Lower bounds for paging

Theorem 1 No deterministic algorithm can be better than k-competitive.

Proof: let A be a deterministic algorithm. Take a universe of size $k + 1$. Define your sequence inductively: at time t, given the sequence so far, consider the current set of the cache, and request next the one item that is not in the cache. This defines a sequence.

A has a page fault on every request.

Partition the sequence into phases as usual. Each phase has length at least k and in each phase OPT, which is LFD, has only one page fault, hence the bound.

Theorem 2 Let y be a distribution on input sequences σ_y such that for every deterministic algorithm A, the expectation over y of the number of pages faults of A is at least $\alpha E(OPT(\sigma_y)) + c$. Then no randomized marking algorithm can be better than α-competitive.

Let R be a randomized algorithm. R is nothing else than a distribution x over deterministic algorithms A_x. For each A_x, $E_y(cost(A_x, \sigma_y)) \geq \alpha E_y(OPT(\sigma_y)) + c$

so that’s also true on average over x: $E_x E_y(cost(A_x, \sigma_y)) \geq \alpha E_y(OPT(\sigma_y)) + c$

By Fubini’s theorem we can exchange the order of expectations and write

$E_y E_x(cost(A_x, \sigma_y)) \geq \alpha E_y(OPT(\sigma_y)) + c$

$E_y(E_x(cost(A_x, \sigma_y)) - \alpha E_y(OPT(\sigma_y)) - c) \geq 0$

By the probabilistic method, there exists a y such that

$E_x(cost(A_x, \sigma_y)) - \alpha OPT(\sigma_y) - c \geq 0$

and therefore algorithm R has competitive ratio at least α.

Theorem 3 No randomized algorithm can be better than H_k-competitive.

Here is a distribution over sequences: the universe has size $k + 1$, and at each step we pick a page uniformly at random among the $k + 1$ pages.

Let A be a deterministic algorithm. the expected number of faults of A, averaged over σ_y’s, is $m/(k + 1)$ because at each step there is a page fault with probability $1/(k + 1)$.

As for OPT, its number of faults is the number of phases in the sequence. In expectation, by independence (and finite expectation) and the elementary renewal theorem, that’s m divided by the expected length of a phase. How long does a phase take? As long as it takes to see every page at least once. That’s a coupon collector problem and it is easy to see (and well-known) that it’s $(k + 1)H_{k+1}$.

Hence the ratio.