k-server

In the k server problem, given a graph (discrete metric space with associated distance $d(\cdot, \cdot)$) and k servers placed on graph vertices, service a sequence of requests. Each request is a graph vertex and is served by bringing a server over to that node, at cost equal to the distance traveled by the server.

A state is a subset of k of the n graph vertices (possibly with repetitions) describing the positions of the servers. Let A_0 be the initial state and r_t be the request at time t.

For any state X, let $w_t(X)$ denote the minimum cost of starting from A_0, serving requests r_1, r_2, \ldots, r_t, and ending in state X.

The working set algorithm, given the current state A_{t-1}, serves the next request r_t by moving a server from $a \in A_{t-1}$ to r_t, changing the state into $A_t = A_{t-1} - a + r_t$, where a is chosen so as to minimize $w_{t-1}(A_t) + d(a, r_t)$.

Theorem 1 The working set algorithm for k-server is $(2k - 1)$-competitive.

Proof:

1. **Reduction to potential function analysis.** Up to an additive constant change in the total cost, we can always assume that our algorithm and OPT both start and end in the same state. Then we may use a telescoping sum and write the cost of OPT as $\sum_t (w_t(A_t) - w_{t-1}(A_{t-1}))$. Let the extended cost of serving request t be: $d(a, r_t) + (w_t(A_t) - w_{t-1}(A_{t-1}))$. We will prove that the total extended cost is at most $2k$ times OPT, hence the theorem.

 We can always assume that the adversary picks a request sequence s.t. r_t is never in A_{t-1}.

 To analyze the extended cost, first note that:

 Lemma 1 $w_t(X) = \min_{x \in X} (w_{t-1}(X - x + r_t) + d(r_t, x))$

 Thus since $r_t \in A_t$, by Lemma 1 $w_t(A_t) = w_{t-1}(A_t)$. By the algorithm’s definition of A_t and Lemma 1, $w_{t-1}(A_t) = w_t(A_{t-1}) - d(r_t, a)$. Substituting yields that the extended cost is:

 $$w_t(A_{t-1}) - w_{t-1}(A_{t-1}) \leq \max_X \{w_t(X) - w_{t-1}(X)\}.$$

 Note that the expression on the right hand side no longer depends on the algorithm but only on the work function.

 Given a work function w and a vertex a, we say that a state A is a minimizer with respect to w, a if A minimizes the expression $m_{w, a} = \min_A (w(A) - \sum_{x \in A} d(x, a))$. Given a work function w we define a potential function,

 $$\Phi(w) = \min_U \{k w(U) + \sum_{u \in U} m_{w, a}\}.$$

 The crux of the proof is to argue that

 $$\max_X \{w_t(X) - w_{t-1}(X)\} \leq \Phi(w_t) - \Phi(w_{t-1}),$$

 hence the total extended cost is less than $\Phi(w_f) - \Phi(w_0)$, which is easily seen to be at most $2kw_f(A_f) + c$, hence the theorem.
2. Reduction to proving Lemmas 5 and 6. So, we now focus on $\Phi(w_t) - \Phi(w_{t-1})$. We easily observe:

Lemma 2 $w_t(X) = \min_{x \in X} (w_t(X - x + r_t) + d(x, r_t))$.

from which, using the triangle inequality, with a short calculation we can infer:

Lemma 3 We can assume that the U minimizing $\Phi(w_t)$ is such that $r_t \in U$.

Let U be that set, let B_u be the minimizer for w_t, u for each $u \in U, u \neq r_t$, and let A be the minimizer for w_t, r_t. By definition of $\Phi(w_{t-1})$ we have

$$\Phi(w_{t-1}) \leq kw_{t-1}(U) + \sum_{u \in U, u \neq r_t} (w_{t-1}(B_u) - \sum_{b \in B} d(b, u)) + m_{w_{t-1}, r_t}.$$

Clearly,

Lemma 4 The work function w_t is monotone in t: for any X, $w_t(X) \geq w_{t-1}(X)$.

Applying this to U and to the B_u’s, we deduce that

$$\Phi(w_t) - \Phi(w_{t-1}) \geq m_{w_t, r_t} - m_{w_{t-1}, r_t}.$$

The following lemma is a big step forward.

Lemma 5 If A is a minimizer for w_{t-1}, r_t then A is also a minimizer for w_t, r_t.

So we can take the same A as a minimizer for both, and so

$$m_{w_t, r_t} - m_{w_{t-1}, r_t} = w_t(A) - w_{t-1}(A).$$

Finally, the other big step:

Lemma 6 If A is a minimizer with respect to w_{t-1}, r_t then

$$w_t(A) - w_{t-1}(A) = \max_X \{w_t(X) - w_{t-1}(X)\}.$$

So we are done.

Proving Lemmas 5 and 6. Both proofs can be done by a few well-chosen algebraic manipulations relying on the following “quasi-convexity” property of the work function.

Lemma 7 Fix t and states A and B. For any $a \in A$ there exists $b \in B$ such that

$$w_t(A) + w_t(B) \geq w_t(A - a + b) + w_t(A - b + a).$$

Lemma 7 is proved by induction over time and appealing to Lemma 1.