some threshold, say 0.8. If we had more word-aligned
data than we could use, this would be a reasonable thing to do. However,
this is never the case, so if there is useful information in our data we should
try to extract it. And there is a lot of useful information in alignments even
when they are quite uncertain. Suppose the aligner knows that in some ten-
word sentence f1 aligns with either e1 or e2, but is completely unsure which,
so they both get probability 0.5. Note that without this information we were
much more uncertain. In IBM model 1, since all alignments are equally likely,
those two alignments would have had probability 0.1 each (since there were
ten words in the sentence). So even a 50-50 split is useful.

We are now poised to introduce the first of two key insights of the so-
called Expectation Maximization algorithm, EM. In a case like the above we
split the alignment counts Ne,f according to their probabilities. In the 50-50
split case both ne1,f1 and ne2,f1 get a 0.5 “count”. When we split counts like
this we call them fractional counts or partial counts.

DRAFT of 7 July, 2013, page 48

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 49

English French Sentences τ 2e,f
1 2 3

bought pain 1/2 1/4
bought acheté 1/2 1/2 1/2
bread pain 1/2 1/2 1/2
bread acheté 1/2 1/4
bought beurre 1/2 1/4
butter acheté 1/2 1/2
butter beurre 1/2 1/2
eat pain 1/2 1/2
eat manger 1/2 1/2
bread manger 1/2 1/4

Figure 2.3: Partial counts for English-French word pairs in three sentences

Example 2.6: Suppose we have some annotators align our three-sentence par-
allel corpus. For some reason they align ‘acheté’ with equal probability to both
‘bought’ and ‘bread’ in the first sentence. Similarly, ‘pain’ is also aligned with
equal probability to these two. The same sort of confusion occurs in the second
sentence, except now it is ‘acheté/beurre’ and ‘bought/butter’. In the third sen-
tences it is ‘manger/pain’ and ‘eat/bread’. Figure 2.3 shows the partial counts
we get for these word pairs. For example, the first line starting with ‘bought’
indicates that it is aligned with ‘pain’ 0.5 times in sentence one, and not at all in
the other two sentences. Looking down the columns, we see that each sentence is
responsible for a total of two counts. (Because we are assuming all the other words
are unambiguous we are ignoring them. In effect assuming that the sentences only
include the ambiguous words.)

The last column gives the second iteration τ2e,f that is computed from these
partial counts. (We occasionally use superscripts on parameter values to indicate
the iteration in which they apply. In the first iteration all of the τs were equal and
the new τ2’s are used in the second iteration.) For example,

τ2bought,pain =
nbought,pain

nbought,◦

=
1/2

1/2 + 1/2 + 1/2 + 1/2
= 1/4.

Again, note that by this point EM is preferring ‘bought/acheté’ over any of the
other translations of ‘bought’, and similarly for ‘bread’ and ‘pain’. On the other
hand, the translations for ‘butter’ and ‘eat’ have not been clarified. This is because

DRAFT of 7 July, 2013, page 49

50 CHAPTER 2. MACHINE TRANSLATION

each of these words appears only in a single sentence, so there is no way to get
disambiguation from other sentences.

In the EM algorithm we take this to an extreme and pretend that initially
our annotaters gave each f -e alignment an equal probability. So for a ten-
word English sentence each fractional count would be 0.1. (Actually, it need
not necessarily be uniform, but when you don’t know anything, uniform
is most often the best thing to try.) Then after going through the corpus
summing up the fractional counts, we set the τ parameters to the maximum
likelihood estimates from the counts, just as if they were “real”.

Now we introduce the second key idea. The parameters we have just ob-
tained should be much better than our original assumption that everything
was equally likely, so we repeat the process, but now using the new proba-
bilities. And so on. That is to say, EM is an iterative algorithm in which
we start with a very bad (e.g., uniform) distribution of our τs and at each
iteration replace them with the ML estimate from the previous iteration. In
Section 2.2.3, after seeing that EM actually works, we give an analysis of
what EM is doing from a mathematical point of view.

To make this complete we just need the equation for computing fractional
counts when we have just probabilistic information about who is aligned with
whom. For the moment we give it without mathematical justification:

nej ,fk+ =
τej ,fk
pk

(2.8)

where
pk =

∑

j

τej ,fk (2.9)

That is, within each sentence and for each French word fk, we add to our
running total of nej ,fk the term on the right-hand side of Equation 2.8. (We
implicitly assume that j runs over only the English words in the sentence
aligned with f .) This term is our estimate for the probability that fk is the
translation of our English word ej divided by the total probability that it
translates any of the English words in the corresponding sentence (pk).

Actually, what we are computing here is the expected number of times
our generative model aligns fk with ej given our data, that is,

E[ne,f | e,f].

We come back to this point in Section 2.2.3 where we derive Equation 2.8
from first principles.

DRAFT of 7 July, 2013, page 50

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 51

English French Sentences τ 2e,f
1 2 3

bought pain 1/2 2/11
bought acheté 1/2 1/2 7/11
bread pain 1/2 1/2 7/11
bread acheté 1/2 2/11
bought beurre 1/3 2/11
butter acheté 1/2 3/7
butter beurre 2/3 4/7
eat pain 1/2 3/7
eat manger 2/3 4/7
bread manger 1/3 2/11

Figure 2.4: Partial counts for English-French word pairs on the second iter-
ation

Example 2.7: The previous example (see Figure 2.3) followed the EM algorithm
though its first iteration, culminating in a new τ . Here we go though the second
iteration (see Figure 2.4). As before, we go though the sentences computing ne,f

for each word pair. Again, to take a single example, consider Nbought,acheté for the
first sentence.

pacheté =
∑

j

τj,acheté

= τbread,acheté + τbought,acheté

= 1/4 + 1/2

= 3/4

nbought,achete =
τbought,acheté

pacheté

=
1/2

3/4

= 2/3

Thus we arrive at the EM algorithm for estimating the τ parameters of
IBM model 1 shown in Figure 2.5 To keep things simple we have written the
algorithm as if there were only one French/English sentence pair, and show
how we compute the expectations for that single sentence. In reality we also
iterate on all sentence pairs, to sum the expectations.

DRAFT of 7 July, 2013, page 51

52 CHAPTER 2. MACHINE TRANSLATION

1. Pick positive initial values for τe,f for all English words e and all French
words f (equal is best).

2. For i = 1, 2, . . . until convergence (see below) do:

(a) E-step:
Set ne,f = 0 for all English words e and French words f .
For each French word position k = 1, . . . ,m do:

i. Set pk =
∑l

j=0 τej ,fk , where j are the positions of the English
words in the same sentence pair as fk.

ii. For each 0 ≤ j ≤ l, increment nej ,fk+= τej ,fk/pk

(ne,f now contains the expected number of times e aligns with f)

(b) M-step:
Set τe,f = ne,f/ne,◦, where ne,◦ =

∑
f ne,f .

Figure 2.5: EM algorithm for IBM model 1 inference

A few points about this algorithm. First, we can now understand why
this is called the Expectation Maximization algorithm. Each iteration has
two steps. We use the previous estimate τ (i−1) of the parameters to compute
the expected value of the statistics ne,f . Then we set τ (i) to the maximum
likelihood estimate using those expected values.

Second, the algorithm says to iterate until “convergence.” The EM al-
gorithm finds values of the hidden parameters that correspond to a local
maximum of the likelihood.

Ld(Φ) ∝
m∏

k=1

pk. (2.10)

That is the likelyhood of the data is a constant times the product of the pks
where the constant is dependent only on the English strings. After a few
iterations neither the likelihood nor the τ s change much from one iteration
to the next. Since we need to compute the pk’s in the inner loop anyway,
keeping track of the likelihood at each iteration is a good way to measure
this “convergence”. We set a threshold, say 1%, and when the likelihood
changes less than this threshold from one iteration to the next we stop. (As
you might expect, multiplying all of these probabilities together produces a

DRAFT of 7 July, 2013, page 52

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 53

very small number. Thus it is better to compute the log of the likelihood by
adding the log pk’s.)

Also, while in general EM is guaranteed only to find a local maximum,
in our present application the likelihood of Equation 2.10 is unimodal — it
only has one maximum. Therefore in this case we find a global maximum.

Example 2.8: Figures 2.3 and 2.4 followed EM through two iterations on a
simple example, where all the alignments were certain except those for ‘pain’,
‘acheté’, ‘buerre’,and ‘manger’. Let us compute the likelihood of our data with the
τ we computed after the first and second iterations to check that the likelihood
of our training corpus is indeed increasing. Equation 2.10 tells us to take the
product of the pk for the position k of every French word in the corpus. First note
that pk = 1 for all French words k that we assumed were correctly and uniquely
aligned, e.g. ‘j’, ‘ai’ ‘le’, etc. So these can be ignored. All we need to do is look
at the pks for all occurrences of the four French words that were originally labeled
ambiguously. However, rather than do them all, let’s just consider the pacheté in
the first sentence. First for the τ after the first iteration:

pacheté = τacheté,bought + τacheté,bread

= 1/2 + 1/4

= 3/4.

For the τ we get after the second iteration

pacheté = 2/3 + 1/3

= 1.

So this pk increases. As it turns out, they all either increase or remain the same.

2.2.2 An extended example

Figure 2.6 shows the estimated IBM model 1 parameters τe,pain for several
English words e, trained on some sections of the Canadian Hansard’s. We
show these values after several different iterations of EM.

In the first iteration there is good news and bad news. The good news is
that τbread,pain comes out with a relatively high value. For example, ‘bread’
at 0.04 is considerably higher than ‘spirit’ at 0.001. However, the program
does not do too well distinguishing ‘bread’ from related words that appear
along with bread, such as ‘baked’, not to mention some seemingly random
words like ‘drudgery’, which at 0.048 seems way too high. And, of course, the

DRAFT of 7 July, 2013, page 53

54 CHAPTER 2. MACHINE TRANSLATION

English word Iteration 1 Iteration 2 Iteration 19 Iteration 20
bread 0.042 0.138 0.3712 0.3710
drudgery 0.048 0.055 0.0 0.0
enslaved 0.048 0.055 0.0 0.0
loaf 0.038 0.100 0.17561 0.17571
spirit 0.001 0.0 0.0 0.0
mouths 0.017 0.055 0.13292 0.13298

Figure 2.6: Probabilities for English words translating as ‘pain’

probability for ‘bread’ in Figure 2.6 is much too low. The actual probability
of translating ‘bread’ as ‘pain’ is close to 1, say 0.9.

We now move on to a second iteration. Now the probability of ‘pain’
given ‘bread’ has gone up by better than a factor of three (from 0.042 to
0.138). Spirit fell off the map, but ‘drudgery’ and ‘enslaved’ went up, though
only slightly.

Having done this twice, there is nothing stopping us from repeating this
process ad infinitum, except after a while there is not much change from one
iteration to the next. After twenty iterations of EM ‘pain’ is the translation
of ‘bread’ 37% of the time. This is very good compared to the first iteration,
but it is still too low. ‘Drudgery’ and ‘enslaved’ have properly gone to zero.
‘Loaf’ can be translated as ‘pain’, but the probability of 15% is probably
too high. This is because ‘loaf of bread’ would usually be translated as just
‘pain.’ ‘Mouths’ is definitely an artifact of some funny sentences somewhere.

We added an extra level of precision to the numbers for iterations 19 and
20 to show that the changes from one iteration are becoming quite small.

2.2.3 The mathematics of IBM 1 EM

The EM algorithm follows from a theorem of statistics which goes roughly
as follows. Suppose you have a generative model that depends on hidden
parameters (in our case, the τs). Initially make nonzero guesses about the
values of these parameters. Imagine actually generating all of the data ac-
cording to these parameters. In so doing, each of the τs will be used an
estimated number of times Eτ . After going through our data we reset the τ ’s
to their maximum likelihood value according to these estimates. This can be
iterated. The theorem states that as you iterate the τs will monotonically
approach a set that gives a local maximum for the likelihood of the data. (It

DRAFT of 7 July, 2013, page 54

2.2. THE IBM MODEL 1 NOISY-CHANNEL MODEL 55

is also possible to get stuck in a saddle-point, but we ignore that here.)
A quick comparison of the above description with the EM algorithm as

shown on Page 52 should convince you that it is correct, provided that what
we there labeled the e-step indeed computes expectation for the τ ’s. That is
what we prove in this section.

We first start with a clear formulation of what the expectation is that we
are computing at each iteration i:

n
(i)
e,f = Eτ (i−1) [ne,f | e,f] =

∑

a

ne,f (a) Pτ (i−1)(a | e,f). (2.11)

The first equality makes it clear that at iteration i we compute the expecta-
tion according to the τ we obtained at the previous iteration. (For the first
iteration we just use the initial, all equal τs.) The second equality comes
from the definition of expectation. Here ne,f (a) is the number of times f is
aligned with e in the alignment a defined in Equation 2.6 and repeated here:

ne,f (a) =
∑

k:fk=f

[[eak = e]] .

So the right hand side says what we would expect (excuse the pun), that the
expectation is the number of times we align e and f in an alignment times
the probability of that alignment.

Unfortunately, the computation is intractable as expressed above because
it sums over all alignments. This number grows exponentially in the length
of a. We now show how the non-exponential computation we gave in our
EM algorithm is equivalent.

We do this in two steps. First we show how the expectation can be
reformulated as follows:

Eτ [ne,f | e,f] =
∑

k:fk=f

∑

j:ej=e

Pτ (Ak = j | e,f). (2.12)

Note that in this equation there is no iteration over all a. Instead, it tells
us to march through each French word position k computing the sum on the
right. This is what we do when the EM algorithm says “For each French
word position k ...”. Also, note that it is intuitively quite reasonable: it says
that the expected number of times the English word type e is aligned with
French word type f is the sum of the probabilities of any English token ej of
type e being aligned with any French token fk of type f .

DRAFT of 7 July, 2013, page 55

56 CHAPTER 2. MACHINE TRANSLATION

Then we show that for IBM model 1:

Pτ (Ak = j | e,f) =
τej ,fk∑l

j′=0 τej′ ,fk
. (2.13)

The j′ in the denominator ranges over the word positions in the corresponding
English sentence.

In many applications EM is quite sensitive to its initial parameter values.
But, as remarked above, the likelihood function (2.10) for IBM model 1 is
unimodal, which means that in this particular case it is not that important
how τ is initialized. You can initialize it with random positive values, but
setting them all equal is typically best.

So now we turn our attention to the two equations (2.12) and (2.13) used
in the derivation of the EM algorithm above. Combining (2.6) and (2.11)
and reordering the summation, we have:

E[ne,f |e,f] =
∑

a

∑

k:fk=f

[[eak = e]] P(a | e,f)

=
∑

k:fk=f

∑

a

[[eak = e]] P(ak | e,f) P(a−k | e,f , ak).

where a−k is the vector of word alignments for all words except fk (i.e., a−k

is a with ak removed). Splitting the sum over a into a sum over ak and a−k

and rearranging the terms, we have:

E[ne,f |e,f] =
∑

k:fk=f

∑

ak

∑

a−k

[[eak = e]] P(ak | e,f) P(a−k | e,f , ak)

=
∑

k:fk=f

∑

ak

(
[[eak = e]] P(ak | e,f)

∑

a−k

P(a−k | e,f , ak)
)

=
∑

k:fk=f

∑

ak

[[eak = e]] P(ak | e,f)

=
∑

k:fk=f

∑

j:ej=e

P(Ak=j | e,f).

We get the third line here because
∑

a−k
P(a−k | e,f , ak) = 1. All the terms

we are conditioning on are constants as far as the summation is concerned
and the sum of any probability distribution over all possible outcomes is 1.
Next, notice that nothing in this version depends on the entire a, just ak.
From this the final line follows, and this is equation 2.12.

DRAFT of 7 July, 2013, page 56

2.3. IBM MODEL 2 57

When we turn to IBMmodel 2 we reuse this result, so we need to point out
several aspects of the equation that will become important. First, the words
that we are translating appear only in the summation. What we actually
compute is the probability of the alignment. The words tell us then which
ne,f bin gets incremented.

Second, we note that only one IBM model 1 assumption was used to
get here: that each French word is generated by zero or one English words.
It is this assumption that allows us to characterize all the important hidden
information in the alignment vector random variableA. Or, to put it another
way, alignments would not make much sense if several English words were
allowed to combine to form a French one. On the other hand, we did not
use the second major assumption, that all alignments have equal probability.
Thus Equation 2.12’s reuse is allowed when the latter assumption is relaxed.

Turning to Equation 2.13, we first use the postulate that IBM model 1
alignments of French word fk do not depend on the alignments of any other
French words, so:

P(Ak=j | e,f) = P(Ak=j | e, fk).

By Bayes’ rule we have:

P(Ak=j | e, fk) =
P(fk | Ak=j, e) P(Ak=j | e)

P(fk | e)
(2.14)

=
P(fk | Ak=j, ej) P(Ak=j | e)∑
j′ P(fk | Ak=j′, ej′) P(Ak=j′ | e)

. (2.15)

In IBMmodel 1 all alignments are equally likely, i.e., P(Ak=j|e) = P(Ak=j′|e),
so:

P(Ak=j | e,f) =
P(fk | Ak=j, ej)∑
j′ P(fk | Ak=j′, ej′)

=
τej ,fk∑
j′ τej′ ,fk

. (2.16)

which is Equation 2.8. Note that we have just used the all-alignments-are-
equiprobable assumption.

2.3 IBM model 2

So far we have assumed that the probabilities of all alignments a are the
same. As this is not a very good assumption, IBM model 2 replaces it with

DRAFT of 7 July, 2013, page 57

58 CHAPTER 2. MACHINE TRANSLATION

the assumption that a word at position k in the source language (French)
will be moved to position j in the target with probability P(Ai = j|k, l,m),
where as before l and m are the lengths of the English and French sentences
respectively. Once we add these probabilities to our equations, we let EM
estimate them, just like the word translation probabilities.

To see precisely how this works, let us go back and remember where the
offending assumption (all alignments are equally likely) was introduced into
our equations:

P (f | e) =
∑

a

P (f ,a | e) (2.17)

=
∑

a

P (a | e) P (f | a, e)

= P(m | l)l−m
∑

a

P (f | a, e).

It is in the last equation that we replaced P (a | e) with P(m | l)l−m. We
back out of this assumption by reverting to the previous equation, so we now
need to compute P(a | e). We get our formula for this as follows:

P (a | e) = P(m | l) P (a | l,m)

= P(m | l)
m∏

i=1

P(Ai = j | i, l,m).

The first line assumes that the only thing the alignment probability takes
from the English sentence is its length. The second line assumes that each
alignment probability is independent of the others, and thus the probabil-
ity of the total alignment is just the product of the individual alignment
probabilities.

So IBM model 2 needs a new set of parameters δj,k,l,m that are estimates
of P (Ak = j | k, l,m), the probability that the French word in position k is
aligned with the English word in position j given the position of the French
word (k) and the lengths of the two sentences (l,m). These parameters are
often called the distortion probabilities, whence the use of the Greek letter δ:

P (a | e) = ηl,m

m∏

k=1

δj,k,l,m. (2.18)

DRAFT of 7 July, 2013, page 58

2.3. IBM MODEL 2 59

Example 2.9: Suppose we have the two sentences ‘The white bread’ and ‘Le pain blanc’
with the alignment a =< 1, 3, 2 >. Then

P (a | e) = η3,3 · δ1,1,3,3 · δ2,3,3,3 · δ3,2,3,3. (2.19)

Example 2.10: Suppose we have a French sentence of length 10 and we are
looking at the second word. Our English sentence is of length 9. The distortion
parameter for the case that A2 = 2 is δ2,2,9,10. A reasonable value of this parameter
would be around 0.2. We would expect this to be much larger than say, δ7,2,10,9,
which might be, say, 0.01.

Example 2.11: Some combinations of δ parameters cannot correspond to any
real situation and thus have probability zero, e.g. δ20,2,10,9. The second French
word cannot be aligned to the twentieth English one when the English sentence
has only nine words. We condition on the sentence lengths so as not to assign
probability mass to such parameters.

In practice it is often convenient to index distortion probabilities on both
word positions and length of the French sentence, but not the English When
we actually use them to translate we will know the former but not the latter,
at least not until the translation is completed.

Example 2.12: The assumption that the alignment probabilities are indepen-
dent of each other is not a very good one. To give a specific example, both French
and English allow prepositional phrases like ‘last Tuesday’ to migrate to the be-
ginning of a sentence. In English we have:

I will write the letter next week.
Next week I will write the letter.

Think about the “alignment” of these two sentences (i.e., think of the first one as
the French sentence). The correct alignment is < 3, 4, 5, 6, 1, 2 >. In general, the
probability that A6 = 2, as here, is low. However, if we knew that A5 = 1, then it
is much more likely. So distortion probabilities are not really independent of each
other. In section 3.7 we show a clever way to handle these dependencies. For now
we simply note that, although assuming that alignment probabilities are mutually
independent is not great, it is certainly better than assuming they are all equal.

If we now substitute our alignment probability from Equation 2.18 into
Equation 2.18, we get:

P (f | e) =
∑

a

P (a | e) P (f | a, e)

= ηl,m
∑

a

m∏

k=1

δak,k,l,m τeak ,fi . (2.20)

DRAFT of 7 July, 2013, page 59

60 CHAPTER 2. MACHINE TRANSLATION

Note how similar this new equation is to our IBMmodel 1 equation, Equa-
tion 2.5. Before we multiplied all of the translation probabilities together.
Now we do the same thing, but multiply in one alignment probability for
each translation probability. Furthermore, this similarity carries over to our
fractional count equation. The new equation replacing Equation 2.9 makes
the identical transformation:

neak ,fk
+ =

τeak ,fk δak,k,l,m∑ℓ

j′=0 τej′ ,fk δj′,k,l,m
. (2.21)

Thus to learn IBM model 2 parameters we do the same thing we did for
IBM 1, with some small differences. First, we need to pick initial values for δ
as well (all equal as before). Second, to get the fractional counts we multiply
in the δs as in Equation 2.21. Last, the fractional counts thus obtained are
used to get new counts not only for the τ but for the δ as well.

Once we have the proof that we have correctly computed model 1 expected
counts, only a small change will show that model 2 is correct as well. Note
that the assumption that all alignments were equal came in only at the very
last step, going from Equation 2.15 to Equation 2.16. But for model 2 we
have:

P(Ak=j|e,m) 6= P(Ak=j′|e,m)

= δj,k,l,m.

Substituting the δs into Equation 2.16, we get Equation 2.21 and we are
done.

As we have already noted, in general EM is not guaranteed to find esti-
mates of the parameters that maximize the probability of the data. It may
find a local maximum but not the global one. As remarked in Section 2.2.3,
IBM 1 has only has one maximum and thus we are guaranteed to find it as
long as none of the initial estimates are zero. This is not true for IBM 2 —
the initial estimates matter.

In practice, we start EM ignoring the δs. That is, we set them all equal,
but do not update them for several iterations — long enough for the τs to
be “burned in” with reasonable values. Only then do we start collecting
fractional counts for the δs and resetting them in the E-step. In practice this
tends to find very good estimates.

DRAFT of 7 July, 2013, page 60

2.4. PHRASAL MACHINE TRANSLATION 61

bread •
the •
eat •
not • •
do
I •

Je ne mange pas le pain

Figure 2.7: A graph of the alignment for the (f)/(e) pair
‘Je ne mange pas le pain’ and ‘I do not eat the bread’

2.4 Phrasal machine translation

Beyond IBM model 2 lie 3, 4, and 5. While they are important, certainly the
most important difference between the MT we have presented and MT as it
is practiced today is the introduction of phrases into machine translation —
something not found in any of the IBM models.

You remember that IBM models 1 and 2 share the assumption that each
French word is triggered by exactly one English word. This is captured by
the alignments we introduced early in our discussion. Each alignment ties a
French word to one, and only one English word (though it may be the null
word).

Unfortunately, this assumption is far from correct. Consider the following
(f)/(e) pair:

Je ne mange pas le pain
I do not eat the bread

The best alignment is:

< 1, 3, 4, 3, 5, 6 >

‘Je’, ‘mange’, ‘le’, and ‘pain’ align with ‘I’, ‘eat’, ‘the’ and ‘bread’ respec-
tively. Both ‘ne’ and ‘pas’ align with ‘not’. Figure 2.7 shows a graph of this
alignment, with the French words along the x axis and the English along the
y axis. We have put a dot at the (x, y) position when ax = y.

Notice that nothing aligns with the English word ‘do’. This is problematic
when we want to decode, and here is where phrasal alignments kick in. We
start the same way, but then we also do the reverse alignment — align each

DRAFT of 7 July, 2013, page 61

62 CHAPTER 2. MACHINE TRANSLATION

bread •+
the •+
eat •+
not • •+
do +
I •+

Je ne mange pas le pain

Figure 2.8: Both English to French and French to English alignments

English word to exactly one French word. We do this by creating a second
noisy-channel model, this time for computing P(e | f) rather than the P(f |
e) we have been computing so far. Nothing in the IBM models cares about
which language is which, so in principle this should be as simple as flipping
the sentence pairs in the parallel corpus.

Going back to our ‘do’ example, an English-to-French alignment might
be:

< 1, 2, 4, 3, 5, 6 >

This is similar to the French-to-English, except this time we are forced to
align ‘do’ with something. In our example we have chosen to align it with
‘ne’. (Another possibility would be to align it to the null French word. This
choice is not critical to our discussion.)

In Figure 2.8 we superpose the two alignments, representing the second
alignment with the +’s. The figure clarifies a few things. First, ‘Je/I’,
‘le/the’, and ‘pain/bread’ are in good shape. In each case there is a one-for-
one alignment, and furthermore the alignment matches up with the words
on at least one side. By this we mean that ‘Je’ and ‘I’ are both preceded
by the start of sentence, ‘le’ and ‘the’ are both followed by words that are
themselves aligned (‘pain’ and ‘bread’), and these last two words are preceded
by aligned words and followed by the end of the sentence. This suggests that
these words are reasonably translated in a one-to-one fashion.

None of the other words have this property. In particular, the relation
between ‘ne mange pas’ and ‘do not eat’ is messy, and the words at their ends
do not match up nicely with the words that precede/follow them. On the
other hand, suppose we treat ‘ne mange pas’ as a single phrase that should
be translated into ‘do not eat’ as a whole, not word for word. While the
words within it do not match up very well, the phrases ‘ne mange pas’ and

DRAFT of 7 July, 2013, page 62

2.5. DECODING 63

‘do not eat’ match well in exactly the same way that the ‘good’ words do:
they are preceded and followed by good matches. That is the second key
idea of phrasal MT — use graphs like that in Figure 2.8 as clues that some
sequence of words should be aligned not individually but as phrases. We
then keep alignment counts for these phrases, just as we did for individual
words. Finally, at decoding time we treat such phrases as if they were single
words.

Unfortunately, this simple version of phrasal MT does not work very
well. We show here two ways in which we have grossly oversimplified things.
First, the example in Figure 2.8 was deliberately chosen to be simple. In real
examples, the graph of alignment pairs can get very messy and our vague de-
scription of how to find phrases would end up, say, aligning entire sentences
as a single phrase. Second, even if we are lucky and never get phrases longer
than, say, four words, the number of four-word phrases is very, very large,
and there are not sufficient parallel corpora for us to collect statistics on even
a fraction of what can occur. So we do not see merely ‘ne mange pas’ and
‘do not eat’. Virtually any French verb and its English translation could be
substituted here. What we really need to do is recognize that there is a pat-
tern of the form ‘ne french verb pas’ that becomes ‘do not English verb’.
This is exactly what a real implementation does, but exactly how it works
differs from system to system.

Actually, what we ought to do is to consider all possible phrasal transla-
tions and then, say, use EM to pick out good ones, just as we did for single
words. Unfortunately this is not possible. Suppose we have a FE pair with
each sentence thirty words long. How many phrasal pairs are there? Well, if
we assume that phrases are always made up of contiguous words, there are
229 possible phrases for the English, and the same number for the French.
(Show this!) If each English phrase can align with any of the French ones,
we get 229 squared possibilities, or 258 combinations. This is a seriously big
number. So any method, such as EM, that requires simultaneously storing
all expectations is out of the question. We come back to this point near the
end of the book.

2.5 Decoding

There is, of course, one major problem with our MT efforts so far. We
can gather probabilities, but we don’t know how to use them to translate

DRAFT of 7 July, 2013, page 63

64 CHAPTER 2. MACHINE TRANSLATION

anything.

In this section we rectify this situation. However, rather than calling this
section “translation,” we call it “decoding,” as this is what it is called in the
MT community. The reason for this odd nomenclature is the origin of our
fundamental theorem of MT, Equation 2.1, which is a particular instance of
the noisy-channel model. As its name implies, the noisy-channel model was
invented to overcome problems of noise on a communication channel. The
key to all solutions to this problem is to encode the message in some way
so as to make it possible to reconstruct the message even if noise obliterates
portions of it. The process of finding the message from the coded version
sent over the channel is, naturally enough, called “decoding.” Since when
viewed as a noisy-channel problem MT imagines that a message originally
written in our target, say English, arrived written in the source, say French,
the problem of getting the English from the French is thus a “decoding”
problem.

The MT decoding problem is, in its most general form, very difficult.
Consider again the MT fundamental equation (2.1) repeated here:

argmax
e

P (e | f) = argmax
e

P (e)P (f | e).

We have now shown how to get the required language model P (e) and trans-
lation model P (f | f), but solving the equation requires iterating over all
possible English sentences — a daunting task. (For those of you who have
taken a computational theory class, the problem is NP-hard.)

2.5.1 Really dumb decoding

As a general rule it is almost always worth doing something really simple
before trying to do something very hard. Sometimes the dumb method works
and you save a lot of work. More often it doesn’t, but you gain some insight
into the problem.

Here is our first feeble attempt. All this time we have been using EM to
estimate P (f | e). Let’s redo the programs to compute P (e | f). We then
take our French sentence and for each French word substitute the English
word t(fi) which we define as

t(fi) = argmax
e

P (e | fi).

DRAFT of 7 July, 2013, page 64

2.5. DECODING 65

So t(fi) is a function from a French word fi to the English word e that is its
most likely translation out of context. Then the translation of the sentence
f is the concatenation of t(fi) for 1 ≤ i ≤ m. Now the τ ’s estimate P (e | f)
rather than P (f | e). Finding these is really easy. Just take the program
you had earlier, and switch the input files! That’s it.

Unfortunately the results are pretty bad.

Example 2.13: Looking at the output of such a very simple decoder is a good
way to appreciate the complexities of MT. We start with an example where things
go relatively well, and then descend rapidly into the realm of unfunny machine-
translation jokes. (The classic, which is surely apocryphal, is that the Russian
equivalent of “The spirit is willing but the flesh is weak” came out as “The vodka
is good but the meat is rotten”.)

English: That is quite substantial .
French: Ce est une somme considerable .
MT output: That is a amount considerable .

Here the program got it right except for the reversal of ‘amount considerable’.

English: I disagree with the argument advanced by the minister .
French: Je ne partage pas le avis de le ministre .
MT output: I not share not the think of the Minister .

‘Je ne partage pas’ means ‘I do not share.’ However, the split ‘ne’ and ‘pas’ both
get translated as ‘not’, and the ‘do’ in the English version, which from the French
point of view would be spurious, is not included. ‘Avis’ means ‘opinion’, but one
can easily imagine that it gets translated into a phrase like ‘I think’.

English: I believe he is looking into the matter .
French: Je crois que il est en train de etudier la question .
MT output: I think that he is in doing of look the question .

‘En train de’ means ‘in the process of’ but comes out as ‘in doing of’.

English: My question very briefly is this .
French: Voici tres brièvement de quoi il se agit .
MT output: : very briefly of what he is point .

We thought ending with ‘voici’ (‘this’) being translated as a colon would be a nice
touch.

DRAFT of 7 July, 2013, page 65

66 CHAPTER 2. MACHINE TRANSLATION

2.5.2 IBM model 2 decoding

So really simple techniques do not work and we must turn to complicated
ones. To make things more concrete, we consider a decoder for IBM model
2. Unfortunately, while there are standard IBM models 1 to 5, there is no
such thing as a standard decoder for any of them. What we present is as
typical as any, but we cannot say anything stronger.

In one sense, decoding is simple. If we substitute Equation 2.20 into the
MT fundamental theorem, we get:

argmax
e

ηl,m
∑

a

m∏

k=1

δak,k,l,m τeak ,fi . (2.22)

Thus decoding “reduces” to testing every possible English sentence and see-
ing which one is the arg max required in Equation 2.22.

Of course, this is not possible. Even if we restrict consideration to English
sentences no longer than the French one, the number of such sentences grows
exponentially with the lengths of the sentences involved. Furthermore, the
problem is “NP hard” — it is (almost certainly) inherently exponential.

We have then a search problem — finding the needle in the haystack.
Fortunately, we computational linguists are not the only people with search
problems. A whole branch of artificial intelligence is devoted to them —
heuristic search. More formally, we have a problem (constructing a sentence)
that requires many steps to complete (selecting English words). There may
be many possible solutions, in which case we have an evaluation metric for
the quality of the solution. We need to search the space of partial solutions
(S) until we find the optimal total solution (the e with highest P(e | f).
That is, we have an algorithm something like that in Figure 2.9.

While this is very sketchy, several assumptions are built into it. First,
we need to recognize a full translation when we see it. This is simple if our
partial solutions record which French words have been assigned an English
one. When they all have we are done. Second, we assume that the first
solution we find is either the best or tied for the best. We come back to this
point in a moment. Third, we assume that partial solutions fill in English
words from left to right. That is, we never try to guess, say, the second word
of the translation until the partial solution has already guessed the first.
Nearly all MT decoding algorithms do things this way because it makes
computing a n-gram language model P(E) easy.

DRAFT of 7 July, 2013, page 66

2.5. DECODING 67

1. add the empty partial solution (no words translated) to S

2. repeat until termination

(a) pick the partial solutions s ∈ S with maximum h(s)

(b) if s is a full solution, return it and stop

(c) remove s from S

(d) make copies of s (s′) each with a different next possible English
word e′

(e) add all s′ to S

Figure 2.9: A* algorithm for IBM model 2 decoding

Lastly, we have assumed some function h(s) that picks the partial solution
to do next. There is no perfect way of always picking the best s to work on
next, so h is a heuristic — a method that is not perfect but is much better
than chance. Finding a good heuristic is the critical step — thus the name
“heuristic search.” A simple (but not very good) method would be next to
expand the solution with the highest probability according to Equation 2.22.
We come back to this later.

This algorithm is an instantiation of a general method named “A*” (pro-
nounced a-star). In A* h(s′) is expected to return an estimate of the best
solution emanating from s′. Note that if the heuristic is optimistic the first
solution found is always the (or “a”) best one. The reasoning is that when
a complete solution is most highly ranked, all the incomplete ones have op-
timistic scores, and thus were we to expand them their values could only go
down.

To make this all work we define a state s as a three-tuple < h, e,f >.
Here h is s’s heuristic score, e is the vector of English words, and f is a set of
the French words that have been translated so far. Note that while e starts
at the beginning of the English, f will not be in any particular order since
the first English words need not align to the first French ones.

Actually, in our haste we said that we add a new English word to s. This
is not necessary. What is necessary is that we add a new French word f to f .
We could decide to align f to an existing member of e since this is allowed in
both IBM models 1 and 2. When f includes all of the words in the sentence

DRAFT of 7 July, 2013, page 67

68 CHAPTER 2. MACHINE TRANSLATION

to be translated, we have a full solution.
The really difficult part of all of this is finding a good heuristic. An

obvious one is the probability estimate for the solution so far according to
Equation 2.22. This is better than picking an s at random, but is is still
very poor. Note that this value gets exponentially smaller with the length
of the partial solution. This means, for example, that the algorithm would
keep considering alternative ways to put together two-word sequences to
avoid lowering the probability by looking at a third word. Or again, we said
that h(s) is an estimate of the quality (probability) of the best final state
descending from s. The probability of the current sequence is a very poor
estimate of this.

Example 2.14: Suppose that the correct translation of some sentence is “This
will reverberate for a while.” ‘Reverberate’ is an uncommon word, and the bigram
probability P(‘reverberate’ | will) is low, say 10−5. Thus the probability of the
English string so far will go down expeditiously as soon as it is translated. With
the probability-so-far heuristic the program would try to put off translating it as
long as possible, perhaps heading toward a solution like “For a while this will
reverberate.”

So finding a good heuristic is the heart of the MT decoding problem and
the literature is large. One method, stack decoding, gives up on the idea of
always looking at the best partial solution, and instead keeps multiple sets
of solutions, one for each length English string. The algorithm then always
divides its time between the lengths so that the longer ones are always being
expanded.

Alternatively, we can find a better h. According to Equation 2.22, for
each English word (roughly) there will be a probability τ of it generating
a French word, a distortion δ depending on relative word positions, and a
bigram probability P(ei | ei−1) for the language model. To keep the heuristic
optimistic, we look for a better maximum values for all of these.

Consider better estimates for the probabilities of future δ’s. If s has
j English words already selected, then any remaining French word fk will
eventually be paired with an English word with position j′ > j. Thus a
maximum for the delta associated with fk is maxj′>j δj′,k.

Example 2.15: Suppose we are translating ‘Je mange le pain blanc.’ and s has
translated the first two words as ‘I eat’. The next English word will come from
one of the last three French. Thus it must have as a δ either δ3,3 (if we chose to

DRAFT of 7 July, 2013, page 68

2.6. EXERCISES 69

translate ‘le’), δ3,4 (for ‘pain’), or δ3,5. Typically δ3,3 would be the largest, perhaps
0.3. Thus 0.3 will be multiplied in when computing h.

The same sorts of reasoning can then be applied to the other factors that
make up P(f | e), i.e. the τ ’s and bigram probabilities.

The alert reader might be slightly worried about the line in Figure 2.9
that says “make copies of s (s′) each with a different next possible English
word e′”. How many next English words are there? A very large number
could make the algorithm impractical. Take another look at Figure 2.4.
There we see three English words with significant probabilities of translating
into ‘pain’. Thus if ‘pain’ is a still untranslated word, there are at least these
three words which could somehow come next. Of most concern is ‘mouths’.
We can be reasonably confident that there are few real English translations
of ‘pain’, but how many relatively unrelated words show up?

Fortunately, we did not pick the words in the table at random. Rather,
we picked a few that would show interesting situations. Words like ‘mouths’
are, in fact, pretty rare. Furthermore, if our heuristic is a good one, even
these might not cause that much of a problem. Suppose every untranslated f
suggests, on average, 20 possible e’. So a 20-word sentence would start with
400 s′ on the first iteration. This might sound bad, but if most of them have
very low h, they simply drop to the bottom of S and we never consider them
again. And if h is any good, this is what should happen to ‘mouths’ as a
translation of ‘pain.’ While τmouths, pain might be too high, any good estimate
of the bigram probability of ‘mouths’ should be quite small. This in turn
would give a low h.

2.6 Exercises

Exercise 2.1: Consider the following English sentences:

The dog drank the coffee.
The man drank the soup.
The coffee pleased the man.

We have a parallel corpus of the same sentences in Shtetlish, a language
spoken in a tiny town somewhere in the Carpathians:

Pes ten kava ta pil.
Muzh ten polevka ta pil.
Kava ta muzh ten libil.

DRAFT of 7 July, 2013, page 69

70 CHAPTER 2. MACHINE TRANSLATION

Give the correct alignment for the sentences

The soup pleased the dog.
Polevka ta pes ten libil.

Exercise 2.2: Compute the values of neat,mange and τeat,mange after the first
and second iterations of EM given the following training data:

Elle mange du pain She eats bread
Il mange du boef He eats beef

Exercise 2.3: In Section 2.2.1 we noted that ne,◦ in general will not be the
same as the number of times the word e appears in the corpus. Explain.

Exercise 2.4: Would < 0, 0, 0 > be a legal alignment for a French sentence
of length three? (Extra credit: discuss the philosophical implications.)

Exercise 2.5: We suggest starting EM with all τe,f ’s the same. However, as
long as they are the same (and non-zero) any one value works as well as any
other. That is, after the first M-step the τs you get will not be a function
of the τs you stated with. For example, you could initialize all τs to one.
Prove this. However, althought the τs at the end of the M-step would not
vary, there would be some other number we suggest you compute that would.
What is it?

Exercise 2.6: On the first iteration of IBM model 1 training, the word that
would align the most often with ‘pain’ is almost certainly going to be ‘the.’
Why? Yet in Figure 2.6 we did not mention ‘the’ as a translation of ‘pain.’
Why is that?

Exercise 2.7: In our derivation of Equation 2.13 we stated that since all
alignments are equally probable in IBM model 1 it follows that

P(Ak=j|e) = P(Ak=j′|e). (2.23)

Actually, this deserves a bit more thought. Note that it is not the case that

P(Ak=j|e,f) = P(Ak=j′|e,f). (2.24)

First, explain why Equation 2.24 is false. Then explain why Equation 2.23
is nevertheless true.

DRAFT of 7 July, 2013, page 70

2.7. PROGRAMMING PROBLEMS 71

Exercise 2.8: Consider the two IBMmodel 2 distortion probabilities δ1,2,10,11
and δ1,2,11,11. Will these be close in value, or more than a factor of 10 differ-
ent? Why?

Exercise 2.9: We noted that it can be a good idea to make distortion prob-
abilities depend only on word positions and the length of the French sentence.
This has some negative consequences, however. Show that during training,
such a model will either (a) assign a zero probability to a legal alignment, or
(b) assign nonzero probabilities to impossible alignments.

2.7 Programming problems

Problem 2.1: Machine Translation with Very Dumb Decoding

Write an MT program based upon IBM model 1 and our very dumb
decoder, which simply goes through the incoming French sentence and for
each word fi outputs argmaxej P (ej | fi).

Start by building an IBM model 1 parameter estimation program. It
takes as arguments two input files, one for the French half of the parallel
corpus, one for the English half. Make sure that your program does not care
which is which, so that by switching the order of the files your program will
switch between computing P (ej | fi) and P (fi | ej).

To initialize EM we assign all translation probabilities the same value.
As noted in Exercise 2.5 you can simply set them to 1. Equation 2.9 tells us
how to compute the fractional counts for each word (the e-step), and then
at the end of each iteration Equation 2.7 does the m-step. Ten iterations or
so should be sufficient for all the parameter values to settle down.

Before writing the decoder part of this assignment, print out some proba-
bilities for French words with reasonably obvious English translations. Fore-
most should be punctuation. If you do not know any French, you can also
look at the French for words that look like English words and occur several
times. Many French words have been adopted into English.

Finally, the decoder should be just a few lines of code. Two details. Given
the (low) quality of our decoder, only very simple sentences have any chance
of being comprehensible after translation. Only translate French sentences
of length ten or less. Also, when your program encounters French words it
has never seen before, just pass them through to the English output without
change.

DRAFT of 7 July, 2013, page 71

72 CHAPTER 2. MACHINE TRANSLATION

Use English-senate-0.txt and french-senate-0.txt as the training
data. We are not tuning any smoothing parameters, so there is no particu-
lar need for held-out data. Translate french-senate-2.txt and save your
translation to a new file.

Problem 2.2: MT with a Simple Noisy-Channel Decoder

Now we’ll try to do better. For this assignment use the IBM model 1
decoder from the last programming assignment, but now use it to compute
the reverse translation probabilities, P (fi | ej). In addition, use the English
bigram language model from the programing assignment in Chapter 1. The
only thing that changes is our decoder.

In this version we again translate the French one word at a time. Now,
however, rather than maximizing P (ej | fi), we maximize P (ej | ej−1)P (fi |
ej). As we are going left to right one word at a time, we will know the
previous English word at each step. (Set the zeroth word to ⊲.)

Use the same training and test data as in Problem 1.

Problem 2.3: Evaluation

Evaluate the two different translators according to the F-score of their
output. The F-score is a standard measure of accuracy defined as the har-
monic mean of precision and recall:

F = 2
precision · recall

precision+ recall
. (2.25)

Precision is the number of correct results divided by the number of all re-
turned results, and recall is the number of correct results divided by the
number of results that should have been returned. In this case, we are
counting the number of individual word tokens translated correctly. You
may consider a translation of the word “pain” in french-senate-2.txt to
“bread” as correct if “bread” occurs anywhere in the corresponding sen-
tence in english-senate-2.txt. The total number of returned results
is, of course, the word-token count of your translated output file (which
will be exactly the same as that of french-senate-2.txt), and the num-
ber of results that should have been returned is the word-token count of
english-senate-2.txt.

Which translation looks better to you (this is a rather subjective ques-
tion)? Which gives the better F-score? Why? What does this tell us about
our two different decoders? What about our chosen method of evaluation?

Include the answers to these questions in your README.

DRAFT of 7 July, 2013, page 72

2.8. FURTHER READING 73

2.8 Further reading

For the most part, the best key words for MT are the obvious ones used in this
chapter. However, if you want to download the Canadian Hansard Corpus,
use this as the search key in a typical search engine; Google Scholar will list
only papers citing the corpus. Another corpus is the Europarl Corpus.

You might want to try out an open-source machine translation system.
A recent trend is grammar-based machine translation, also called hierar-

chical phrase-based MT.
The most frequent out-of-vocabulary items in MT are names of people

and places. The best way to handle them is to learn how to transliterate
them to get English equivalents.

One big problem is translation of a low-resource language — a language
for which there are few parallel corpora. One way to do this is to use a
bridging language — a language similar to the low-resource target for which
we have much more data. For example, to help translate Portuguese, use
data from Spanish, or for Slovak, use Czech.

Finally, we would be remiss if we did not mention one of the best tutorials
on MT, Kevin Knight’s MT Workbook. The material covered is much the
same as that in this chapter, but from a slightly different point of view. It is
also enjoyable for Kevin’s wacky sense of humor.

DRAFT of 7 July, 2013, page 73

74 CHAPTER 2. MACHINE TRANSLATION

DRAFT of 7 July, 2013, page 74

Chapter 3

Sequence Labeling and HMMs

3.1 Introduction

A sequence-labeling problem has as input a sequence of length n (where n can
vary) x = (x1, . . . , xn) and the output is another sequence y = (y1, . . . , yn),
also of length n, where each yi ∈ Y is the “label” of xi. Many interesting
language-processing tasks can be cast in this framework.

Notation: Using x for the input sequence and y for the label sequence is
fairly standard. Frequently the x is a sequence of words. In this case
we may refer to the words as a terminal sequence as we do in parsing
(see Section 4.1.1).

Part-of-speech tagging (abbreviated POS tagging): Each xi in x is a
word of the sentence, and each yi in y is a part of speech (e.g., ‘NN’ is
common noun, ‘JJ’ is adjective. etc.).

y :
x :

DT
the

JJ
big

NN
cat

VBD
bit

NNP
Sam

.

.

Noun-phrase chunking: Each xi is a word in the sentence and its corre-
sponding yi indicates whether xi is in the beginning, middle or end of
a noun phrase (NP) chunk.

y :
x :

[NP
the

NP
big

NP]
cat bit

[NP]
Sam

.

.

75

76 CHAPTER 3. SEQUENCE LABELING AND HMMS

In this task, ‘[NP’ labels the beginning of a noun phrase — the notation
is intended to conveys the intuitive idea that the labeled word is the
start of an NP. Similarly, ‘[NP]’ labels a word that is both the start
and end of a noun phrase.

Named entity detection: The elements of x are the words of a sentence,
and y indicates whether they are in the beginning, middle or end of
a noun phrase (NP) chunk that is the name of a person, company or
location.

y :
x :

[CO
XYZ

CO]
Corp. of

[LOC]
Boston announced

[PER]
Spade’s resignation

Speech recognition: The elements of x are 100 msec. time slices of acoustic
input, and those of y are the corresponding phonemes (i.e., yi is the
phoneme being uttered in time slice xi). A phoneme is (roughly) the
smallest unit of sound that makes up words.

In this chapter we introduce hidden Markov models (HMMs), a very ele-
gant technique for accomplishing such tasks. HMMs were first used for speech
recognition where i is a measure of time. Thus it is often the case that HMMs
are thought of as marching through time — a metaphor we occasionally use
below.

3.2 Hidden Markov models

Recall (ordinary) Markov models. A Markov model (e.g., a bigram model)
generates a string x = (x1, . . . , xn). As in Chapter 1, we imagine that the
string is padded with a begin marker x0 = ⊲ and an end marker xn+1 = ⊳.

P(x) =
n+1∏

i=1

P(xi | xi−1)

=
n+1∏

i=1

Φxi−1,xi

Here Φx,x′ is a parameter of the model specifying the probability that x is
followed by x′. As before, note the Markov assumption that the next word
depends only on the previous word.

DRAFT of 7 July, 2013, page 76

3.2. HIDDEN MARKOV MODELS 77

In a hidden Markov model (HMM) we observe a string x, but in general
its label sequence y is hidden (not observed). Just as in the Markov model
above, we imagine that the label sequence y is padded with begin marker
y0 = ⊲ and end marker yn+1 = ⊳. A HMM is a generative model that
jointly generates both the label sequence y and the observation sequence x.
Specifically, the label sequence y is generated by a Markov model. Then the
observations x are generated from the y.

P(y) =
n+1∏

i=1

P(yi | yi−1)

=
n+1∏

i=1

σyi−1,yi

P(x|y) =
n+1∏

i=1

P(xi | yi)

=
n+1∏

i=1

τyi,xi

Notation: We use σy,y′ for the parameter estimating the probability that
label y is followed by label y′ and τy,x for the probability that label y
generates output x. (Think of σ as state-to-state transition and τ as a
state-to-terminal transition.)

We combine these two formulae as follows:

P(x,y) = P(y) P(x | y)

=
n+1∏

i=1

σyi−1,yi τyi,xi
(3.1)

So the generative story for an HMM goes like this: generate the next label
yi with probability P(yi | yi−1) and then the next member of the sequence xi

with probabillity P(xi | yi).
In our study of HMMs we use three different visualizations. The first

is the Bayes-net representation shown in Figure 3.1. In a Bayes net, the
nodes are random variables and the edges between them indicate dependence
relations. If we go back to the time-step metaphor for HMMs, this diagram

DRAFT of 7 July, 2013, page 77

78 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y1 = V Y3 = NY2 = DY0 = ⊲ Y4 = ⊳

X1 = flour X2 = the X3 = pan

Figure 3.1: The Bayes-net representation of an HMM generating
‘flour the pan’ from the labels ‘V D N’.

can be thought of as follows: at each time i the HMM transitions between
Yi−1 = y and Yi = y′, where the probability of the event is σy,y. The top row
of arrows in Figure 3.1 indicates this dependence. Then (during the same
time step) the HMM generates xi according to the probability distribution
for yi. The row of downward arrows indicates this dependence.

A second representation for HMMs is that used to diagram probabilistic
automata, as seen in Figure 3.2. The Bayes net representation emphasizes
what is happening over time. In contrast, the automata representation can
be thought of as showing what is going on “inside” the HMM “machine”.
That is, when looking at the automaton representation we refer to the label
values as the states of the HMM. We use m for the number of states. The
edges between one state and the next are labeled with the corresponding σ
values. The state labeled with the beginning of sentence symbols ⊲ is the
initial state.

So in Figure 3.2 the edge between N and V has the probability of going
from the first of these states to the second, σN,V , which is 0.3. Once we
reach a new state we generate the next visible symbol with some probability
associated with the state. In our automata notation the probabilities of each
output symbol are written inside the state. So in our figure the probability
of generating ‘flour’ from the V state is 0.2.

Example 3.1: What is the probability of the sequence ‘flour pan’ when the state
sequence is < ⊲, V,N⊳ >? (So ‘flour pan’ is a command to coat the pan with flour.)
That is, we want to compute

P(< flour, pan >,< ⊲, V,N, ⊳ >)

From Equation 3.1 we see that

P(< flour, pan >,< V,N, ⊳ >) = σ⊲,V τV,flour σV,N τN,pan σN,⊳

= 0.3 · 0.2 · 0.3 · 0.4 · 0.4.

DRAFT of 7 July, 2013, page 78

3.2. HIDDEN MARKOV MODELS 79

1.0D

the 0.7

a 0.3

V

buy 0.4

eat 0.3

flour 0.2

sell 0.1

N

buy 0.2

flour 0.4

pan 0.4

⊳⊲

0.3

0.3

0.4

0.4
0.3

0.3

0.3

0.3

0.4

Figure 3.2: Example of HMM for POS tagging ‘flour pan’, ‘buy flour’

It should be emphasised that here we are computing the joint probability of the
labeling and the string.

The third of our visual representations is the trellis representation. The
Bayes net representation shows what happens over time, and the automata
representation shows what is happening inside the machine. The trellis rep-
resentation shows both. Here each node is a pair (y, i) where y ∈ Y is a
hidden label (or state) and i ∈ 0, . . . , n+1 is a position of a word. So at the
bottom of Figure 3.3 we have the sequence of words going from left to right.
Meanwhile we have (almost) a separate row for each state (label). (We let
the start and stop states share a row.) The edge from (y, i− 1) to (y′, i) has
weight σy,y′ τy′,xi

, which is the probability of moving from state y to y′ and
emitting xi.

In the sections that follow we look at several algorithms for using HMMs.
The most important, Viterbi decoding, comes first. The Viterbi algorithm
finds the most probable sequence of hidden states that could have generated
the observed sequence. (This sequence is thus often called the Viterbi label-
ing.) The next two, which find the total probability of an observed string

DRAFT of 7 July, 2013, page 79

80 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y1 = ‘N’

Y1 = ‘V’ Y2 = ‘V’

Y2 = ‘N’

Y3 = ⊳Y0 = ⊲

X1 = flour X2 = pan

Figure 3.3: The trellis representation of an HMM generating ‘flour pan’

according to an HMM and find the most likely state at any given point, are
less useful. We include them to motivate two very important ideas: forward
and backward probabilities. In the subsequent section, the use of forward
and backward probabilities is required for adapting the EM algorithm to
HMMs.

3.3 Most likely labels and Viterbi decoding

In our introduction to HMMs we saw that many interesting problems such
as POS tagging can be thought of as labeling problems. We then introduced
HMMs as a way to represent a labeling problem by associating, probabilis-
tically, a label (or state) Yi with each input Xi. However, actually to use an
HMM for, say, POS tagging, we need to solve the following problem: given
an an HMM (σ, τ) and an observation sequence x, what is the most likely
label sequence ŷ?

ŷ = argmax
y

P(y | x)

= argmax
y

P(x,y)

Simply put, the problem of POS tagging is: given a sequence of words, find
most likely tag sequence.

In principle we could solve this by enumerating all possible y and finding
the one that maximizes P(x,y). Unfortunately, the number of possible y

grows exponentially with length of sentence n. Assume for the sake of argu-
ment that every word in English has two and only two possible tags. Then

DRAFT of 7 July, 2013, page 80

3.3. MOST LIKELY LABELS AND VITERBI DECODING 81

a string of length one has two possible sequences, a sequence of two words
has 2·2 possible state sequences, and a sequence of n words has 2n state se-
quences. One of your authors looked at the New York Times on the day he
wrote this paragraph and the first sentence of the lead article had 38 words.
238 is approximately 1012, a trillion. As you can imagine, the naive algorithm
is not a practical option.

The solution is dynamic programming. Dynamic programming is the tech-
nique of saving partial solutions to problems to avoid computing them over
and over again. The particular algorithm is the Viterbi Algorithm, discovered
by Andrew Viterbi in 1967. It is often called the Viterbi decoder for much
the same reason that doing actual machine translation is called “decoding”
— historically, it was used as an algorithm for decoding noisy signals.

To begin, let’s solve a simpler problem, finding the probability P(x, ŷ) of
the most likely solution ŷ.

Notation: yi,j = (yi, . . . , yj) is the subsequence of y from yi to yj.

As we do frequently in both HMM’s and (in the next chapter) probabilistic
context-free grammars, we need to solve a slightly more general probelm —
finding the probability of the most likely solution for the prefix of x up to
position i that ends in state y,

µy(i) = P(x1,i, Yi = y). (3.2)

The basic idea is that we compute the µy(i)s starting on left and working
our way to the right. At the far left,

µ⊲(0) = 1.0 (3.3)

That is, the maximum probability of “ending up” at the start state at time
zero is 1.0 (since there is no other option).

We next go from time i− 1 to i as follows:

µy(i) =
m

max
y′=1

µy′(i− 1)σy′,yτy,xi
(3.4)

Eventually we will derive this, but first let’s get a feeling for why it is true.
Figure 3.4 shows a piece of a trellis in detail. In particular we are looking at
the possible transitions from the m states at time i−1 to the particular state
y at time i. At the bottom we show that the HMM outputs are Xi−1 = xi−1

DRAFT of 7 July, 2013, page 81

82 CHAPTER 3. SEQUENCE LABELING AND HMMS

µy1
(i− 1)

Yi−1 = y2

Yi−1 = ym
µym

(i− 1)

Xi−1 = xi−1

Yi = y

Xi = xi

Yi−1 = y1

µy2
(i− 1)

σy1,yτy,xi

σym,yτy,xi

••••

••

•

σy2,yτy,xi

Figure 3.4: A piece of a trellis showing how to compute µy(i) if all of the
µy′(i− 1) are known.

DRAFT of 7 July, 2013, page 82

3.3. MOST LIKELY LABELS AND VITERBI DECODING 83

Y0 = ⊲
µ⊲(0) = 1

µN (1) = .12

Y1 = ‘V’

X1 = ‘flour’

µV (1) = .06

Y1 = ‘N’ Y2 = ‘N’
µN (2) = .0144

X2 = ‘pan’

Y3 = ⊳
µ3,⊳ = .00576

Figure 3.5: The trellis for ‘flour pan’ showing the µy(i)’s

and Xi = xi. Each of the arcs is labeled with the state-to-state transition
probability σyi,y.

Each of the Yi−1 is labeled with the maximum probability the string could
have and end up in that state, µy(i−1). These have already been computed.
Now, the label subsequence of maximum probability at time i must have
come about by first going through, say, Yi−1 = y′ and then ending up at yi.
Then for this path the probability at time i is the maximum probability at
Yi−1 = y′, times the transition probability to state y. Thus Equation 3.4 says
to find the Yi−1 = y′ that maximizes this product.

Example 3.2: Figure 3.5 shows the (almost) complete µy(i) computation for
the ‘flour pan’ sentence according to the HMM shown in Figure 3.5. We ignore
the state ‘D’. Since ‘D’ can generate only the words ‘a’ and ‘the’ and neither of
these words appear in our “sentence”, all paths going through ‘D’ must have zero
probability and thus cannot be maximum probability paths.

As already mentioned, the computation starts at the left by setting µ⊲(0) = 1.
Moving to word 1, we need to compute µN (1) and µV (1). These are particularly
easy to calculate. The µs require finding the maximum over all states at position
0. But there is only one such state, namely ⊲. Thus we get:

µN (1) = µ⊲(0) τ⊲,N σN,flour

= 1 ◦ 0.3 ◦ 0.4

= 0.12

A similar situation holds for µV (1) except that the probability of flour as a
verb is only 0.2 so the value at the verb node is 0.06.

DRAFT of 7 July, 2013, page 83

84 CHAPTER 3. SEQUENCE LABELING AND HMMS

We now move on to i = 2. Here there is only one possible state with a nonzero
value, namely ‘N’. However, Y2 = ‘N’ has two possible predecessors at i = 1, ‘N’
and ‘V’. When we do the calculations we find that the maximum path probability
at i = 1 comes from ‘N’ with values

µN (2) = µN (1) τN,N σN,pan

= 0.12 ◦ 0.3 ◦ 0.4

= 0.0144

We leave the calculation at i = 3 to the reader.

At each stage we need look backward only one step because the new max-
imum probability must be the continuation from the maximum probability at
one of the previous states. Thus the computation for any one state at time i
requires m processing steps, one for each possible previous state. Since there
are n+1 time steps (one for each word plus one step for ⊳), the total time is
proportional to m2(n+ 1). The runtime of the Viterbi algorithm is linear in
n, the length of the string. This is much better than the obvious algorithm,
which as we saw takes exponential time.

At this point, we hope that Equation 3.4 showing how to reduce the µ
calculation at i to the µ calculations at i− 1 seems reasonably intuitive. But
we now prove it formally for those readers who like things reduced to hard
mathematics.

µy(i) = max
y0,i

P(x1,i, y0,i−1, Yi = y)

= max
y0,i

P(x1,i−1, y0,i−2, Yi−1 = y′, xi, Yi = y)

= max
y0,i

P(x1,i−1, y0,i−2, Yi−1 = y′)

P(Yi = y | x1,i−1, y0,i−2, Yi−1 = y′)

P(xi | x1,i−1, y0,i−2, Yi = y, Yi−1 = y′))

We start by expanding things out. In the second line above, we separate
out the x and y at position i − 1. We then use the chain rule to turn the
single probability into a product of three probabilities. Next we reduce things

DRAFT of 7 July, 2013, page 84

3.3. MOST LIKELY LABELS AND VITERBI DECODING 85

down.

µy(i) = max
y0,i

P(x1,i−1, y0,i−2Yi−1 = y′)P(Yi = y | Yi−1 = y′)P(xi | y)

= max
y0,i

P(x1,i−1, y0,i−2Yi−1 = y′)σy′,yτy,xi

= max
y0,i

(
max
y0,i−1

P(x1,i−1, y0,i−2, Yi−1 = y′)

)
σy′,yτy,xi

= max
y0,i

µy′(i− 1)σyi−1,yiτyi,xi

=
m

max
y′=1

µy′(i− 1)σy′,yτy,xi

In the top line we simplify by noting that the next state is dependent only
on the last state, and the next output just on the next state. In line 2, we
substitute the corresponding model parameters for these two probabilities.
In line 3, since the first term does not involve the last state yi, we look for the
maximum over y0,i−1. Then in line 4 we note that the previous term in the
parentheses is simply the definition of µy′(i− 1) and make the substitution.
Finally, in line 5 we replace the maximum over the entire y sequence with
simply the maximum over y′ since it is the only variable left in the equation.
Phew!

It’s easy to extend this algorithm so that it finds the most likely label
sequence ŷ as well as its probability. The basic idea is to keep a back pointer
ρy(i) that indicates which y′ maximizes (3.4) for each i and y, i.e.:

ρy(i) = argmax
y′

µy′(i− 1) σy′,y τy,xi
, i = 2, . . . , n

We can then read off the most likely sequence ŷ from right to left as
follows:

ŷn+1 = ⊳

ŷi = ρŷi+1
(i+ 1)

That is, the last state in the maximum probability sequence must be ⊳. Then
the most likely state at i is indicated by the back pointer at the maximum
probability state at i+ 1.

Figure 3.6 shows Figure 3.5 plus the back pointers.

DRAFT of 7 July, 2013, page 85

86 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y0 = ⊲
µ0,⊲ = 1

µ
1,‘N’ = .12

Y1 = ‘V’

X1 = ‘flour’

µ
1,‘V’ =, 06

Y1 = ‘N’ Y2 = ‘N’
µ
2,‘N’ = .0144

X2 = ‘pan’

Y3 = ⊳
µ3,⊳ = .00576

Figure 3.6: Figure 3.5 with back pointers added.

3.4 Finding sequence probabilities with HMMs

In the last section we looked at finding the most probable hidden sequence
of states for a given HMM output. In this section we want to compute the
total probability of the output. As in the last section, at first glance this
problem looks intractable as it seems to require summing over all possible
hidden sequences. But again dynamic programming comes to the rescue.

We wish to compute the probability of generating the observed sequence
and ending up in the state ⊳.

P(x1,n+1, Yn+1 = ⊳)

We do this by computing something slightly more general, the so-called for-
ward probability, αy(i). This is the probability of the HMM generating the
symbols x1,i and ending up in state yi.

αy(i) = P(x1,i, Yi = y) (3.5)

This is more general because the number we care about is simply:

P(x1,n+1, Yn+1 = ⊳) = α⊳(n+ 1)

This follows immediately from the definition of the forward probability.
The reason why we recast the problem in this fashion is that forward

probabilities can be computed in time linear in the length of the sequence.

DRAFT of 7 July, 2013, page 86

3.4. FINDING SEQUENCE PROBABILITIES WITH HMMS 87

αy1
(i− 1)

Yi−1 = y2

Yi−1 = ym
αym

(i− 1)

Yi = y

Yi−1 = y1

αy2
(i− 1)

σy1,y

σy2,y

σym,y

••••

••

•

Xi−1 = xi−1 Xi = xi

Figure 3.7: Piece of a trellis showing how forward probabilities are calculated

This follows from a mild recasting of the problem in the last section where
we looked at the maximum path probability to any point. Here we compute
sum rather than max. As before, we start the computation at the left-hand
side of the trellis with

α⊲(0) = 1 (3.6)

Also as before, the key intuition for the recursion step comes from looking
at a piece of the trellis, this time shown in Figure 3.7. We assume here that
all the αy′(i − 1) have been computed and we now want to compute αy(i).
This time we could reach Yi = y from any of the previous states, so the total
probability at Yi is the sum from each of the possible last states. The total
path probability coming from one of these states is thus:

αy′(i− 1)σy′,yτy,xi

This is the probability of first getting to y′, times the transition probability
of then getting to y, times the probability of generating xi. Doing the sum
gives us:

αy(i) =
∑

y′

αy′(i− 1)σy′,yτy,xi
(3.7)

DRAFT of 7 July, 2013, page 87

88 CHAPTER 3. SEQUENCE LABELING AND HMMS

Y0 = ⊲
α⊲(0) = 1

αN (1) = .12

Y1 = ‘V’
αV (1) = .06

Y1 = ‘N’ Y2 = ‘N’
αN (2) = .0216

Y3 = ⊳
α⊳(3) = .00864

X1 = ‘flour’ X2 = ‘pan’

Figure 3.8: Forward probability calculations for ‘flour pan’ HMM

Example 3.3: Figure 3.8 shows the computation of forward probabilities for our
‘flour pan’ example. At position zero α⊲(0) is always one. At position one only one
previous state is possible, so the sum in Equation 3.7 is a sum over one prior state.
The most interesting calculation is for Y2 = ‘N’. From the higher path into it
(from ‘N’) we get 0.12 (the previous forward probability) times 0.3 (the transition
probability) times 0.4 (the probability of generating the word ‘pan’, for 0.0144. In
much the same way, the lower path contributes 0.06 times 0.3 times 0.4=0.0072.
So the forward probability at this node is 0.0216.

Deriving Equation 3.7 is relatively straightforward: add y′ through re-
verse marginalization, reorder terms, and replace the terms by the corre-
sponding α, σ, and τs.

αy(i) = P(x1,i, Yi = y)

=
∑

y′

P(x1,i−1, Yi−1 = y′, Yi = y, xi)

=
∑

y′

P(x1,i−1, y
′)P(y | y′, x1,i−1)P(xi | y, y

′, x1,i−1)

=
∑

y′

P(x1,i−1, y
′)P(y | y′)P(xi | y)

=
∑

y′

αy′(i− 1)σy′,yτy,xi

DRAFT of 7 July, 2013, page 88

3.5. BACKWARD PROBABILITIES 89

3.5 Backward probabilities

In this section we introduce backward probabilities. We care about backward
probabilities primarily because we need them for our polynomial time EM
algorithm for estimating HMM parameters. However, for the purposes of
this section we motivate them in a simpler fashion.

Suppose we are building an HMM part-of-speech tagger, and we intend to
evaluate it by asking what percentage of the words are assigned the correct
part of speech. Clearly the way to do this is to pick at each word the part of
speech that maximizes the following probability:

P(Yi = y | x).

At first glance, one might think that the Viterbi algorithm does this. How-
ever, as the following example shows, this is not the case.

Example 3.4: Let us suppose the sentence ‘Flour pans like lightning’ has the
following three possible part-of-speech sequences along with their associated prob-
abilities:

Flour pans like lightning
N V A N 0.11
N N V N 0.1
N N A N 0.05

It is immediately obvious that the first of these is the Viterbi analysis and thus
has the most likely sequence of tags. However, let us now ask: given the entire
sentence, what is the mostly likely tag for each word? The answer is the third one!
To see this, first note that there is no competition at the first or fourth words. For
the second word, the paths that go through ‘N’ sum to 0.15, while those that go
through ‘V’ sum to 0.11. For position 3 we have ‘V’ at 0.1 and ‘A’ at 0.16.

To efficiently compute P(Yi = y | x) we introduce backward probabilities
defined as follows:

βy(i) = P(xi+1,n+1 | Yi = y)

That is, βy(i) is the probability of generating the outputs from xi+1 to the
end of the sentence assuming you start the process with Yi = y.

At first glance this seems a pretty arbitrary definition, but it has all sorts
of nice properties. First, as we show, it too can be computed using dynamic

DRAFT of 7 July, 2013, page 89

90 CHAPTER 3. SEQUENCE LABELING AND HMMS

programing in time linear in the length of the sentence. Secondly, if we
know both the forward and backward probabilities, we can easily compute
P(Yi = y | x):

P(Yi = y | x) =
αy(i)βy(i)

α⊳(n+ 1)
. (3.8)

This may be one case where the best way to come to believe this is just
to see the derivation.

P(Yi = y | x) =
P(x1,n+1, Yi = y)

P(x1,n+1)

=
P(x1,i, Yi = y)P(xi+1,n+1 | x1,i, Yi = y)

P(x1,n+1)

=
P(x1,i, Yi = y)P(xi+1,n+1 | Yi = y)

P(x1,n+1)

=
αy(i)βy(i)

α⊳(n+ 1)

We start out with the definition of conditional probability. In the second line
we rearrange some terms. The third line simplifies the last probability in the
numerator using the fact that in a Markov model, once we know the state
Yi = y, anything that happened before that is independent of what comes
after, and the last line substitutes the forward and backward probabilities
for their definitions. We also use the fact that α⊳(n+ 1) = P(x).

As with forward probabilities, we can compute the β values incrementally.
However, there is a reason these are called backward probabilities. Now we
start at the end of the string and work backward. First, at i = n+ 1,

β⊳(n+ 1) = 1. (3.9)

At position n+ 1 there is nothing left to generate but the empty string. Its
probability given we are in state ⊳ is 1.

We now show that if we can compute the βs at position i + 1, then we

DRAFT of 7 July, 2013, page 90

3.5. BACKWARD PROBABILITIES 91

Y0 = ⊲
β⊲(0) = 0.00864

βN (1) = 0.048

Y1 = ‘V’
βV (1) = 0.048

Y1 = ‘N’ Y2 = ‘N’
βN (2) = 0.4

Y3 = ⊳
β⊳(3) = 1.0

X1 = ‘flour’ X2 = ‘pan’

Figure 3.9: Computing backward probabilities for the ‘flour pan’ example

can compute it at i.

βy(i) = P(xi+1,n+1 | Yi = y)

=
∑

y′

P(Yi+1 = y′, xi+1, xi+2,n+1 | Yi = y)

=
∑

y′

P(y′ | y)P(xi+1 | y, y
′)P(xi+2,n+1 | y, y

′, xi=1)

=
∑

y′

P(y′ | y)P(xi+1 | y
′)P(xi+2,n+1 | y

′)

=
∑

y′

σy,y′τy′,xi+1
βy′(i+ 1) (3.10)

The idea here is very much like what we saw for the forward probabilities.
To compute βy(i), we sum over all the states that could follow Yi = yi. To be
slightly more specific, consider Yi+1 = y′. We assume we know the probability
of generating everything after that, βy′(i+ 1). To get βy(i), we also need to
multiply in the probability of the symbol generated at i+ 1, τy′,xi+1

, and the
probability of getting to y′ from y, σy,y′.

Example 3.5: Figure 3.9 shows the backward probabilities for the ‘flour pan’
example. As it should, β⊳(3) = 1.0. Looking at the previous state, βV (2) = 0.4.
This is the product of β⊳(3) = 1.0, τ⊳,⊳ = 1, and σV,⊳ = 0.4.

DRAFT of 7 July, 2013, page 91

92 CHAPTER 3. SEQUENCE LABELING AND HMMS

Next we can compute P(Y2 = ‘N’ | ‘flour pan’):

P(Y2 = V | ‘flour pan’) =

=
0.216 · 0.4

0.00864
= 1.0.

This is as it should be, since there is no alternative to Y2 = ‘V’. In the same way,
we can compute the probability of being in states ‘N’ and ‘V’ in position one as
2/3 and 1/3 respectively.

When computing forward and backward probabilities there are a few
computations uou can use to check that you are doing it correctly. First, as
can be verified from Figures 3.8 and 3.9, α⊳(n + 1) = β⊳(0), and both are
equal to the total probability of the string according to the HMM.

Second, for any i, ∑

y′

P(Yi = y′ | x) = 1.

That is, the total probability of being in any of the states given x must sum
to one.

3.6 Estimating HMM parameters

This section describes how to estimate the HMM parameters σ and τ from
training data that consists of output strings x and their labels y (in the case
of visible training data) or output strings x alone (if the labels are hidden).
In both cases, we treat the entire training data as one or two long strings.
In practice, it is standard actually to break the data down into individual
sentences. But the math is basically the same in both cases.

3.6.1 HMM parameters from visible data

In this section we assume that our training data is visible or fully observed,
i.e., it consists of the HMM output x = (x1, . . . , xn) (e.g., words) and their
corresponding labels y = (y1, . . . , yn) (e.g., parts of speech tags). The likeli-
hood is then:

DRAFT of 7 July, 2013, page 92

3.6. ESTIMATING HMM PARAMETERS 93

L(σ, τ) = P(x,y)

=
n+1∏

i=1

σyi−1,yiτyi,xi
.

In this case, the maximum likelihood estimates for the parameters σ and
τ are just their relative frequencies:

σ̂y,y′ =
ny,y′(y)

ny,◦(y)

τ̂y,x =
ny,x(x,y)

ny,◦(x,y)

where

ny,y′(y) =
n+1∑

i=1

[[yi−1 = y, yi = y′]] ,

ny,x(x,y) =
n∑

i=1

[[yi = y, xi = x]] .

That is, ny,y′(y) is the number of times that a label y′ follows y, and ny,x(x,y)
is the number of times that a label y labels an observation x.

In practice you want to smooth τ̂ to deal with sparse data problems such
as unknown and low-frequency words. This is similar to what we did for
language models in Section 1.3.5.

3.6.2 HMM parameters from hidden data

In this case our training data consists only of the output strings x, and we
are not told the labels y; they are invisible or hidden. We can still write the
likelihood, which (as usual) is the probability of the data.

L(σ, τ) = P(x) (3.11)

=
∑

y

P(x,y)

=
∑

y

(
n∏

i=1

σyi−1,yiτyi,xi

)

DRAFT of 7 July, 2013, page 93

94 CHAPTER 3. SEQUENCE LABELING AND HMMS

where the variable y in the sum ranges over all possible label sequences.
The number of such label sequences grows exponentially in the length of the
string x, so it is impractical to enumerate the y except for very short strings
x.

There is no simple closed-form expression for the maximum likelihood
estimates for σ and τ when the label sequence is not given, but since this is
a hidden data problem we can use the Expectation Maximization algorithm.

Recall the general idea of the EM algorithm. We are given observations x
and assume we have estimates σ(0), τ (0) of the true parameters σ, τ . We use
these estimates to find estimates for how often each of the HMM transitions
are taken while precessing x. We then estimate σ and τ from these expected
values using the maximum likelihood estimator described in the previous
section, producing new estimates σ(1) and τ (1). That is,

σ
(1)
y,y′ =

E[ny,y′ | x]

E[ny,◦ | x]

τ (1)y,x =
E[ny,x | x]

E[ny,◦ | x]

where the expected counts

E[ny,y′ | x] =
∑

y

ny,y′(y)P(y | x), and

E[ny,x | x] =
∑

y

ny,x(x,y)P(y | x)

are calculated using the probability distribution defined by σ(0) and τ (1).
In theory we could calculate these expectations by explicitly enumerating

all possible label sequences y, but since the number of such sequences grows
exponentially with the length of x, this is infeasible except with extremely
small sequences.

3.6.3 The forward-backward algorithm

This section presents a dynamic programming algorithm known as the forward-
backward algorithm for efficiently computing the expected counts required by
the EM algorithm. It is so named because the algorithm requires the com-
putating both the forward and backward probabilities.

DRAFT of 7 July, 2013, page 94

3.6. ESTIMATING HMM PARAMETERS 95

First we consider E[ny,x | x], the expectation of how often state y gener-
ates symbol x. Here we actually compute something more precise than we
require here, namely the expectation that y generates x at each point in the
string. Once these are computed, we get the expectations we need for the
M-step by summing over all positions i. Given the forward and backward
probabilities this turns out to be quite easy.

E[ni,y,x | x] = [[Xi = x]] P(Yi = y | x) (3.12)

= [[Xi = x]]
αy(i)βy(i)

α⊳(n+ 1)
(3.13)

The first line says that if at position i if we do not generate x, then the
expected number of times here is zero, and otherwise it is the probability
that we were in state y when we generated x. The second line follows from
Equation 3.8 in which we showed how to compute this probability from our
forward and backward probabilities.

Next we consider the expectation of a transition from y to y′ at point i:

E[ni,y,y′ | x] = P(Yi = y, Yi+1 = y′ | x). (3.14)

This says that the expectation of making the transition from y to y′ at point
i is the probability, given the visible data, that at i we are in state y and at
i + 1 we are in state y′. By the definition of conditional probability we can
rewrite this as:

P(Yi = y, Yi+1 = y′ | x1,n+1 =
P(Yi = y, Yi+1 = y′, x1,n+1)

P(x1,n+1)
(3.15)

We already know how to compute the denominator — it is just the total
probability of the string, α⊳(n + 1) — so we concentrate on the numerator.
This is the probability of our HMM generating the sentence, but restricted
to paths that go through the states Yi = yi and Yi+1 = yi+1. This situation
is shown in Figure 3.10 along with the forward and backward probabilities
at these positions in the trellis.

Now we claim — as is proved shortly — that:

P(Yi = y, Yi+1 = y′, x1,n+1) = αy(i)σy,y′ , τy′,xi+1
βy′(i+ 1) (3.16)

Here, the left-hand side is the numerator in Equation 3.15, the probability
of generating the entire sentence restricting consideration to paths going

DRAFT of 7 July, 2013, page 95

96 CHAPTER 3. SEQUENCE LABELING AND HMMS

Yi = yi
αi(yi)

Yi+1 = yi+1
βi+1(yi+1)

Xi = x1
Xi+1 = xi+1

τyi+1,xi+1

σyi,yi+1

Figure 3.10: Detailed look at a transition with forward and backward prob-
abilities

through the transition from Yi = yi to Yi+1 = yi+1. To understand the right-
hand side, look again at Figure 3.10. Computing this probability requires first
getting the probability of arriving at Yi = yi. This is the forward probability,
α. Then we need the probability of getting from yi to yi+1 (the σ term)
while generating xi+1 (the τ term). Finally, given we are now at Yi+1 = yi+1,
we need the probability of generating the rest of the sentence (the backward
probability).

Substituting Equation 3.16 into Equation 3.15 gives us:

E[ni,y,y′ | x] = P(Yi = y, Yi+1 = y′ | x1,n+1)

=
αy(i)σy,y′ , τy′xi+1

βy′(i+ 1)

α⊳(n+ 1)
(3.17)

We now prove the critical part of this.

P(Yi = y, Yi+1 = y′, x1,n+1) = P(x1,i, Yi = y, Yi+1 = y′, xi+1, xi+2,n+1)

= P(x1,i, y)P(y
′ | x1,i, y)P(xi+1 | y

′, x1,i, y)

P(xi+2,n+1 | y
′, x1,i+1, y)

= P(x1,i, y)P(y
′ | y)P(xi+1 | y

′)P(xi+2,n+1 | y
′)

= P(x1,i, y)σy,y′ , τy′xi+1
P(xi+2,n+1 | y

′)

= αy(i)σy,y′ , τy′xi+1
βy′(i+ 1)

This sequence of transformations is similar in spirit to the one we used to
derive our recursive formula for µ. Here we first rearrange some terms. Next
we use the chain rule, and then apply the Markov assumptions to the various
probabilities. Last, we substitute the forward and backward probabilities for
their definitions.

DRAFT of 7 July, 2013, page 96

3.6. ESTIMATING HMM PARAMETERS 97

3.6.4 The EM algorithm for estimating an HMM

At this point we have shown how to compute the forward and backward
probabilities and how to use them to compute the expectations we need for
the EM algorithm. Here we put everything together in the forward-backward
algorithm.

We start the EM algorithm with parameter estimates σ(0) and τ (0). Each
iteration t = 0, 1, 2, . . . consists of the following steps:

1. Set all expected counts E[ny,y′ |x] and E[ny,x|x] to zero

2. (E-step) For each sentence

(a) Using σ(t) and τ (t), calculate the forward probabilities α and the
backward probabilities β using the recursions (3.7–3.6) and (3.10–
3.9).

(b) Calculate the expected counts E[ni,y,y′ |x] and E[ni,y,x|x] using
(3.17) and (3.13) respectively, and accumulate these into E[ny,y′ |x]
and E[ny,x|x].

3. (M-step) Compute σ(t+1) and τ (t+1) using these expected counts

3.6.5 Implementing the EM algorithm for HMMs

There are a few things to keep in mind when implementing the algorithm just
described. If all the values in σ(0) and τ (0) are the same then the HMM is
completely symmetric and the expected counts for the states are all the same.
It’s standard to break this symmetry by adding a small random number to
each of the values in σ(0) and τ (0). So rather than setting them all to v, set
them to rv for, random r such that 0.95 ≤ r ≤ 1.05.

Another way to think of this is to imagine that we are attempting to learn
word parts of speech from unlabeled data. Initially we have one state in the
HMM for each POS-tag. The HMM must eventually learn that, say, τN,dog

should be high, while τV,dog should be much lower (the verb ‘dog’ means
roughly the same thing as ‘follow’, but it is not common). But naturally,
as far as the HMM is concerned, it does not have states N , or V , it just
has, say, 50 states representing 50 parts of speech. If we start with all the
probabilities equal, then there is no reason to associate any particular state
with any particular tag. This situation is called a saddle point. While the

DRAFT of 7 July, 2013, page 97

98 CHAPTER 3. SEQUENCE LABELING AND HMMS

likelihood of the data is low with these probabilities, there is no reason for
EM to move in any particular direction, and in fact, it does not change any
of the probabilities. This is much like the philosophical example known as
Buridan’s ass. Buridan’s ass is standing exactly halfway between two exactly
equal bales of hay. It cannot decide which way to go because it is equally
beneficial to go either way, and eventually it starves to death. If we break the
symmetry by moving either bale by a very small amount, the ass survives.

As we mentioned at the end of Section 3.5, there are several relations
between forward and backward probabilities that you should compute to
check for bugs. Here is another one:

∑

y

αi(y) βi(y) = P(x)for all i = 1, . . .

Be sure to understand how this follows directly from Equation 3.8.

3.7 MT parameters from forward-backward

Section 2.3 showed how IBM model 2 improves over model 1 insofar as it no
longer assigns equal probability to all alignments. Instead, the probability of
an alignment was the product of δj,k,l,ms where l and m are the lengths of the
English and French sentences and the delta gives us the probability of the
kth French word being aligned with the jth English and thus model 2 still
incorporates the assumption that each alignment decision is independent of
the others.

Generally this is a bad assumption. Words in sentences are bundled into
phrases, and typically if one word of a phrase gets moved during translation
the others will go along with it. For example, both English and French allow
prepositional phrases to appear at the beginning or ending of a sentence:

Columbus discovered America in 1492
In 1492 Columbus discovered America

If we were to align these two sentences we would get < 4, 5, 1, 2, 3 >. The
model 2 probability would be much too low because, e.g., the probability of
aligning position 2 in the second sentence with position 5 in the first would
be small, even though the previous word had been “moved” to position 4 and
thus the next, being in position 5, should be high. A better model would

DRAFT of 7 July, 2013, page 98

3.7. MT PARAMETERS FROM FORWARD-BACKWARD 99

Y1 = 2

X1 = ‘pas’

Y1 = 1 Y2 = 1

X2 = ‘mal’

Y3 = ⊳Y0 = ⊲

σ⊲,1

σ⊲,2

σ1,1

σ2,1

σ2⊳

σ1,⊳

τ‘not’,‘pas’
τ‘not’,‘pas’

Y2 = 2

σ1,2

Figure 3.11: An HMM to learn parameters for ‘Pas mal’ to ‘Not bad’

instead condition an alignment ak on the alignment of the previous French
word ak−1.

HMMs are a natural fit for this problem. Our program creates a new
HMM specifically for for each training E/F pair. Figure 3.11 shows an
HMM created to learn the translation parameters for translating “Not bad”
to “Pas mal.”

The hidden HMM states are the alignment positions, so each one is de-
pendent on the previous. The visible sequence is the French sentence. Thus
σj,k is the probability that the next French word will align with the kth En-
glish word, given that the previous word aligned with the jth. The emission
probabilities τy,x are the probability that ey will generate yx, the French word.

The HMM in Figure 3.11 starts in state ⊲. Then for the first French
word the HMM transitions into state Y1 or Y2. To transition into, say, Y2

at position one is to guess that the first French word ‘Pas’ is generated by
(aligned with) the second English (‘bad’). If at position two the HMM goes
to Y1 then the second French word is aligned with the first English one. The
σ parameters are the probabilities of these transitions. Note that because
this HMM was devised for this particular example, both states at position
one can only generate the first word of this French sentence, namely ‘Pas’
and the probability of its doing so are the translation probabilities — e.g.,
τbad,Pas.

However, even though this HMM was created for this particular training

DRAFT of 7 July, 2013, page 99

100 CHAPTER 3. SEQUENCE LABELING AND HMMS

example, the parameters that are learned are general. So, for example, the
two sentences here are both of length two. Thus the transition from, say,
state Y1 at position one to Y2 at position two will add its expectation to
δ1,2,2,2. These are the new distortion parameters for the HMM translation
model. This particular parameter is the probability of a French word being
aligned with English word 2, given that the previous French was aligned with
English word 1 and both sentences are of length two. Other examples in the
parallel corpus where both sentences are of length two will also contribute
their expectations to this δ.

Because the assumptions behind this model are much closer to reality
than those underlying IBM 2, the parameters learned by this model are
better than those of IBM 2, and the math is only slightly more complicated.
So now MT systems start by estimating τs from IBM 1, and then improve
on these using the HMM approach.

There is one minor flaw in the model as we have presented it. What if the
previous word was aligned with the null English word? What should our new
σ0,y be? One solution would to use the last non-null position. A slightly more
complicated solution would be to have a second set of English “positions”
that are used for this situation. So, e.g., σ3′,4 would be the probability that
the next French word will align with e4 given that the previous word was
aligned with e0 and the last non-null alignment was with e3.

3.8 Smoothing with HMMs

In Chapter 1 we encountered the problem of smoothing language-modeling
probability distributions in the presence of sparse data. In particular, since a
maximum-likelihood distribution assigns a zero probability to any word not
seen in the training data, we explored the smoothed distribution obtained by
assigning a pseudo-count α to the count of every possible word. (In practice
we had only one unseen word, ∗U∗, but this need not be the case.) If we
gave all words the same pseudo-count we arrived at the following equation:

P
θ̃
(W=w) = θ̃w =

nw(d) + α

n◦(d) + α|W|

Then to find an appropriate α we looked at the probability a particular
lambda would assign to some held-out data (the likelihood of the data). Last
we suggested using line-search to maximize the likelihood.

DRAFT of 7 July, 2013, page 100

3.8. SMOOTHING WITH HMMS 101

λ

(1− λ)

(1− λ)

(1− λ)

⊲

λ

λ

p(w) = θ̂

p(w) = 1

|V|

Figure 3.12: The HMM coresponding to Equation 3.18

In this section we show how using HMMs allow us to find these parameters
more directly. First we note that our smoothing equation can be rewritten
as a mixture model — specifically as a mixture of the maximum-likelihood
distribution Pθ̂(W) and the uniform distribution P1(W) that assigns the
same probability to each word w ∈ W .

P
θ̃
(W=w) = θ̃w =

nw(d) + α

n◦(d) + α|W|

= λ
nw(d)

n◦(d)
+ (1− λ)

1

W

= λPθ̂(W) + (1− λ)P1(W) (3.18)

where the uniform distribution is P1(w) = 1/|W| for all w ∈ W and the
mixing parameter λ ∈ [0, 1] satisfies:

λ =
n◦(d)

n◦(d) + α|W|

To see that this works, substitute the last equation into (3.18).
Now consider the HMM shown in Figure 3.12. It has the property that

DRAFT of 7 July, 2013, page 101

102 CHAPTER 3. SEQUENCE LABELING AND HMMS

Equation 3.18 gives the probability this HMM assigns to the data. Intu-
itiviely it says that at any point one generates the next symbol either by
choosing to go to the top sate with probability λ and then generating the
word according to the maximum likelihood extimate θ̂w, or to the bottom
one and assigning a probability according to the uniform distribution 1

W|
.

Example 3.6: Suppose we set λ to 0.8, the next word is “the”, θ̂the = .08 and
number of words in our vocabularay is 10000. Then generating “the” via the top
state has a probability of 0.16 while via the lower one has probability 2.0 · 10−6.
For our unknown word, ∗U∗, the probabilities are zero and 2.0 · 10−6.

. Since λ is the transition probability of an HMM, we can now use Equation
3.17 iteratively to find a value that maximizes the probability of the data.

While this will work fine, for this HMM it is overkill. A bit of reflection
will show that we can simplify the math enormously. We needed forward
and backward probabilities because the state transltion used affects not only
the current x, but the y we end up in after the transition, and this in turn,
means that the rest of the string will get a different probability according to
the model. But this is not the case for the HMM of Figure 3.12. Yes, we end
up in either state A or B, but this has no effect on the probability of the rest
of the string. The next word will also either be generated by one of the two
states, and the probabilitity of getting to those states is the same for both A
and B. So the only difference in expectation is that due to the probability of
the word we generate at this step. So the increment in exepectaions due to
the ith word for the transition A to A (which is the same as the transition
B to A, is

E[ni,A,A | x] = E[ni,B,A | x] =
λθ̂wi

λθ̂wi
+ (1− λ) 1

|W|

.

When we end up in state B we have:

E[ni,A,A | x] = E[ni,B,A | x] =
(1− λ) 1

|W|

λθ̂wi
+ (1− λ) 1

|W|

Example 3.7: Again Suppose we set λ to 0.8, the next word is “the”, θ̂the =
.08 and number of words in our vocabularay is 10000. The expectation for the
transition to state A when generating “the” is (.08/(.08+2.010−6)) ≈ 1.0, and for

DRAFT of 7 July, 2013, page 102

3.9. PART-OF-SPEECH INDUCTION 103

transition to state B is 2.010−6/(.08+2.010−6) ≈ 2.510−5. For ∗U∗the expectation
of transitioning to A is zero (= 0/(0 + 210−6)) and has an expectation of one for
transitioning to state B (= 210−6/(0 + 210−6)).

3.9 Part-of-speech induction

Part-ofspeech (POS) tagging is a standard example for HMM and in the next
section we discuss building a tagger when one has training data on which to
base the HMM parameters. Typically this works quite well, with accuracies
in the middle 90% range.

Here we discuss using EM and the forward backward algorithm for doing
POS tagging when we do not have supervision — just plain English text.
This works much less well. The model we discuss here achieves about 60%
accuracy. The purpose of this section is to understand this difference.

The model is straightforward. We start the HMM with all our τs and σs
approximately equal. We say “approximately” because of the saddle point
problem discussed in Section 3.6.5. Also, because our testing data is labeled
with 45 parts of speech, we start with 45 states. We then apply the forward-
backward algorithm to adjust the parameters to fit the data. In so doing EM
will drive the parameters apart.

The first step in understanding the low score is to look at the problem
from the machine’s point of view. In essence, it will achieve the maximum
likelihood for the training data when the words in each class are as similar as
possible based upon the neighboring words. But similar in what way? There
is nothing saying that the classes have to look anything like POS classes.
Actually, from this point of view 60% is pretty impressive.

Figure 3.13 shows 11 of the 45 resulting states using forward-backward
and repeating until the log-likelihood of the data barely increases at each
iteration. This table may be a bit overwhelming at first glance, but it is worth
study because it shows all the creative ways EM can raise the probability of
the data, many with only marginal relation to part-of-speech tagging.

The first column is the state number — as just discussed this is arbitrary.
Which words end up in which numbered states depends only on how the
states are randomly initialized. By the way, this also means that different
random initializations will give different accuracies, and the classes will be
differently organized. Remember, EM is a hill-climbing algorithm and the
hill it climbs depends on where it starts. The accuracy, however, never moves

DRAFT of 7 July, 2013, page 103

104 CHAPTER 3. SEQUENCE LABELING AND HMMS

7 DET The “ But In It He A And For That They As At Some This If
18 . . ? ! ... in Activity Daffynition of -RCB- to -RRB- students

6 NNP Mr. New American Wall National John Dow Ms. Big Robert
36 NNP Corp. Inc. & York Co. ’s Exchange Stock Street Board Bank

8 VBD said says is say ’s and reported took think added was makes
45 VBD about at rose up fell down was closed net only a income dropped

19 CD 1 few 100 2 10 15 50 11 4 500 3 30 200 5 20 two
44 NN year share week month 1988 months Friday 30 1987 September

5 DET a in this last next Oct. “ Nov. late Sept. fiscal one early recent
32 DET the a an its his their any net no some this one that another
42 DET the its a chief his this “ other all their each an which such U.S.

Figure 3.13: Some HMM states and the most common words in them

much from the 60% figure.
The second column gives the part-of-speech tag that is most common for

the words in this set. We shown two sets each where the most common is
‘NNP’ (proper noun) and ‘NN’ (common noun) and four for ‘DET’ (deter-
miner). In fact, eight of our states were assigned to DET. We will come back
to this point.

Finally, each row has up to fifteen words that are “common” for this state.
In particular, for each state s we found the fifteen words w that maximized
the term

ns,w + α

n◦,w + 45α
.

If we did not have the add-α smoothing terms this equation would find the
ws that are most probable given the state. These would mostly be words
that only appear once or twice, and only in s. These, however, would not
really be indicative of what the state really “means.”. Smoothing with α (we
used α = 5) prevents this.

The first row in Table 3.13 (class 7) is made up of words and punctuation
that begin sentences — e.g. words w for which σ⊲,w is large. It is assigned
to the class DET just because “The” happens to be the most common word
in the class by far. Symmetrically, class 18 is words that end sentences. The

DRAFT of 7 July, 2013, page 104

3.9. PART-OF-SPEECH INDUCTION 105

class of final punctuation marks is named ‘.’ so this grouping does pretty
well. But we can see that the HMM is more interested in things that end
sentences than things that are final punctuation because the “right round
bracket” symbol is in the class. (It is written ‘-RRB-’ rather than ‘)’ because
in the Penn Treebank parentheses are used to annotate trees.)

Continuing down the list, classes 6 and 36 are both assigned to proper
nouns (NNP), but 6 is made up of words that typically start names, while
36 end names. Similarly we show two classes of past-tense verbs, each of
which show a sort of within-class semantic similarity. Class 8 has many
acts of thinking and saying, while Class 45 has things that happen to stock
prices. As you should now expect, the HMM groups them for more prosaic
reasons — the first are often followed by open-quotation marks, the second
by numbers (as in “fell 19 %”).

We leave classes 44 and 19 to the reader, and move on to three more
classes that all get associated with determiners. The first of these (5) only
has one DET, namely ‘a’, but the other words have no common part of
speech, and ‘a’s are ubiquitous, so it controls the class. In fact, these happen
to be words that precede those in class 44 (mostly date words). But classes
32 and 42 have such overlap of determiners that it is hard to see why they
are separate. An examination of the state transitions show that class 32
determiners are followed by common nouns, while those in 42 are followed
by adjectives.

The point of this exercise is to disabuse the reader of the idea that maxi-
mizing the likelihood of the data will necessary make good things happen. It
also should convince you that the forward-backward algorithm is really good
at what it does: it will come up with ways to increase probability that we
would never think of.

There are more successful approaches to unsupervised POS induction —
currently the best achieve in the middle 70% range. As you might expect
given the eight classes assigned to determiners, one very effective technique is
to require each word type to appear in only one class. This is somewhat lim-
iting, but most words have only one possible POS tag, and those with more
than one typically have only one that is common (e.g., ‘can’), so mistakes
due to such a restriction are comparatively rare.

DRAFT of 7 July, 2013, page 105

106 CHAPTER 3. SEQUENCE LABELING AND HMMS

3.10 Exercises

Exercise 3.1: The following tagging model has the two words ‘boxes’ and
‘books’, and the two POS tags ‘noun’ and ‘verb’ (plus the end-of-sentence
delimiters ⊲ and ⊳).

P(noun | ⊲) = 1/2 P(verb | ⊲) = 1/2 P(boxes | noun) = 1/2
P(noun | noun) = 1/2 P(verb | noun) = 1/6 P(boxes | verb) = 3/4
P(noun | verb) = 1/2 P(verb | verb) = 1/6 P(books | noun) = 1/2
P(⊳ | noun) = 1/3 P(⊳ | verb) = 1/3 P(books | verb) = 1/4

(a) What is the total probability of the output sequence ‘boxes books’? Show
your work. (b) What is the probability of the most likely tag sequence for
‘boxes books’? Show your work.

Exercise 3.2: Suppose for some HMM when applied to the sequence x,
P(x | y) = 0 for all y =< · · · , Yi = a, · · · >. That is, any sequence of states
that goes through state a at position i assigns zero probability to the string
x. Does it follow that τa,xi

= 0?

Exercise 3.3: Example 3.4 shows that the Viterbi sequence of labels is not
always the sequence of labels that individually have the highest label prob-
ability. Note that in this example no single labeling has the majority of the
total sentence probability (i.e., the probability of the sentence is more than
twice the probability of the Viterbi labeling). Is this a coincidence of the
numbers we picked, or a necessary feature of such examples? Explain.

Exercise 3.4: What does the presence of the word “Daffynition” in class 18
in Figure 3.13 suggest about how it is used in the Wall Street Journal?

3.11 Programming problems

Problem 3.1: Part-of-speech tagging using HMMs
The data directory contains files wsj2-21.txt and wsj22.txt. Each file

contains one sentence per line, where each line is a sequence of pairs consisting
of a word and its part of speech. Take a look at the files so you know what
the precise format is. wsj22.txt has been pre-filtered so that words that
don’t appear in wsj2-21.txt have been replaced with the unknown word
symbol ∗U∗.

DRAFT of 7 July, 2013, page 106

3.12. FURTHER READING 107

The assignment directory contains the script templates tag and score.
Follow the directions in the templates carefully.

1. Find maximum-likelihood estimates for the parameters σ̂ and τ̂ from
the file wsj2-21.txt. Note that you’ll have to smooth the parameter
estimates for τy,∗U∗; at this stage you can just give these a pseudo-count
of 1.

2. Implement the Viterbi decoding algorithm and find the most likely tag
sequence ŷ for each sentence x in wsj22.txt. Compute the percentage
of words for which their Viterbi tag is in fact the correct tag.

3. Now we’ll try to find a better estimate for τy,·UNK·. We note that words
that appear once in our training data wsj2-21.txt are only one occur-
rence away from not occurring at all. So suppose we go through our
training data and change all words that only appear once to ∗U∗. We
can now compute τy,∗U∗ just like everything else and there is no need to
smooth. Also note that, say, τNN,∗U∗ can (and will) differ from τDT,∗U∗.
In general this should increase accuracy because it correctly models
the fact that an ∗U∗ is more likely to be a noun than a determiner.
Implement this and report your new accuracy. (One problem with this
is that you lose the part-of-speech tags for all these words. Fortunately
they are rare words, so the odds are that few of them will appear in
your test data. However, if this bothers you, you can count each word
with one token twice, once as itself, once as ∗U∗.

3.12 Further reading

HMMs are used not just in computational linguistics, but in signal processing,
computational biology, analysis of music, handwriting recognition, land-mine
detection, you name it.

There are many HMM variations. Perhaps the most important of these
is the conditional random field (CRF) model which in many situations out-
performs HMMs. CRFs are discriminative rather than generative models.
That is, they try to estimate the probability of the hidden variables directly
(P(y | x)) rather than computing the joint probability P(y,x) as do HMMs.
More generally, there is a wide variety of discriminatively trained HMMs.

DRAFT of 7 July, 2013, page 107

108 CHAPTER 3. SEQUENCE LABELING AND HMMS

Factorial HMMs are models in which several HMMs can be thought of as
simultaniously generating the visible string (also called coupled HMMs).

As HMMs are a staple in the speech recognition community, there is a
large literature on continuous HMMs — where the outputs are real numbers
representing, e.g., the energy/frequency of an acoustic signal.

DRAFT of 7 July, 2013, page 108

Chapter 4

Parsing and PCFGs

4.1 Introduction

In natural languages like English, words combine to form phrases, which can
themselves combine to form other phrases. For example, in the sentence
“Sam thinks Sandy likes the book”, the words ‘the’ and ‘book’ combine to
form the noun phrase (NP) ‘the book’, which combines with the verb ‘likes’
to form the verb phrase (VP) ‘likes the book’, which in turn combines with
‘Sandy’ to form the embedded clause or sentence (S) ‘Sandy likes the book’.
Parsing, which is the process of recovering this kind of structure from a string
of words, is the topic of this chapter.

4.1.1 Phrase-structure trees

It’s natural to represent this kind of recursive structure as a tree, as in Fig-
ure 4.1. They are called phrase-structure trees because they show how the
words and phrases combine to form other phrases.

Notice that trees such as this are usually drawn upside-down, with the
root node at the top of the tree. The leaf nodes of the tree (at the bottom,
of course!), which are labeled with words, are also known as terminal nodes.
The sequence of labels on the terminal nodes is called the terminal yield
or just the yield of the tree; this is the string that the tree describes. The
nodes immediately dominating (i.e., above) the terminal nodes are called
preterminal nodes; they are labeled with the word’s part-of-speech (the same
parts-of-speech that we saw in the previous chapter). The phrasal nodes are
above the preterminals; they are labeled with the category of the phrase (e.g.,

109

110 CHAPTER 4. PARSING AND PCFGS

S

NP

NNP

Sam

VP

VBZ

thinks

S

NP

NNP

Sandy

VP

VBZ

likes

NP

DT

the

NN

book

Figure 4.1: A phrase-structure tree for the sentence “Sam thinks Sandy
likes the book”. The labels on the nonterminal nodes indicate the category
of the corresponding phrase, e.g., ‘the book’ is an ‘NP’ (Noun Phrase).

‘NP’, ‘VP’, etc.). As you would expect, the nonterminal nodes are all of the
nodes in the tree except the terminal nodes.

Parsing is the process of identifying this kind of structure for a sentence. It
is one of the best-understood areas of computational linguistics. Arguably the
best. The literature is very large, and, at least if you are parsing newspaper
articles, several good parsers are downloadable from the web. However, there
is something of a disconnect between the research effort, and clearly usable
results. For example, parsing would seem to be useful in machine translation,
especially when translating between languages with radically different word
orders. One might try to view translation as a kind of “rotation” of phrase
structure trees (viewed as a kind of mobile sculpture). In the last couple
of years this has been shown to work, and now major English-Japanese MT
programs use this approach.

This success to some degree justifies the previous ephasis on parsing,
but there was never much doubt (at least among “parsing people”) that the
area would one day come into wide usage. The reason is simple: people
can understand endless new sentences. We conclude from this that we must
understand by building the meaning of whole sentences out of the meaning
of sentence parts. Syntactic parsing (to a first approximation) tells us what
those parts are, and roughly in what order they combine. (Examples like
Figure 4.1 should make this seem plausable.) Unfortunately we computa-
tional linguists know little of “meanings” and how they combine. When we

DRAFT of 7 July, 2013, page 110

4.1. INTRODUCTION 111

(S (NP (NNP Sam))

(VP (VBZ thinks)

(S (NP (NNP Sandy))

(VP (VBZ likes)

(NP (DT the)

(NN book))))))

Figure 4.2: The phrase structure tree of Figure 4.1 for
‘Sam thinks Sandy likes the book’ in bracket notation. Note that the
indentation is purely for aesthetic reasons; the structure is indicated by the
opening and closing brackets.

do, the importance of parsing will be much more obvious.
It’s convenient to have a standard (one dimensional) notation for writing

phrase structure trees, and one common one is based on the bracketted ex-
pressions of the programming language Lisp. Figure 4.2 gives the same tree
as in Figure 4.1 in bracket notation.

4.1.2 Dependency trees

The phrase-structure tree does not directly indicate all of the structure that
the sentence has. For example, most phrases consist of a head and zero
or more dependents. Continuing with the previous example, ‘likes’ might be
analysed as the head of the VP ‘likes the book’ and the S ‘Sandy likes the book’,
where the NPs ‘the book’ and ‘Sandy’ are both dependents of ‘likes’.

A dependency tree makes these dependencies explicit. The nodes in the
dependency tree are the words of the sentence, and there is an arc from
each head to the heads of all of its dependent phrases. Figure 4.3 depicts a
dependency tree for ‘Sam thinks Sandy likes the book’. Sometimes the de-
pendency arcs are labeled to indicate the type of dependency involved; e.g.,
‘SUBJ’ indicates a subject, ‘OBJ’ indicates a direct object and ‘COMP’ in-
dicates a verbal complement.

Of course the phrase-structure tree and the dependency tree for a sentence
are closely related. For example, it is straightforward to map a phrase-
structure tree to an unlabeled dependency tree if one can identify the head
of each phrase.

There is much more to say about both phrase structure and dependency

DRAFT of 7 July, 2013, page 111

112 CHAPTER 4. PARSING AND PCFGS

Sam thinks Sandy likes the book

SUBJ

COMP OBJ

SPECSUBJ

Figure 4.3: A dependency tree for the sentence “Sam thinks Sandy likes the
book”. The labels on the arcs indicate the type of dependency involved, e.g.,
‘Sandy’ is the subject of ‘likes’.

structure, but we only have space to make a few comments here. Most
importantly, there is no agreement on the correct grammar even for a well-
studied language like English. For example, what’s the structure of a sentence
like ‘the more, the merrier’?

It is not even clear that trees are the best representation of phrase struc-
ture or dependency structure. For example, some sentences have discontinu-
ous phrases, which often correspond to nonprojective dependency structures
(i.e., dependency structures with crossing dependencies). While these are
more common in languages with relatively free word order such as Czech,
there are English constructions which plausibly involve such discontinuities.
However, as we will see in this chapter, there are such significant computa-
tional advantages to only considering structures that can be represented as
trees that it is common to do so.

Example 4.1: Figure 4.4. shows an English example involving nonprojective
structure. The phrase ‘a book with a red cover’ is discontinuous in this example
because it is interrupted by ‘yesterday’. Such cases are called “nonprojective”
because when projected onto the plane they shows up as “crossing lines” in the
phrase structure tree and the dependency structure.

In the face of puzzles and disagreements there are two ways to go, try to
resolve them, or ignore them. Work in statistical parsing has mostly done
the latter. Dedicated linguists and computational linguists have roughed out
grammars for some languages and then hired people to apply their grammar
to a corpus of sentences. The result is called a tree bank. Researchers then
use the tree bank as the basis for a parser in the usual way of creating a
train/development/test split and accept whatever the tree bank says as the
gold standard. To the degree that most grammatical formalisms tend to

DRAFT of 7 July, 2013, page 112

4.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 113

NN

cover

PP

IN

with

NP

DT

a

JJ

red

S

NP

NNP

Sam

VP

VBZ

bought

NP

DT

a

NN

book

NP

NN

yesterday

Sam bought a book yesterday with a red cover

Figure 4.4: A discontinuous structure in English

capture the same regularities this can still be a successful strategy even if no
one formalism is widely preferred over the rest. This seems to be the case.

4.2 Probabilistic context-free grammars

Probabilistic Context-Free Grammars (PCFGs), are a simple model of phrase-
structure trees. We start by explaining what a formal language and a gram-
mar are, and then present Context-Free Grammars and PCFGs (their prob-
abilistic counterpart).

4.2.1 Languages and grammars

A formal language is a mathematical abstraction of a language. It is defined
in terms of a terminal vocabulary, which is a finite set V of terminal symbols
(or terminals for short), which are the atomic elements out of which the
expressions of the language are constructed. For example V might be a set
of English words, or it could be the characters ‘a’–‘z’ (e.g., if we wanted to
model the way that words are built out of letters).

Given a set V of terminals, W = V⋆ is the set of all finite sequences or
strings whose elements are members of V . (V⋆ also includes the empty string

DRAFT of 7 July, 2013, page 113

114 CHAPTER 4. PARSING AND PCFGS

V = {book, likes, Sandy, Sam, the, thinks}

N = {DT,NNP,NP, S,VBZ,VP}

S = S

R =





DT → the NN → book
NNP → Sam NNP → Sandy
NP → NNP NP → DT NN
S → NP VP VBZ → likes
VBZ → thinks VP → VBZ NP
VP → VBZ S





Figure 4.5: A context-free grammar which generates the phrase-structure
tree depicted in Figure 4.1. The start symbol is ‘S’.

ǫ). A language is a subset of W . A grammar is a finite specification of a
language. (A language can contain an infinite number of strings, or even
if it is finite, it can contain so many strings that it is not practical to list
them all). A probabilistic language is a probability distribution over W , and
a probabilistic grammar is a finite specification of a probabilistic language.
(We will often drop the “probabilistic” when clear from the context).

A grammar may also provide other information about the strings in the
language. For example, it is common in computational linguistics to use
probabilistic grammars whose support is W (i.e., they assign non-zero prob-
ability to every string in W), and whose primary purpose is to associate
strings with their phrase-structure trees.

4.2.2 Context-free grammars

A context-free grammar is perhaps the simplest possible model of phrase-
structure trees. Formally, a context-free grammar (CFG) is a quadruple
G = (V ,N , S,R), where V and N are disjoint finite sets of terminal symbols
and nonterminal symbols respectively, S ∈ N is a distinguished nontermi-
nal called start symbol, and R is a finite set of rules or productions. A rule
A → β consists of a parent nonterminal A ∈ N and children β ∈ (N ∪ V)⋆.
Figure 4.5 contains an example of a context-free grammar.

Productions of the form A → ǫ, where ǫ is the empty string, are called ep-

DRAFT of 7 July, 2013, page 114

4.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 115

S
NP VP
NNP VP
Sam VP

Sam VBZ S
Sam thinks S

Sam thinks NP VP
Sam thinks Sandy VP

Sam thinks Sandy VBZ NP
Sam thinks Sandy likes NP

Sam thinks Sandy likes DT NN
Sam thinks Sandy likes the NN
Sam thinks Sandy likes the book

Figure 4.6: A derivation of ‘Sam thinks Sandy likes the book’ using the
context-free grammar presented in Figure 4.5 on page 114.

silon rules. A CFG that does not contain any epsilon rules is called epsilon-
free. While everything we say about CFGs in this chapter generalizes to
CFGs that contain epsilon productions, they do complicate the mathemati-
cal and computational treatment, so for simplicity we will assume that our
grammars are epsilon-free.

Context-free grammars were originally thought of as a rewriting system,
which explains the otherwise curious nomenclature and notation. The rewrit-
ing process starts with a string that contains only the start symbol ‘S’. Each
rewriting step consists of replacing some occurence of a nonterminal A in the
string with β, where A → β ∈ R is a rule in the grammar. The rewriting
process terminates when the string contains no nonterminals, so it is not
possible to apply any more rewriting rules. The set of strings that can be
produced in this way is the language that the grammar specifies or generates.

Example 4.2: Figure 4.6 gives a derivation of the string “Sam thinks Sandy
likes the book” using the grammar of Figure 4.5.

The derivational view of context-free grammars also explains why they
are called “context-free”. A context-sensitive grammar differs from a context-
free one in that the rules come with additional restrictions on the contexts
in which they can apply.

DRAFT of 7 July, 2013, page 115

116 CHAPTER 4. PARSING AND PCFGS

Even though historically context-free grammars were first described as
rewriting systems, it is probably more useful to think of them as specifying
or generating a set of phrase-structure trees. The rules of a context-free
grammar can be seen as specifying the possible local trees that the tree can
contain, where a local tree is a subtree that consists of a parent node and its
sequence of children nodes.

In more detail, a context-free grammar G = (V ,N , S,R) generates a tree
t iff t’s root node is labeled S, its leaf nodes are labeled with terminals from
V , and for each local tree ℓ in t, if ℓ’s parent node is labeled A and its
children are labeled β, then R contains a rule A → β. The set of all trees
that G generates is TG, where we will drop the subscript when clear from the
context. G generates a string w ∈ W iff G generates a tree that has w as its
terminal yield.

Example 4.3: The CFG in Figure 4.5 on page 114 generates the phrase-structure
tree depicted in Figure 4.1 on page 110, as well as an infinite number of other trees,
including trees for rather bizarre sentences such as ‘the book thinks Sam’ as well
as impeccable ones such as ‘Sandy likes Sam’.

Parsing is the process of taking a CFG G and a string w and returning
the subset TG(w) of the trees in TG that have w as their yield. Note that
TG(w) can contain an infinite number of trees if R has epsilon productions
or unary productions (i.e., productions of the form A → B for A,B ∈ N),
and even if TG(w) is finite its size can grow exponentially with the length of
w, so we may be forced to return some kind of finite description of TG(w)
such as the packed parse forest of section 4.3.

One way to think about a CFG is as a kind of “plugging system”. We
imagine that our terminal and nonterminal symbols are different plug shapes,
and that our goal is to somehow connect up a sequence of terminal plugs to a
single socket labeled with the start symbol S. Each rule A → β ∈ R is a kind
of adaptor (maybe a bit like a surge suppressor board) that has a sequence of
sockets β and a plug A. When parsing our goal is to find a way of connecting
up all of the terminals via the rules such that there are no unconnected plugs
or sockets, and everything winds up plugged into the start socket S.

4.2.3 Probabilistic context-free grammars

Probabilistic Context-Free Grammars (PCFGs) extend context-free gram-
mars by associating a probability ρA→β with each rule A → β ∈ R in the

DRAFT of 7 July, 2013, page 116

4.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 117

ρDT→the = 1.0 ρNN→book = 1.0
ρNNP→Sam = 0.7 ρNNP→Sandy = 0.3
ρNP→NNP = 0.2 ρNP→DT NN = 0.8
ρS→NP VP = 1.0 ρVBZ→likes = 0.4
ρVBZ→thinks = 0.6 ρVP→VBZ NP = 0.9
ρVP→VBZ S = 0.1

Figure 4.7: The rule probability vector ρ which, when combined with CFG
in Figure 4.5 on page 114, specifies a PCFG which generates the tree depicted
in Figure 4.1 on page 110 with probability approximately 3× 10−4.

grammar. Informally, ρA→β is the conditional probability that the nontermi-
nal A expands to β. The probability of a tree generated by the PCFG is just
the product of the probabilities of the rules used to derive that tree. PCFGs
are generative probability models in the sense we described in Section 1.3.3.
The above description of how trees are generated in a CFG is their generative
story.

More formally, a PCFG G is a quintuple G = (V ,N , S,R,ρ) where
(V ,N , S,R) is a CFG and ρ is a vector of real numbers in [0, 1] that satisfies:

∑

A→β∈RA

ρA→β = 1 (4.1)

where RA = {A → β ∈ R} is the set of all rules in R whose parent is A.
This condition is natural if we interpret ρA→β as the conditional probability
of A expanding to β. It simply says that the probabiltities of all of the rules
expanding A sum to one. Figure 4.7 gives an example of ρ for the CFG
presented earlier in Figure 4.5 on page 114.

A PCFG G defines a probability distribution PG(T) over trees T ∈ TG as
follows:

PG(T = t) =
∏

A→β∈R

ρA→β
nA→β(t)

where nA→β(t) is the number of times the local tree with parent labeled A
and children labeled β appears in t. (This is equivalent to saying that the
probability of a tree is the product of the probabilities of all the local trees
that make it up.) If TG(w) is the set of trees generated by G with yield w,

DRAFT of 7 July, 2013, page 117

118 CHAPTER 4. PARSING AND PCFGS

V = {x}

N = {S}

S = S

R = {S → S S S → x}

ρ = (ρS→S S = 0.7, ρS→x = 0.3)

Figure 4.8: A PCFG for which the tree “probabilities” P(t) do not sum to
1. Informally, this is because this grammar puts non-zero mass on infinite
trees.

then we define PG(w) to be the sum of the probability of the trees in TG(w),
i.e.,

PG(W = w) =
∑

t∈TG(w)

P(T = t) (4.2)

Finally, note that PG may not define a properly normalized probabil-
ity distribution on T or W . Figure 4.8 presents a simple PCFG for which∑

t∈T P(t) < 1; intuitively this is because this grammar puts its mass on
“infinite trees”. Fortunately it has been shown that such cases cannot occur
for a very wide class of grammars, including all the ones we allude to in this
book.

4.2.4 HMMs as a kind of PCFG

PCFGs are strictly more expressive than the HMMs we saw in the previous
chapter. That is, for each HMM there is a PCFG that generates the same
language (with the same probabilities) as the HMM. This parallelism goes
further; the algorithms we presented for HMMs in the last chapter can be
viewed as special cases of the algorithms for PCFGs that we present below.

Recall that an HMM H is defined in terms of a set of states Y , a state-to-
state transition matrix σ, where σy,y′ is the probability of a transition from y
to y′, and a state-to-output matrix τ , where τy,v is the probability of emitting
output v from state y. Given an HMM G, we can define a PCFG GH that
generates the same probabilistic language as H as follows. Let Y ′ be the set
of HMM states except for the begin and end states ‘⊲’ and ‘⊳’. Then set

DRAFT of 7 July, 2013, page 118

4.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 119

S

AN

Sam

AV

likes

Sandy

BN

BN

ANBV

Figure 4.9: A parse tree generated by the PCFG corresponding to the HMM
presented in the previous chapter.

GH = (V ,N , S,R, ρ) where V is the same terminal vocabulary as the HMM,
N = {S} ∪ {Ay, By : y ∈ Y ′} where Ay and By are unique symbols distinct
from S and each element of V . R consists of all rules of the form S → Ay,
Ay → By Ay′ , Ay → By and By → v, for all y, y′ ∈ Y ′ and v ∈ V , and ρ is
defined as follows:

ρS→Ay
= σ⊲,y ρAy→By Ay′

= σy,y′

ρAy→By
= σy,⊳ ρBy→v = τy,v

Example 4.4: Figure 4.9 shows a parse tree (writen in the form normal for a
parse tree) generated from the PCFG corresponding to the example HMM pre-
sented in Section 3.3 on page 80. However, the corespondence to HMMs is perhaps
clearer if we write the parse tree “on its side” as in Figure 4.10. This figure should
also make the above probability rules clearer — e.g, why ρS→Ay = σ⊲,y.

Grammars such as these are called right-linear (“linear” means that ev-
ery rule contains at most one nonterminal symbol, and “right-linear” means
that that this nonterminal appears rightmost in the list of the rule’s chil-
dren). We’ve just seen that every HMM generates the same language as
some right-linear PCFG, and it’s possible to show that every right-linear
PCFG generates the same language as some HMM, so HMMs and right-
linear PCFGs can express the same class of languages.

DRAFT of 7 July, 2013, page 119

120 CHAPTER 4. PARSING AND PCFGS

BV

S AN

BN

AN

BN

Sam

AV

likes Sandy

⊳ N V

likes

N

Sandy

⊳

Sam

Figure 4.10: The same parse tree writen on its side, along with the Bayes
net for the corresponding HMM

4.2.5 Binarization of PCFGs

Many of the dynamic programming algorithms for CFGs and PCFGs require
that their rules be in a special form that permits efficient processing. We
will say that a (P)CFG is binarized iff all of its productions are all instances
of the following schemata:

A → v : A ∈ N , v ∈ V (terminal rules)
A → B C : A,B,C ∈ N (binary rules)
A → B : A,B ∈ N (unary rules)

Grammars in which all rules are either terminal rules or binary rules are
said to be in Chomsky normal form. It turns out that for every PCFG G
without epsilon rules there is another PCFG G′ in Chomsky normal form
that generates the same language as G.

Binarized PCFGs are less restrictive that Chomsky normal form because
they also permit unary rules (in addition to terminal and binary rules). It
turns out that every epsilon-free PCFG G has a corresponding binarized
PCFGG′ that generates the same language asG, and that the trees generated
by G′ correspond 1-to-1 with the trees of G. This means that we can map the
trees generated by G′ to trees generated by G. So in our algorithms below,
given a grammar G we find an equivalent binarized grammar G′ which we use
in algorithm, and then map its output back to the trees of original grammar
G.

DRAFT of 7 July, 2013, page 120

4.2. PROBABILISTIC CONTEXT-FREE GRAMMARS 121

S

NP

NNP

Sam

VP

VBZ

put

NP

NNP

Fido

PP

IN

in

NP

DT

the

NN

kennel

S

NP

NNP

Sam

VP

VBZ NP

VBZ

put

NP

NNP

Fido

PP

IN

in

NP

DT

the

NN

kennel

Figure 4.11: A tree generated by a non-binary CFG, and a tree generated
by its binarized counterpart

There are many ways of converting an arbitrary PCFG G to an equivalent
binarized PCFG G′, but we only describe one of the simplest algorithms
here. The key idea is to replace a rule with three or more symbols on the
right with several binary rules that a ccomplish the same thing. So the rule
‘A → B C D’ would be replaced by

A → B C D
B C → C D

The new symbol ‘B C’ can only expand one way, so whenever we use the first
of these rules, we always end up with the correct three symbols in our parse.

More formally the binarized PCFG G′ = (V ,N ′, S,R′, ρ′) has the same
terminal vocabulary and start symbol as G = (V ,N , S,R, ρ), but G′ has
many more nonterminal symbols and rules than G does, e.g., B C. So the
non-terminal set N ′ consist of N plus all non-empty proper prefixes of the
rules of G. (A proper prefix of a string β is a prefix of β that does not include
all of β). We’ll write β1:i for a symbol concatingating β1, . . . , βi of β. This
method is called right-branching binarization because all of the branching
occurs along the right-hand-side spine.

Figure 4.11 depicts a tree generated by a non-binarized CFG as well as
its binarized counterpart.

DRAFT of 7 July, 2013, page 121

122 CHAPTER 4. PARSING AND PCFGS

More precisely, the binarized grammar G′ is defined as follows:

N ′ = N ∪ {β1:i : A → β ∈ R, 1 < i < |β|}

R′ =





A → v : A → v ∈ R
A → B : A → B ∈ R
A → β1:n−1 βn : A → β ∈ R, |β| > 1
β1:i → β1:i−1 βi : A → β ∈ R, 1 < i < |β|





ρ′ =





ρ′A→v = ρA→v : A → v ∈ R
ρ′A→B = ρA→B : A → B ∈ R
ρ′A→β1:n−1 βn

= ρA→β : A → β ∈ R
ρ′β1:i→β1:i−1 βi

= 1 : A → β ∈ R, 1 < i < |β|





Unary and binary rules probabilities go through untouched. Interestingly,
larger rules retain their exactly probabilities as well. So the probability for,
say, NP → DT JJ JJ NN (“the large yellow block”) is unchanged from that
of the original rule (NP → DT JJ JJ NN). The probability of the extra rules
introduced by the process, e.g., (DT JJ JJ → DT JJ JJ) are all one. This
makes sense since there is only one thing that DT JJ JJ can expand into, and
thus the probability that it will expand that way is one. This means that the
sequence of rule expansions that are required in the binarization case have
the same probability as the single probability in the unbinarized grammar.
Also note that different nary rules may share the helper binarized grammar
rules. e.g., the rule (NP → DT JJ JJ NNS) (NNS is plural common noun)
has the binarization (NP → DT JJ JJ NN), and make use of the rules for
expanding DT JJ JJ.

Lastly, two point that we come back to in Section 4.7. First, as should
already be obvious, binarization dramatically increases the size of the non-
terminal vocabulary. Secondly, for the particular binarization method we
choose, a new binary non-terminals may never appear as the second non-
terminal in a binary rule, only the first. This has implications for efficient
parsing.

4.3 Parsing with PCFGs

This section describes how to parse a string w ∈ W with a PCFG G. In
practice most probabilistic grammars are designed to generate most or all
strings in W , so it’s not interesting to ask whether w is generated by G.

DRAFT of 7 July, 2013, page 122

4.3. PARSING WITH PCFGS 123

Similarly, the set TG(w) will typically include a very large number of trees,
many of which will have extremely low probability. Instead, we typically
want to find the most likely tree t̂(w) for a string w, or perhaps the set of the
m most-likely trees (i.e., the m trees in TG(w) with maximum probability).

t̂(w) = argmax
t∈TG(w)

PG(T = t | W = w)

= argmax
t∈TG(w)

PG(T = t,W = w)

(However, if we intend to use G as a language model, i.e., to predict the
probability of a string w, we want to implicitly sum over all TG(w) to calculate
PG(w), as in equation 4.2).

If w is very short and G is sufficiently simple we might be able to enumer-
ate TG(w) and identify t̂(w) exhaustively. However, because TG(w) can be
infinite (and even when it is finite, its size can be exponential in the length
of w), in general this is not a practical method.

Instead, we show how to find t̂(w) using a dynamic programming algo-
rithm that directly generalizes the algorithm used to find the most likely
state sequence in an HMM given in Section 3.3 on page 80. This algorithm
requires that G be a binarized PCFG. We described in the previous section
how to map an arbitrary PCFG to an equivalent binarized one, so from here
on we will assume that G is binarized. (Note that there are efficient dynamic
programming parsing algorithms that do not require G to be binarized, but
these usually perform an implicit binarization “on the fly”).

It actually simplifies CFG parsing algorithms to use “computer science”
zero-based indexing for strings. That is, a string w of length n is made up of
elements indexed from 0 to n−1, i.e., w = (w0, w1, . . . , wn−1). A subsequence
or “slice” is defined to be wi,j = (wi, . . . , wj−1), i.e., it goes up to, but doesn’t
include element wj. This in turn is most easily visualized if you think of the
indicies as enumerating the positions between the words.

Example 4.5: The sentence “Sam likes Sandy” with the indicies 0 to 3 would
look like this:

Sam likes Sandy
0 1 2 3

So, e.g., w1,3 = “likes Sandy”.

DRAFT of 7 July, 2013, page 123

124 CHAPTER 4. PARSING AND PCFGS

0,1 1,2 2,3

0,2 1,2

0,3

1 20 3

Figure 4.12: Chart for a string of length three

Just as in the HMM case, we first address the problem of finding the
probability µ(w) = maxt∈T (w) P(t) of the most likely parse t̂(w) of w. Then
we describe a method for reading out the most likely tree t̂(w) from the
dynamic programming parsing table used to compute µ(w).

For a given nonterminal A ∈ N , let µA(i, k) be the probability of the
most likely parse of wi,k when the subtree is rooted in A. Given a string
w to parse, we recursively compute µA(i, k) for all for each A ∈ N and
0 ≤ i < j ≤ |w|. (We use the positions i to k because in a moment we
introduce a position j, i < j < k.)

The traditional visualization for this is called a chart. Charts are two
dimensional arrays of (i, k) Figure 4.12 shows an empty chart for a three
word string, e.g., “Sam likes Sandy”. Each diamond is a cell of the chart,
and coresponds to possible span of words. So the bottom left-hand cell will
be filled with terminal and non-terminals that span the words zero to one —
e.g., the first word of the sentence “Sandy”. In the same way, the top center
cell spans the words zero to three. It is always the top center that contains
the start symbol if the string is in the language of the PCFG we are using.
Note that the instructions to fill the chart from bottom up coresponds to the
pseudo-code:

1. for l = 1 to L

(a) for s = 0 to L− l

i. fill cell(s, s+ l)

DRAFT of 7 July, 2013, page 124

4.3. PARSING WITH PCFGS 125

likes NP

VP

S

1 20 3

NP
Sam Sandy

Figure 4.13: Chart appropriately filled for “Sam likes Sandy”

Filling a cell coresponds to finding the possible terminal and non-terminals
that can span each terminal string (e.g., the third dimension) and determin-
ing their µA(i, k). We want to fill bottom up because filling a cell requires
the entries for all of the cells beneath it. Figure 4.13 shows our chart when
the grammar of Figure 4.5 Note that charts are what we earlier refered to as
packed parse forests in that they compress an exponential number of possible
trees into a data structure of size N2, where N is the length of the sentence.

We begin with the case where the grammar is in Chomsky normal form
(CNF), i.e., all rules are terminal or binary, and consider unary rules later.
Our algorithm computes the values of µA(i, k) from smaller substrings to
larger ones. Consider the substrings of w of length 1, i.e., where k = i+1. If
the grammar is in CNF then these can only be generated by a terminal rule,
as the yield of any tree containing a binary branch must contain at least two
words. Therefore for i = 0, . . . , |w| − 1:

µA(i, i+ 1) = ρA→wi
(4.3)

Now we turn to the substrings wi,k of length greater than 1, so k − i > 1.
All of their parse trees must start with a binary branching node, which must
be generated by some rule (A → B C) ∈ R. This means that there must
be a subtree with root labeled B and yield wi,j and another subtree with
root labeled C and yield wj,k. This yields the following equation for µ when

DRAFT of 7 July, 2013, page 125

126 CHAPTER 4. PARSING AND PCFGS

Sam wants to leave

VB

VPTO

VP

S

0 1 2 3 4 string positions

µ′
VP,2,4

µS,2,4

Figure 4.14: This figure shows the relationship between µ′ (which only
considers trees starting with a terminal or binary rule) and µ (which considers
all trees).

k − i > 1,

µA(i, k) = max
j : i<j<k

A→BC∈RA

ρA→B C µB(i, j) µC(j, k) (4.4)

In words, we look for the combination of rule and mid-point which gives
us the maximum probability for (A) spanning i, k. These probabilities are
simply the probabilities of the two sub-components times the probability of
the rule that joints them to form an A.

Equations 4.3 and 4.4 can be used bottom-up (working from shorter sub-
strings to longer) to fill in the table µ. After the table is complete, the
probability of the most likely parse is µS(0, |w|). Finding the most likely
parse is straightforward if you associate each entry µA(i, k) with “backpoint-
ers” to the µB(i, j) and µC(j, k) that maximize (4.4).

Unfortunately unary rules complicate this simple picture somewhat. If
we permit unary rules the subtree responsible for maximizing µA(i, k) can
consist of a chain of up to |N |−1 unary branching nodes before the binary or
terminal rule is applied. We handle this by introducing µ′

A(i, k), which is the
probability of the most likely parse rooted of wi,k whose root is labeled A and
expands with a binary or terminal rule. Figure 4.14 shows the relationship

DRAFT of 7 July, 2013, page 126

4.4. ESTIMATING PCFGS 127

between µ and µ′. Then:

µ′
A(i, i+ 1) = ρA→wi

(4.5)

µ′
A(i, k) = max

j : i<j<k

A→BC∈RA

ρA→B C µB(i, j) µC(j, k) (4.6)

µA(i, k) = max

(
µ′
A(i, k), max

A→B∈RA

ρA→B µB(i, k)

)
(4.7)

Again, the computation needs to be arranged to fill in shorter substrings first.
For each A, i and j combination, (4.5) or (4.6) only needs to be applied once.
But unless we know that the grammar constrains the order of nonterminals in
unary chains, (4.7) may have to be repeatedly applied up to |N |−1 times for
each i, j combination, sweeping over all unary rules, because each application
adds one additional story to the unary chain.

There are some obvious optimizations here. For example, no nonterminal
produced by binarization can ever appear in a unary chain, so they can be
ignored during the construction of unary chains. If there are no unary chains
of height ℓ for a particular i, j then there are no chains of height ℓ + 1, so
there’s no point looking for them. One can optimize still further: there’s no
point in considering a unary rule A → B to build a chain of height ℓ + 1
unless there is a unary chain with root B of height ℓ. And there’s no need to
actually maintain two separate tables µ′ and µ: one can first of all compute
µ′
A(i, k) using (4.5) or (4.6), and then update those values to µA(i, k) using

(4.7).
On the other hand, it possible that you already have, say, a constituent Z

built from a chain of length two, but then find a better way to build it with
a chain of height three. Even if this is the only thing added at three, you
have to go on to four, because there could be some other constituent that
will now use the more proable Z to improve its probability. To put it another
way, you keep going until no non-terminal increases its µ.

4.4 Estimating PCFGs

This section describes methods for estimating PCFGs from data. We consider
two basic problems here. First, we consider the supervised case where the
training data consists of parse trees. Then we consider the unsupervised
case where we are given a CFG (i.e., we are told the rules but not their

DRAFT of 7 July, 2013, page 127

128 CHAPTER 4. PARSING AND PCFGS

probabilities) and have to estimate the rule probabilities from a set of strings
generated by the CFG. (Learning the rules themselves, rather than just their
probabilities, from strings alone is still very much an open research problem).

4.4.1 Estimating PCFGs from parse trees

This section considers the problem: given a sequence t = (t1, . . . , tn) of parse
trees, estimate the PCFG Ĝ that might have produced t. The nonterminals
N , terminals V , start symbol S and set of rules R used to generate t can
be read directly off the local trees of t, so all that remains is to estimate the
rule probabilities ρ. We’ll use the Maximum Likelihood principle to estimate
these. This supervised estimation problem is quite straight-forward because
the data is fully observed, but we go through it explicitly here because it
serves as the basis of the Expectation-Maximization unsupervised algorithm
discussed in the next section.

It’s straightforward to show that the likelihood of t is:

Lt(ρ) = Pρ(t)

=
∏

A→β∈R

ρ
nA→β(t)

A→β (4.8)

where nA→β(t) is the number of times that the local tree A → β appears in
the sequence of trees t.

Since ρ satisfies the normalization constraint (4.1) on page 117, (4.8) is
a product of multinomials, one for each nonterminal A ∈ N . Using fairly
simple analysis one can show that the maximum likelihood estimate is:

ρ̂A→β =
nA→β(t)

nA(t)
(4.9)

where nA(t) =
∑

A→β∈RA
nA→β(t) is the number of nodes labeled A in t.

4.4.2 Estimating PCFGs from strings

We now turn to the much harder problem of estimating the rule probabilities
ρ from strings, rather than parse trees. Now we face an estimation problem
with hidden variables. As we have done with other hidden variable estimation
problems, we will tackle this one using Expectation-Maximization (EM).

DRAFT of 7 July, 2013, page 128

4.4. ESTIMATING PCFGS 129

The basic idea is that given a training corpus w of strings and an initial
estimate ρ(0) of the rule probabilities, at least conceptually we use ρ(0) to
compute the distribution P(t|w) over possible parses for w, and from that
distribution compute the expected value E[nA→β|w] of the statistics needed in
the MLE equation (4.9) to produce an improved estimate ρ. We iterate this
process, ultimately converging on at least a local maximum of the likelihood.

The key quantity we need to compute in the EM algorithm are the ex-
pected rule counts:

E[nA→β | w] =
∑

t∈TG(w)

nA→β(t) P(t | w)

=
1

P(w)

∑

t∈TG(w)

nA→β(t) P(t)

If the sentences in w are all very short it may be practical to enumerate
all of their parses and compute these expectations this way. But in general
this will not be possible, and we will need to use a more efficient algorithm.
The rest of this section describes the Forward-Backward algorithm, which
is a dynamic programming algorithm for computing these expectations for
binarized grammars.

To keep matters simple, we will focus on computing the expected counts
from a single string w = (w0, . . . , wn−1). In practice we would compute
the expected counts for each sentence separately, and sum them to get the
expectations for the corpus as a whole.

4.4.3 The inside-outside algorithm for CNF PCFGs

Just as we did for parsing, we’ll first describe the algorithm for grammars
in Chomsky Normal Form (i.e., without unary rules), and then describe the
extension required to handle unary rules.

Generalizing what we did for HMMs, we first describe how to compute
something more specific than the expectations we require, namely the ex-
pected number E[nA→BC(i, j, k)|w] of times a rule A → B C to expand an A
spanning from i to k into a B spanning from i to j and a C spanning from
j to k. The expectations we require are obtained by summing over all string
positions i, j and k.

The quantities we need to compute are the inside and outside “probabili-
ties” β and α respectively. These generalize the Backward and the Forward

DRAFT of 7 July, 2013, page 129

130 CHAPTER 4. PARSING AND PCFGS

B C

w0:i wi:j wj:k wk:|w|

S

βB,i,j βC,j,k

A

αA,i,k

Figure 4.15: The parts of the tree contributing to the inside probabilities
βA(i, j) and the outside scores αA(i, j), as used to calculate E[nA→BC(i, j, k)].

probabilities used in the EM algorithm for HMMs, which is why we use the
same symbols for them. The scare quotes are there because in grammars with
unary rules the outside “probabilities” can be larger than one, and because
of this we will refer to outside scores instead of “probabilities”. Figure 4.15
depicts the parts of a tree that contribute to the inside probabilities and
outside scores.

The inside probability βA(i, j) is the probability of an A expanding to
wi,j , which is the sum of the probability of all trees with root labeled A and
yield wi,j , i.e.,

βA(i, j) = PA(wi:j)

=
∑

t∈TA(wi:j)

P(t)

The outside socre αA(i, j) is somewhat harder to understand. It is the
sum of the probability of all trees whose yield is w0,iAwj:|w|, i.e., the string
w with wi,j replaced by A. It’s called the outside probability because it
counts only the part of the tree outside of A. Intuitively, it is the sum of the
probability of all trees generating w that include an A expanding to wi,j ,
not including the subtree dominated by A.

DRAFT of 7 July, 2013, page 130

4.4. ESTIMATING PCFGS 131

The reason why the outside scores can be greater than one with unary
rules is that the tree fragments being summed over aren’t disjoint, i.e., a tree
fragment and its extension wind up being counted. Consider the grammar
with rules S → S and S → x, with ρS→S = ρS→x = 0.5. The outside trees
whose probability is summed to compute αS(0, 1) consist of unary chains
whose nodes are all labeled S, so αS(0, 1) = 1 + 1/2 + 1/4 + . . . = 2. On the
other hand, βS(0, 1) involves summing the probability of similar unary chains
which terminate in an x, so βS(0, 1) = 1/2+1/4+. . . = 1 as expected (since ‘x’
is the only string this grammar generates). For this section, however we are
assuming Chomsky Normal Form grammars, which do not have unay rules.
This simplifies things. In particular the outside scores are now probabilities.

Since the grammar is in Chomsky Normal Form, β satisfies the following:

βA(i, i+ 1) = ρA→wi

βA(i, k) =
∑

A→B C∈RA

j : i<j<k

ρA→B C βB(i, j) βC(j, k) if k − i > 1

These can be used to compute β in a bottom-up fashion by iterating from
smaller to larger substrings, just like we did for µ in section 4.3 on page 122.
It’s easy to see that βS(0, |w|) = P(w), i.e., the probability of the string w.

The outside probability α are somewhat more complex.

αA(0, |w|) = 1 if A = S and 0 otherwise (4.10)

αC(j, k) =
∑

A→BC∈R
i : 0≤i<j

ρA→B C αA(i, k) βB(i, j)

+
∑

A→C D∈R
ℓ : k<ℓ≤|w|

ρA→C D αA(j, ℓ) βD(k, ℓ) (4.11)

In order to understand these equations, it helps to recognize that if t
is a tree generated by a grammar in Chomsky Normal Form then every
nonterminal node in t is either the root node, and therefore has its α specified
by (4.10), or is either a right child or a left child of some other nonterminal,
and (4.11) sums over these alternatives. In more detail, (4.11) says that

DRAFT of 7 July, 2013, page 131

132 CHAPTER 4. PARSING AND PCFGS

B C

S

wi:j wj:k

S

C D

wj:k wk:ℓ

A
βB,i,j

αA,i,k

A

αA,j,ℓ

βB,k,ℓ

Figure 4.16: The two cases corresponding to the terms in the sum in (4.11)
on page 131. Note that the insides of siblings B and D are outside C but
inside A, so their inside probabilities are multiplied by the outside scores of
A and the rule that connects them.

the outside score for the smaller constituent C consists of the sum of the
outside scores for the larger constituent A times the inside probability of its
sibling (either B or D) times the probability of the rule that connects them.
Figure 4.16 depicts the structures concerned in (4.11).

These two equations can be used to compute α, iterating from longer
strings to shorter. The first equation initializes the procedure by setting the
outside probability for the root S node to 1 (all other labels have outside
probability 0).

Once we have computed α and β, the expected counts are given by:

E[nA→wi
(i, i+ 1) | w] =

αA,i,i+1 ρA→wi

P(w)
(4.12)

E[nA→B C(i, j, k) | w] =
αA,i,k ρA→B C βB,i,j βC,j,k

P(w)
(4.13)

The expected rule counts that we need to reestimate ρ are obtained by
summing over all combinations of string positions, i.e.,

E[nA→w | w] =

|w|−1∑

i=0

E[nA→w(i, i+ 1) | w]

E[nA→B C | w] =
∑

i,j,k :

0≤i<j<k≤|w|

E[nA→B C(i, j, k) | w]

DRAFT of 7 July, 2013, page 132

4.4. ESTIMATING PCFGS 133

4.4.4 The inside-outside algorithm for binarized gram-

mars

This section sketches how the inside-outside algorithm can be extended to
binarized grammars with unary rules. The key to this is calculating the
scores (i.e., the product of rule probabilities) of all unary chains with root
labeled A and root labeled B for all A,B ∈ N .

In the computation of the most likely parse t̂(w) in section 4.3 on page 122
we explicitly enumerated the relevant unary chains, and were certain that the
process would terminate because we could provide an upper bound on their
length. But here we want to sum over all unary chains, including the low
probability ones, and if the grammar permits unary cycles (i.e., nontrivial
unary chains whose root and leaf have the same label) then there are infinitely
many such chains.

Perhaps surprisingly, it turns out that there is a fairly simple way to
compute the sum of the probability of all possible unary chains using matrix
inversion. We start by defining a matrix U = UA,B whose indices are non-
terminals A,B ∈ N of the binarized grammar G. (In order to use standard
matrix software you’ll need to map these to natural numbers, of course).

We set UA,B = ρA→B to be the probability of a unary chain of length one
starting with A and ending with B. Then the probability of chains of length
two is given by U2 (i.e., the probability of a chain of length two starting with
an A and ending with a B is U2

A,B), and in general the probability of chains
of length k is given by Uk. Then the sum S of the probabilities of all such
chains is given by:

S = 1+U+U2 + . . .

= (1−U)−1

where 1 is the identity matrix (corresponding to unary chains of length zero)
and the superscript ‘−1’ denotes matrix inversion.

With the matrix S in hand, we now proceed to calculate the inside prob-
abilities β and outside scores α. Just as we did in section 4.3 on page 122,
we introduce auxiliary matrices β′ and α′ that only sum over trees whose
root expands with a terminal or binary rule, and then compute their unary
closure.

DRAFT of 7 July, 2013, page 133

134 CHAPTER 4. PARSING AND PCFGS

The equations for the inside probabilites are as follows:

β′
A(i, i+ 1) = ρA→wi

β′
A(i, k) =

∑

A→B C∈RA

j : i<j<k

ρA→B C βB(i, j) βC(j, k) if k − i > 1

βA(i, j) =
∑

B∈N

SA,B β′
B(i, j)

Note that the equation for β is not recursive, so it only needs to be computed
once for each combination of A, i and j (unlike the corresponding unary
closure equation for µ).

The equations for the outside scores are also fairly simple extensions of
those for Chomsky Normal Form grammars, except that the unary chains
grow downward, of course.

α′
A(0, |w|) = 1 if A = S and 0 otherwise

α′
C(j, k) =

∑

A→BC∈R
i : 0≤i<j

ρA→B C αA(i, k) βB(i, j)

+
∑

A→C D∈R
ℓ : k<ℓ≤|w|

ρA→C D αA(j, ℓ) βD(k, ℓ)

αB(i, j) =
∑

A∈N

SA,B α′
A(i, j)

Interestingly, the equations (4.12–4.13) we gave on page 132 are correct
for binarized grammars as well, so all we need is the corresponding equation
for unary rules.

E[nA→B(i, j) | w] =
αA(i, j) ρA→B βB(i, j)

P(w)
(4.14)

4.5 Scoring Parsers

The point of a parser is to produce “correct” trees. In this section we describe
how the field measures this, and ultimately assigns a single number, say, 0.9
(out of 1.0) to grade a parsers performance. Rather than do this in the

DRAFT of 7 July, 2013, page 134

4.5. SCORING PARSERS 135

(ROOT

(SQ (MD Would)

(NP (NNS participants))

(VP (VP (VB work) (ADVP (JJ nearby)))

(CC or)

(VP (VP (VB live) (PP (IN in) (NP (NN barracks))))

(CC and)

(VP (VB work))

(PP (IN on) (NP (JJ public) (NNS lands)))))

(. ?)))

Figure 4.17: A correct tree as specified by the tree bank

abstract, however, it would be more interesting to do this for a particular
parser, say one built directly using the technology we described above.

To start we first need to introduce the Penn treebank, a corpus of about
40,000 sentences (one million words) from the Wall-Street Journal, each as-
signed a phrase structure by hand. Figure 4.17 is a (slightly shortened) tree
from this corpus. You might notice the start symbol is not S, but ROOT be-
cause many strings in the tree bank are not complete sentences. Also notice
that punctuation is included in the tree. It is a good idea to parsing with
punctuation left in, as it gives good clues to the correct parse structure, and
parsers uniformly work better with the punctuation than without it.

After binarizing the trees we can find Maximum Likelyhood rule proba-
bilities as described in Section 4.4.1. We then build a basic parser as layed
out above, and parse a test set we separated in advance. The question we
now answer is, having done this, what is the parser’s “score” and what does
it mean?

The standard numerical measure of parser performance is something
called labeled precision/recall f-measure. It is a number between zero and
1, with 1 being perfect. We now unpack this name.

First we find the total number of correct phrasal constituents in all of
the test set. So in Figure 4.17 there are 13 phrasal labels (and fourteen
pretermals). We do not count ROOT, because it is impossible to get wrong,
so we have 12. A test-set of a thousand sentences might have a total of
twenty five thousand such nodes. We then count how many the parser got
correct. If it produced exactly the above tree, it would be twelve, but in fact,

DRAFT of 7 July, 2013, page 135

136 CHAPTER 4. PARSING AND PCFGS

(ROOT

(SQ (MD Would)

(NP (NNS participants))

(VP (VB work)

(ADJP (JJ nearby) (CC or) (JJ live))

(PP (IN in)

(NP (NP (NN barracks) (CC and) (NN work))

(PP (IN on) (NP (JJ public) (NNS lands))))))

(. ?)))

Figure 4.18: An incorrect tree for the example in Figure 4.17

it produces the tree in Figure 4.18 How many nodes are correct there?

To assign a number, we first need to define what makes a constituent in
one tree the “same” as one in another tree with the same yield. Our formal
definition is that two trees are the same if and only if they have the same
label, starting point in the string, and ending point in the string. Note that
according to this definition we cound as correct the VP(2,13) found in Figures
4.17 and 4.18 even though they do not have the same sub-constituents. The
idea is that in such a case the sub-constituents will be marked wrong, but
we do now allow the mistakes at that level to count against the VP one level
up. The required label identity of the two constituents is what makes this
“labeled precision/recall f-measure” So here there are four correct constituents
in Figure 4.18 out of eight total.

So let C be the total constituents correct, G be the number in the treebank
tree, and H the number in the parser tree. We define precision (P) as
C/H and recall (R) is C/G. F-measure(F) is the harmonic mean of the two
(2·P ·R)/(P + R). Note that if P = R then P = R = F , or equalently F is
the average of P and R. But as P and R diverge, F tends to the smaller
of the two. So suppose our parser produces a tree with only one phrasal
category, and it is correct, then P = 1, R = 1/13, and F ≈ 0.16

When you build the just-described parser and test it we get C = 18151,G =
27007, and H = 25213, so F = .695 This means that almost one out of three
constituents are incorrect. The example of Figure 4.18 was deliberatly picked
to show you how bad things can get. The parser decided to use “work” as a
noun, and “live” as an adjective, and these make for unusual combinations,
such as one saying, in effect, that the participants are working “nearby or

DRAFT of 7 July, 2013, page 136

4.6. ESTIMATING BETTER GRAMMARS FROM TREEBANKS 137

live” presumably as opposed to far-away or dead.

Fortunately, this is a very simple model, and statistical parsing has moved
way beyond this. A modern parser gets about .90 F, and in particular gets
the above example completely correct.

4.6 Estimating better grammars from tree-

banks

Context-free grammars are called “context-free” because the choice of rule
expanding each non-terminal is independent of everything already generated
in the tree except for the label on the parent being expanded. You can
think of this label as classifying the rest of the tree into one of |N | states.
Or to put it another way, a context-free symbol is an information barrior
between what is going on outside the constituent and its inside. Because a
CFG only constrains the labels on nodes in local trees, if we want to capture
a a longer-range dependency between nonlocal parts of the tree, it must
be broken down into a sequence of local dependencies between between the
labels on nodes in the same local trees. The nonterminal labels then serve
as “communication channels” responsible for propagating the dependency
through the appropriate sequence of local trees. This process would start
with a single state such as NP, and end up with several variants, NP1, NP2,
etc. Thus the process is called state-splitting.

The classic example of state-splitting is parent annotation. where the
parent category of each nonterminal is encoded in its label. So, if the string is
a complete sentence the parse starts out with (ROOT (S ...)) But treebank
sentences under ROOT (almost) always end in a final punctuation mark, and
thus these S’s are quite different from, e.g., subordinate clases. We can better
model this is we have the symbol “SR̂OOT” — an S underneath ROOT. In
fact there are a lot of situations where parent annotation allows us to capture
important regularities. For example, subject noun phrases, e.g., NPŜ, are
more likely to be pronouns than object NPs (NPV̂P). Figure 4.19 also shows
the result of parent-annotating the S and NP nonterminals.

Another important way to use state splitting is suggested by the fact
that many words prefer to appear in phrases expanded with particular rules.
For example, ‘put’ prefers to appear under a VP that also contains an NP
and PP (as in the example in Figure 4.11 on page 121), while ‘sleep’ prefers

DRAFT of 7 July, 2013, page 137

138 CHAPTER 4. PARSING AND PCFGS

S^TOP

NP^S

VBZ/put

TOP

NNP

VP

NP^VP

NNP IN/in

PP

NP^PP

DT/the NN

Sam put

Fido in

the kennel

Figure 4.19: The tree produced by a state-splitting tree-transformation of
the one depicted in Figure 4.11 on page 121. All verb, preposition and deter-
miner preterminals are lexicalized, and S and NP nonterminals are parent-
annotated. A new start symbol TOP has been introduced because not all
trees in the treebank have a root labeled S.

to appear without any following NP (i.e., ‘Sam slept’ is a much better sen-
tence than ‘Sam slept Fido in the kennel’, but ‘Sam put Fido in the kennel’
is much better than ‘Sam put’). However, in PCFGs extracted from the Penn
Treebank and similar treebanks, there is a preterminal intervening between
the word and the phrase (VBZ), so the grammar cannot capture this depen-
dency. However, we can modify the grammar so that it does by splitting the
preterminals so that they encode the terminal word. This is sometimes called
“lexicalization”. (In order to avoid sparse data problems in estimation you
might choose to do this only for a small number of high-frequency words).
For grammars estimated from a treebank training corpus, one way to do this
is to transform the trees from which the grammar is estimated. Figure 4.19
shows this as well.

A second way to handle sparse data problems cause by state splitting is
to smooth, as we did in Chapter 1. So we might estimate the probability of a
parent anotated constituent by blending it with the unannoted version. So if
R1 = V P V P → V BDNP V P we could smooth it with R2 = V P → V BDNP
as follows:

P̃R1 =
nR1(d) + β P̃R2

nV BV B(d) + β

DRAFT of 7 July, 2013, page 138

4.7. PROGRAMMING A PARSER 139

4.7 Programming A Parser

Section 4.3 layed out the basics of probabilistic CFG parsing. When we left
it, it looked something like this: The basic data structure is the grammar,
a set of rules where a rule r is the fourtuple < lhs, rhs1, rhs2, prob >. The
chart is an N by N array of Cells. A Cell is a set of Constituents, and a
constituent is a four tuple < label, ρ1, ρ2.µ >. A constituent coresponding
to a terminal symbol would have µ = 1 and ρ1 = ρx = NULL. (No back
pointters).

The parsing algorithm thus is this:
Function: parse(w0,L)

1. read in binarized tree-bank grammar.

2. for ℓ = 1 to L

(a) for s = 0 to (L− ℓ)

i. fill C(s, s+ ℓ)

3. if Root(0, N) ∈ C(0, N)

(a) return debinarized(ρRoot(0,n))

(b) else return NULL

Function: fill(C(i, k))

1. if k = (i+ 1)

(a) add constituent c =< word,NULL,NULL, 1 > to C

2. for j = (i+ 1) to (k − 1)

(a) for c1 ∈ C(i, j) and c2 ∈ C(j, k) and rule r =< l, labc1 , labc2 , p >

i. create constituent c =< lhs, c1, c2, µn = (pr·µc1·µc2) >

ii. If there is no c′ ∈cell with labc′ = lhsr and µc′ ≥ µn

iii. add n to C(i, k).

3. While adding new or higher µ constituents to C(j, k)

(a) for c ∈ C and r =< lhs, labc, NULL, p >

DRAFT of 7 July, 2013, page 139

140 CHAPTER 4. PARSING AND PCFGS

i. create constituent n =< lhsr, c, NULL, µn = (µc·pr) >

ii. if there is no c′ ∈ C labc = labc′ and µc′ >= µn

A. add n to cell.

In words, we fill up the chart always working on smaller spans before
larger ones for which they are a substring. The for each cell with a span
of one we first add the word from the string. Then for larger spans we
use the binarized grammar to create new constituents from pairs of smaller
constituents. And for any size cell, we add constituents from unary rules
repeatedly untill there are no more to add.

So far in this book we have refrained from delving below the typical
level for psuedo-code. But here there is one issue that can drastically affect
performance, and will be far from obvious to the reader. It has to do with
the triple loop inside FILL, to the effect “for all rules, left constituents and
right constituents” when you think about this you realize that these three
loops can be in any order. That is, we could first find a left-constituent,
then find rules that match this left constituent, and finally look for the rule’s
right constituent in the chart. If we find it we apply to rule to create a new
constituent of the type specified by the left-hand side of the rule. But we
could do this in the reverse order, first right, then rule, then left – or first left,
then right, then rule. And it turns out that this can make a big difference in
the speed of your program. In particular, do not use the ordering left, right,
rule.

To see this, we first note that for a normal Chomsky normal form imple-
mentation, the average cell has about 750 constituents. This means if the
two loops over constituents go on the outside, the loop in which we consider
rules is executed 750·750, e.g., about a half million, times. This will slow you
down.

Now at first 750 may seem excessive. The Penn-Treebank only has about
thirty phrasal constituents. Where did the other 720 come from? The answer,
of course, is that they are all symbols created by binarization, e.g., DTJJNN .
In fact, there are about fourty binarized constituents in a call for every
“regular” one.

But there is some good news here. As we noted at the end of Section
4.3, the right-most symbol in a binary rule can never be a binarization non-
terminal. That means there are not 750 * 750 possible combinations, to
build, but only say, 750*30, where 30 is the number of original phrasal non-
terminals.

DRAFT of 7 July, 2013, page 140

4.8. EXERCISES 141

If we use an ordering with rule selection in the middle we automatically
get this efficiency. Suppose we start by iterating over possible left-hand side
constituents. As we just noted, there will be on average about 750 of them.
We now take the first of these, say with the label DTNN . Next we look for
rules of the form X → DTNNY . Finally we look for Y’s. But we are guaran-
teed there can be a maximum 30 of these, since no binary constituents will
every appear in this position within a rule. (For left-branching binarization.
The opposite would be true if we had used right-branching.)

That is it. It is no harder doing rule selection in the middle, than last,
and it is much faster.

4.8 Exercises

Exercise 4.1: Suppose we added the following rules to the grammar of Fig-
ure 4.5:

NP → NP CC NP VBZ → like CC → and

Show the parse tree for the sentence “Sandy and Sam like the book”.

Exercise 4.2: Show a dependency tree for the sentence in the previous ex-
ercise using Figure 4.3 as a template. Assume that the head of a conjoyned
‘NP’ is the ‘CC’, and its dependents are the noun-phrase conjuncts (the
subordinate noun-phrases). Do not worry about the labels on arcs.

Exercise 4.3: Fill in the chart of Figure 4.13 with (a) two constituents
which are missing, and (b) the µ values for all constituents according to
the probabilities of Figure 4.7.

Exercise 4.4: Consider the probability of a string of N words P (w1,N) ac-
cording to a PCFG. Is this equal to αROOT (1, N), βROOT (1, N), both, or
neither?

Exercise 4.5: Suppose the third word of a string of length N > 3 is “apple”
where ρX→apple is 0.001 when X is NOUN, but zero for any other part of
speech. Which of the following is correct? αNOUN(2, 3) is equal to P (w1,N),
it is 1000P (w1,N), it is .001, it is 1.0? What about βNOUN2, 3?

DRAFT of 7 July, 2013, page 141

142 CHAPTER 4. PARSING AND PCFGS

4.9 Programming Assignment

Write a parser and evaluate its accuracy. You’ll use the following files:

1. wsj2-21.blt, which contains binarized rules and their counts extracted
from sections 2–21 of the Penn WSJ treebank. All words that appear
less than 5 times have been replaced with *UNK*. A new root node la-
beled TOP has been inserted. Also, preterminal symbols that consist en-
tirely of punctuation characters have had a caret ‘ˆ’ appended to them,
to distinguish them from the identical terminal symbols. You’ll need
to remove this from the parse trees you finally produce (munge-trees
can do this if you want).

2. wsj24.tree, which contains the Penn WSJ treebank trees for sec-
tion 24. Terminals not appearing in wsj2-21.blt have been replaced
with *UNK*. You should use this with the EVALB scoring program to
evaluate your

3. wsj24.txt, which contains the terminal strings of wsj24.tree.

4. The EVALB parser scoring program and instructions.

Note that the EVALB program returns various types of results. One is just
the POS tag accuracy of the parser. This should be in the mid %90 range,
much like an HMM tagger. The result we car about the the labeled precision
recall F-measure. This will be much lower — about %70.

DRAFT of 7 July, 2013, page 142

Chapter 5

Topic Modeling and PLSA

This is just the beginings of a chapter. The point is to give you
enough information (when suplimented by the lectures) to do the
fifth programming assignment

5.1 Topic Modeling

Notably absent in this book is any discussion of the meaning of language.
For example, the entire point of translation is to capture the meaning of a
sentence written in one language in a second sentence written in another, yet
the models we created did not deal with the meanings of the words at all.
(Though they did rely on the fact that the sentences pairs of the requisite
parallel corpus meant the same thing.) Indeed, the success of MT has been
due to our ability to translate without the program knowing what it is talking
about.

A large fraction of current CL research is trying change this, but text-
books such as this restrict themselves to areas where there is some consensus
on how things should work, and as far as meanings are concerned these are
few and far between. This chapter is concerned with one of these few: topic
modeling.

Intuitively texts such as, e.g., newspaper articles, are “about” something
— their topic. So consider the following

It was the surgical head nurse who turned the South African
hospital upside down. She needed a gynecologist, and it made
perfect sense to her to choose Dr. E.T. Mokgokong, who would

143

144 CHAPTER 5. TOPIC MODELING AND PLSA

soon become deputy head of obstetrics and gynecology at the
Univeristy of Natal. Except that it was 20 years ago at the height
of apartheid and the nurse was white and Dr. Mokgokong is black.
“She caused complete pandemonium in the hospital,” the doctor
recalled.

If asked to pick words from the article that best express what it is about
we would pick, say, “apartheid”, “South Africa”, “gynecologist”, as opposed
to, say, “pandemonium”. Furthermore, we would not hesitate to say that
this articles is about apartheid and is not about World-War II, or the United
States Congress.

This chapter is concerned with topic modeling, writing programs that get
at this notion of “aboutness.”

5.2 Probabilistic Latent Semantic Analysis

In particular we look at a formal model called Probabilistic Latent Semantic
Analysis or PLSA. PLSA models have much in common with the language
models we delt with in Chapter 1 in so far as they allow us to assign a
probability to a text, but instead of basing the probability of a word on the
previous word, we base it on the topics of the document. If our corpus consists
of M “documents” (e.g., newspaper articles), each with ld words, then the
probability of our corpus c is the product of the document probabilities

Pc =
M∏

d=1

P(wd
1,ld

) (5.1)

where wd
1,ld

is the sequence of words w1,ld in document d. The probability of
the words is

P(wd
1,ld

) =

ld∏

i=1

N∑

t=1

P(Ti = t | d)P(wi | t). (5.2)

We do not bother to generate the length of the documents, nor how many
they are — just the words. We choose in advance how many different topics
N are allowed. We will choose, say fifty. The model is then parameterized
by two sets of parameters:

P(T = t | D = d) = δd,t

P(Wi = w | Ti = t) = τt,w

DRAFT of 7 July, 2013, page 144

5.2. PROBABILISTIC LATENT SEMANTIC ANALYSIS 145

The generative story for this model is as follows: for each word we first pick a
topic according to a document specific distribution δd,t, and then pick a word
from this topic according to the distribution τt,w. So the δs specify the topics
of the documents, and the τs specify the words that are used in a topic. The
probably of the data is the sum over all ways it could be generated.

Here we are not interested in language modeling, but determining topics,
so we ignore words that are not topic specific. In particular we use a stopword
list — a list of words to ignore. Such lists were originally created for infor-
mation retrieval purposes. Stopwords appearing in the query were ignored.
These words include function words such as prepositions, pronouns, modal
verbs, etc. For our purposes we also remove as some very common/general
words such as “large”, “big”, “slowly”, etc.

Example 5.1: A fifty topic PLSA model run on 1000 newspaper articles, includ-
ing the one which starts with the above four sentences, produced the following δ
parameters for the article:

Topic P(t | d)
21 0.221112
33 0.138694
40 0.113522
46 0.496539

These four topics account for just above % 96 of the probability mass. All of the
others are very close to zero. Figure 5.1 shows words associated with five topics,
three associated with this article, two not.

Topic 46 is about South Africa and apartheid, while topics 33 and 40 split
up different aspects of medicine — 33 more about health-care, and 40 about
medical treatment with a hint of law. Note that in principle all words have
some probability of appearing in an article, about any given topic, but most
will have very low probability for that topic. Here the words we show are
those that maximize the smoothed probability of the topic given the word

P̃(tk | wi) =
nk,i(c) + α

nk,◦(c) +Nα
(5.3)

where we set α to 5.

DRAFT of 7 July, 2013, page 145

146 CHAPTER 5. TOPIC MODELING AND PLSA

Topic No. Words
1 white house watkins clinton helicopter david trip staff officials

golf camp military office president course cost duffy
chief presidential washington

2 u.n. rwanda united government bosnia war troops nations bosnian
peace serbs military forces rebels force army peacekeeping
president somalia boutros-ghali

33 health care percent people children estate tax taxes
black trust plan family doctors quebec political money
voters public capital jackson

40 drug patients king cancer nih breast percent treatment
disease medical researchers panel fda report court study
fiau public cases jury

46 africa south government mandela development countries black
international nations aid african country housing program apartheid
economic national lane political president

Figure 5.1: The words associated with five of the fifty topics created by a
PLSA model of one thousand. Tokens from a 500-word stopword list were
removed, and all words were lower-cased. newspaper articles

DRAFT of 7 July, 2013, page 146

5.3. LEARNING PLSA PARAMETERS 147

5.3 Learning PLSA parameters

We again turn to EM to learn the necessary parameters. As before, we first
consider learning with a training corpus in which every word in our corpus
c is marked with its associated topic. The same word may have a different
topic in different documents. In particular, note that the word “president”
appears in topics 1, 2, and 46 in Figure 5.1. With such a corpus we can set
our parameters to their maximum-likelihood estimates:

δd,t =
nd,t(c)

nd,◦
(c)

τt,w =
nt,w(c)

nt,◦
(c).

Since we do not have labeled data, we use EM. The algorithm is as follows:

1. Pick positive initial values for τt,w for all topics t and words w (equal
is fine).

2. Pick positive vales for δd,t for all documents d and topics t. They should
be almost equal, but with about 2% randomness to avoid the saddle
point.

3. For i = 1, 2, . . . until convergence do:

(a) E-step:
Set nd,t and nt,w to zero for all documents d, topics t, and words
w
For each word w (that appears in its document d) do:

i. Set p =
∑N

t′=0 δd,t′τt′,w,

ii. Set q =
δd,tτt,w

p

iii. Set both nd,t and nt,w += q.

(b) M-step:
Set δd,t = nd,t/nd,◦ and τt,w = nt,w/nt,◦.

It very similar to the EM algorithm for IBM model one.

DRAFT of 7 July, 2013, page 147

148 CHAPTER 5. TOPIC MODELING AND PLSA

5.4 Programming assignment

The data for this assignment is in news1000.txt The format of the file is as
follows:

wordCount
word-1 word-2 ... word-12
word-13 ... word-24
... word-wordCount

This is repeated 1000 times, once for each news article. The words are all of
the words in the articles that (a) appear at least 5 times and in two different
articles, and (b) do not appear in a stopword list of common non-topical
words.

Your assignment is to create a PLSA model with 50 topics. To demon-
strate that your program works it should output the following facts:

1. The log likelihood of the data at convergence. (We will define conver-
gence as the point where the log-likelihood changes by less than 1%
between one iteration and the next.)

2. the probabilities of topics for article 17 (as a cross check, it has 367
words).

3. the most probable 15 words w for each topic t according to the following
formula:

P̃(w | t) =
nt,w + α

nt,◦ + α|W|
.

Set α = 5.

DRAFT of 7 July, 2013, page 148

	Language modeling and probability
	Introduction
	A Brief Introduction to Probability
	Outcomes, Events and Probabilities
	Random Variables and Joint Probabilities
	Conditional and marginal probabilities
	Independence
	Expectations of random variable

	Modeling documents with unigrams
	Documents as sequences of words
	Language models as models of possible documents
	Unigram language models
	Maximum likelihood estimates of unigram parameters
	Sparse-data problems and smoothing
	Estimating the smoothing parameters

	Contextual dependencies and n-grams
	Bigram language models
	Estimating the bigram parameters bold0mu mumu
	Implementing n-gram language models
	Kneser-Ney Smoothing
	The noisy channel model

	Exercises
	Programming problem
	Further Reading

	Machine Translation
	The fundamental theorem of MT
	The IBM Model 1 noisy-channel model
	Estimating IBM model 1 parameters with EM
	An extended example
	The mathematics of IBM 1 EM

	IBM model 2
	Phrasal machine translation
	Decoding
	Really dumb decoding
	IBM model 2 decoding

	Exercises
	Programming problems
	Further reading

	Sequence Labeling and HMMs
	Introduction
	Hidden Markov models
	Most likely labels and Viterbi decoding
	Finding sequence probabilities with HMMs
	Backward probabilities
	Estimating HMM parameters
	HMM parameters from visible data
	HMM parameters from hidden data
	The forward-backward algorithm
	The EM algorithm for estimating an HMM
	Implementing the EM algorithm for HMMs

	MT parameters from forward-backward
	Smoothing with HMMs
	Part-of-speech induction
	Exercises
	Programming problems
	Further reading

	Parsing and PCFGs
	Introduction
	Phrase-structure trees
	Dependency trees

	Probabilistic context-free grammars
	Languages and grammars
	Context-free grammars
	Probabilistic context-free grammars
	HMMs as a kind of PCFG
	Binarization of PCFGs

	Parsing with PCFGs
	Estimating PCFGs
	Estimating PCFGs from parse trees
	Estimating PCFGs from strings
	The inside-outside algorithm for CNF PCFGs
	The inside-outside algorithm for binarized grammars

	Scoring Parsers
	Estimating better grammars from treebanks
	Programming A Parser
	Exercises
	Programming Assignment

	Topic Modeling and PLSA
	Topic Modeling
	Probabilistic Latent Semantic Analysis
	Learning PLSA parameters
	Programming assignment

