
CS251 - Online metric bipartite matching Claire Mathieu(claire)

Online metric bipartite matching
You have a metric space (such as the Euclidean plane), n red points, n blue points, and the goal

is to construct a perfect matching between the red points and the blue points (associate exactly
one red point to each blue point in a one-to-one fashion) so as to minimize the sum of the lengths
of the n edges used, i.e. the distances between the matched pairs.

In the online setting, the red points are known a priori, but the blue points arrive in an online
fashion. Every time a blue point arrives you have to decide who to match it to, among the red
points that have not yet been matched; your decision is irreversible.

1. Give an example with n = 2, (with an ad hoc metric space – for example, a graph with
distances equal to the shortest path metric on the graph) proving that no deterministic
online algorithm can have competitive ratio less than 3.

Solution: Take a line graph with points at locations −1− ε,−1, 0, 1, 1+ ε. Points 1 and -1 are
red. The adversary gives 0 as the first blue point. If the algorithm matches it to 1 (at cost 1),
then the adversary gives 1 + ε as the next blue point, forcing the algorithm to match it to -1
(at cost 2 + ε). If the algorithm matches it to -1 (at cost 1), then the adversary gives −1− ε
as the next blue point, forcing the algorithm to match it to 1 (at cost 2 + ε). Either way, the
algorithm pays 3+ ε total, when there exists a way to match the two red points to the two blue
points at cost 1 + ε. The ratio tends to 3 as ε tends to 0.

2. Consider the greedy algorithm: match the newly arrived blue point to the closest red point
that is not yet matched. Prove that the greedy algorithm cannot have constant competitive
ratio. You may give an example that simply uses the one-dimensional Euclidean space (that
is, the line) to place points.

Solution: Place red points at positions 0, 1, 2, 4, 8, 16, . . . on the line. Place the first blue point
at position 1/2 + ε, then blue points at positions 1 + ε, 2 + ε, 4 + ε, 8 + ε, . . .. The algorithm
matches them to 1, 2, 4, 8, ...,, and pays θ(2n). Instead, the optimal matching pays 1/2 + nε,
so the ratio is θ(2n) as ε goes to 0.

3. Prove: no deterministic algorithm can have competitive ratio less than a constant times n.

Solution: Make a star graph with a point in the center at distance 1 from n red points
r1, r2, . . . , rn. Put the first blue point in the center. The algorithm matches it to one of
the red points, say r1. Then place a blue point at location r1. The algorithm matches it to
one of the unmatched red points, say r2. Then place a blue point at location r2. The algo-
rithm matches it to one of the unmatched red points, say r3, and so on. After b1, . . . , bn have
arrived, the algorithm has paid 1 + 2(n− 1), whereas the optimal matching has cost 1.

4. Going back to the example from question 1, prove that no randomized algorithm can have
competitive ratio better than 1.01.

Solution: We use Yao’s principle and give a distribution over possible inputs such that for
every deterministic algorithm, the average cost of the algorithm on a random input is at least
1.01 times the average OPT. We take the same graph as in question 1, but the adversary



CS251 - Online metric bipartite matching Claire Mathieu(claire)

sequence is 0, 1 + ε with probability 1/2 and 0,−1 − ε with probability 1/2. Consider a de-
terministic algorithm. With probability 1/2, it will create a matching of cost 1 + ε, and with
probability 1/2, a matching with cost 3 + ε: on average, 2 + ε, whereas the optimum is 1 + ε.
Thus no randomized algorithm can have competitive ratio better than 2.

Assume that your metric space is a hierarchically separated tree: a rooted tree such that the
length of an edge from the root (level 0) to one of its children (level 1) is 1, the distance from
a child of the root (level 1) to each of its children (level 2) is δ < 1, . . ., the distance from a
node at level i to a node at level i + 1 is δi. Now, on such a metric space we will analyze the
randomized greedy algorithm defined as follows: match a blue node to the closest red node,
breaking ties at random.

5. Let mu be the absolute difference between the number of blue nodes and the number of
red nodes in the subtree Tu rooted at node u, and M1 =

∑
u:level(u)=1 mu. Prove that

OPT = Ω(M1 +
∑

u:level(u)=1 OPT(S∗
u)), where S∗

u is the way to choose all but mu nodes in
Tu, half red and half blue, so that the subproblem Su inside Tu has minimum cost.

Solution: Consider the OPT solution. If it connects a red node inside Tu to a blue node
outside Tu, and a blue node inside Tu to a red node outside Tu, then we can rearrange the
connecting paths at no extra cost so that the red and blue nodes inside Tu are connected to
one another. So we can assume that in OPT all nodes of Tu connected to the outside are
of the same color. Then their number is exactly mu and their total cost is at least M1 since
each has to cross the edge from u to the root at cost 1. The remainder of the solution is a
subsolution inside Tu which by definition of S∗

u has cost at least OPT(S∗
u).

6. Let m′
u be the number of blue nodes in the subtree rooted at u which are matched outside the

subtree by the algorithm. Prove that the cost of the algorithm is at most O(
∑

u:level(u)=1(m
′
u/(1−

δ) + Alg(S′
u)), where S′

u are the nodes in Tu matched by the algorithm inside Tu.

Solution: m′
u nodes are matched outside Tu, so their matching edge costs at least 1 (the cost

of the edge to get from u to the root) and at most 2/(1− δ) (the cost of any leaf-to-root-to-leaf
path in the tree, i.e. the diameter). The rest is just the restriction of the Algorithm to the
subtree Tu, the red nodes matched within, and the sequence of blue nodes matched within.

7. Assume that we can prove that
∑

u:level(u)=1 m′
u = O(

∑
u:level(u)=1 mu log n). (This can be

proved by a potential function argument). Use this to complete the analysis of the algorithm.

Solution: by the previous question the cost of the algorithm is at most O(
∑

u:level(u)=1(m
′
u/(1−

δ) + Alg(S′
u)). By induction Alg(S′

u) ≤ (log n)/(1− δ)OPT(S′
u). This is at most (log n)/(1−

δ)OPT(S∗
u) since S′

u has at most as many matching pairs as S∗
u and by definition of S∗

u. By
the assumption the first term is at most

∑
mu log n/(1 − δ). Adding and using the lower

bound on OPT from question 5 gives the bound of log n/(1− δ) approximation.


