Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 23:
Reweighted Sum-Product Belief Propagation,
Convex Surrogates for Variational Learning

Some figures and examples courtesy M. Wainwright & M. Jordan,
Graphical Models, Exponential Families, & Variational Inference, 2008.
Inference as Optimization

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - A(\theta)\} \]

\[A(\theta) = \log \sum_{x \in \mathcal{X}} \exp\{\theta^T \phi(x)\} \]

\[\mathcal{M} = \text{conv}\{\phi(x) \mid x \in \mathcal{X}\} \]

- Express log-partition as optimization over all distributions \(Q \)

\[A(\theta) = \sup_{q \in Q} \left\{ \sum_{x \in \mathcal{X}} \theta^T \phi(x) q(x) - \sum_{x \in \mathcal{X}} q(x) \log q(x) \right\} \]

Jensen's inequality gives \(\arg \max \): \(q(x) = p(x \mid \theta) \)

- More compact to optimize over relevant \textit{sufficient statistics}: concave function (linear plus entropy) over a convex set

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^T \mu + H(p(x \mid \theta(\mu))) \right\} \]

\[\mu = \sum_{x \in \mathcal{X}} \phi(x) q(x) = \sum_{x \in \mathcal{X}} \phi(x) p(x \mid \theta(\mu)) \]
Variational Inference Approximations

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - A(\theta)\} \]
\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^T \mu + H(p(x \mid \theta(\mu))) \right\} \]

Mean Field: Lower bound log-partition function
- Restrict optimization to some simpler subset \(\mathcal{M}_- \subset \mathcal{M} \)
- Imposing conditional independencies makes entropy tractable

Bethe & Loopy BP: Approximate log-partition function
- Define tractable outer bound on constraints \(\mathcal{M}_+ \subset \mathcal{M} \)
- Tree-based models give approximation to true entropy

Reweighted BP: Upper bound log-partition function
- Define tractable outer bound on constraints \(\mathcal{M}_+ \subset \mathcal{M} \)
- Tree-based models give tractable upper bound on true entropy
Tree-Based Outer Approximations

- For some graph G, denote true marginal polytope by $\mathcal{M}(G)$
- Associate marginals with nodes and edges, and impose the following *local consistency* constraints $\mathcal{L}(G)$

$$\begin{align*}
\sum_{x_s} \mu_s(x_s) &= 1, \quad s \in \mathcal{V} \\
\mu_s(x_s) &\geq 0, \mu_{st}(x_s, x_t) \geq 0 \\
\sum_{x_t} \mu_{st}(x_s, x_t) &= \mu_s(x_s), \quad (s, t) \in \mathcal{E}, x_s \in \mathcal{X}_s
\end{align*}$$

- For any graph, this is a *convex* outer bound: $\mathcal{M}(G) \subseteq \mathcal{L}(G)$
- For any tree-structured graph T, we have $\mathcal{M}(T) = \mathcal{L}(T)$
Tree-Based Entropy Bounds

\[p(x) = \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) - \sum_{s \in \mathcal{V}} \phi_s(x_s) \right\} \]

\[H(\mu(T)) = \sum_{s \in \mathcal{V}} H_s(\mu_s) - \sum_{(s,t) \in \mathcal{E}(T)} I_{st}(\mu_{st}) \]

\[H(\mu) \leq H(\mu(T)) \quad \text{for any tree } T \]

Maximum entropy property of exponential families:

- Original distribution maximizes entropy subject to constraints
 \[\mathbb{E}_p[\phi_{st}(x_s, x_t)] = \mu(x_s, x_t), \quad (s, t) \in \mathcal{E} \]

- Tree-structured distribution maximizes subject to a subset of the full constraints (those corresponding to edges in tree):
 \[\mathbb{E}_p[\phi_{st}(x_s, x_t)] = \mu(x_s, x_t), \quad (s, t) \in \mathcal{E}(T) \]
Tree-Based Entropy Bounds

\[p(x) = \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) - \sum_{s \in \mathcal{V}} \phi_s(x_s) \right\} \]

\[H(\mu(T)) = \sum_{s \in \mathcal{V}} H_s(\mu_s) - \sum_{(s,t) \in \mathcal{E}(T)} I_{st}(\mu_{st}) \]

\[H(\mu) \leq H(\mu(T)) \quad \text{for any tree } T \]

\[H(\mu) \leq \sum_{s \in \mathcal{V}} H_s(\mu_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\mu_{st}) \]

- Family of bounds depends on edge appearance probabilities from some distribution over subtrees in the original graph:

\[H(\mu) \leq \sum_{T} \rho(T) H(\mu(T)) \quad \rho_{st} = \mathbb{E}_\rho[\mathbb{I}[(s,t) \in E(T)]] \]

Must only specify a single scalar parameter per edge
Reweighted Bethe Variational Methods

\[A(\theta) \leq \sup_{\tau \in \mathbb{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \]

\[H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st}) \]

- Local consistency constraints are convex, but allow globally inconsistent *pseudo-marginals* on graphs with cycles
- Assuming we pick weights corresponding to some distribution on acyclic sub-graphs, have *upper bound* on true entropy
- This defines a *convex surrogate* to true variational problem

Issues to resolve:
- Given edge weights, how can we efficiently find the best pseudo-marginals? A message-passing algorithm?
- There are many distributions over spanning trees. How can we find the best edge appearance probabilities?
Reweighted Belief Propagation

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

Standard Loopy BP:

\[
m_{ts}(x_s) \propto \sum_{x_t} \psi_{st}(x_s, x_t) \frac{q_t(x_t)}{m_{st}(x_t)}
\]

\[
q_t(x_t) \propto \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t)
\]

Reweighted BP:

\[
m_{ts}(x_s) \propto \sum_{x_t} \psi_{st}(x_s, x_t)^{1/\rho_{st}} \frac{q_t(x_t)}{m_{st}(x_t)^{1/\rho_{st}}}
\]

\[
q_t(x_t) \propto \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t)^{\rho_{ut}}
\]

Lagrangian derivation generalizes to reweighted Bethe objective

For loopy graphs, "down-weights" messages to be more uniform

Applying a change of variables:

\[
m_{ut}(x_t) \leftarrow m_{ut}(x_t)^{\rho_{ut}}
\]
Spanning Tree Polytope

\[\rho_b = 1, \rho_e = \frac{2}{3}, \rho_f = \frac{1}{3} \]

\[\begin{align*}
A(\theta) \leq & \sup_{\tau \in \mathbb{I}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \\
& H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st})
\end{align*} \]

- Bound holds assuming edge weights lie in the spanning tree polytope (generated by some valid distribution on trees)
- Optimize via conditional gradient method:
 - Find descent direction by maximizing linear function (gradient) over constraint set
 - For spanning tree polytope, this reduces to a maximum weight spanning tree problem
 - Iteratively tightens bound on partition function

\[\rho_{st} = \frac{1}{2} \]

\[\begin{align*}
& \text{Fig. 7.1 Illustration of valid edge appearance probabilities. Original graph is shown in panel (a). Probability } \frac{1}{3} \text{ is assigned to each of the three spanning trees } \{ T_i | i = 1, 2, 3 \} \text{ shown in panels (b)–(d). Edge } b \text{ appears in all three trees so that } \rho_b = 1. \text{ Edges } e \text{ and } f \text{ appear in two and one of the spanning trees, respectively, which gives rise to edge appearance probabilities } \rho_e = \frac{2}{3} \text{ and } \rho_f = \frac{1}{3}. \text{ must belong to the so-called spanning tree polytope } [54, 73] \text{ associated with } G. \text{ Note that these edge appearance probabilities must satisfy various constraints, depending on the structure of the graph. A simple example should help to provide intuition.}
\end{align*} \]

Example 7.1 (Edge Appearance Probabilities). Figure 7.1(a) shows a graph, and panels (b) through (d) show three of its spanning trees \{ T_1, T_2, T_3 \}. Suppose that we form a uniform distribution \(\rho \) over these trees by assigning probability \(\rho(T_i) = \frac{1}{3} \) to each \(T_i \), \(i = 1, 2, 3 \). Consider the edge with label \(f \); notice that it appears in \(T_1 \), but in neither of \(T_2 \) and \(T_3 \). Therefore, under the uniform distribution \(\rho \), the associated edge appearance probability is \(\rho_f = \frac{1}{3} \). Since edge \(e \) appears in two of the three spanning trees, similar reasoning establishes that \(\rho_e = \frac{2}{3} \). Finally, observe that edge \(b \) appears in any spanning tree (i.e., it is a bridge), so that it must have edge appearance probability \(\rho_b = 1 \).

In their work on fractional belief propagation, Wiegerinck and Heskes [261] examined the class of reweighted Bethe problems of the form (7.11), but without the requirement that the weights \(\rho_{st} \) belong to the spanning tree polytope. Although loosening this requirement does yield a richer family of variational problems, in general one loses ...

Bertsekas 1999
MF & Reweighted BP: Message Passing

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]
\[\phi_{st}(x_s, x_t) = -\log \psi_{st}(x_s, x_t) \]
\[\phi_s(x_s) = -\log \psi_s(x_s) \]

Beliefs: pseudo-marginals

\[q_t(x_t) = \frac{1}{Z_t} \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t) \]

Mean Field

\[m_{ts}(x_s) \propto \exp \left\{ -\sum_{x_t} \phi_{st}(x_s, x_t) q_t(x_t) \right\} \]

Loopy BP

\[m_{ts}(x_s) \propto \sum_{x_t} \psi_{st}(x_s, x_t) \frac{q_t(x_t)}{m_{st}(x_t)} \]

Reweight BP

\[m_{ts}(x_s) \propto \left[\sum_{x_t} \psi_{st}(x_s, x_t)^{1/\rho_{st}} \frac{q_t(x_t)}{m_{st}(x_t)^{1/\rho_{st}}} \right]^{\rho_{st}} \]

- Reweighted BP becomes loopy BP when \(\rho_{st} = 1 \)
- Reweighted BP approaches mean field as \(\rho_{st} \to \infty \)

Geometric mean is limit of power mean
MF & Reweighted BP: Variational Objective

\[
A(\theta) \approx \sup_{\tau \in \mathbb{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\}
\]

\[
H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s, t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st})
\]

- View edge weights as positive, tunable parameters
- In the limit where they become very large:

\[
\tau_{st} \rightarrow \infty \quad \Rightarrow \quad \text{optimum sets } I_{st}(\tau_{st}) = 0 \quad \Rightarrow \quad \tau_{st}(x_s, x_t) = \tau_s(x_s) \tau_t(x_t)
\]

Mean Field: For acyclic edge set \(\rho_{st} = 1 \), otherwise \(\rho_{st} \rightarrow \infty \)

- **Objective:** Lower bounds true \(A(\theta) \), but non-convex
- **Message-passing:** Guaranteed convergent, but local optima
MF & Reweighted BP: Variational Objective

\[
A(\theta) \approx \sup_{\tau \in \mathcal{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\}
\]

\[
H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st})
\]

Loopy BP: For all edges, set \(\rho_{st} = 1 \)

- **Objective:** Approximation, possibly poor, generally non-convex
- **Message-passing:** Multiple optima, may not convergent
- **But,** for some models gives most accurate marginal estimates

Reweighted BP: Respect spanning tree polytope, \(0 < \rho_{st} \leq 1 \)

- **Objective:** Upper bounds true \(A(\theta) \), convex
- **Message-passing:** Single global optimum, typically convergent

Mean Field: For acyclic edge set \(\rho_{st} = 1 \), otherwise \(\rho_{st} \rightarrow \infty \)

- **Objective:** Lower bounds true \(A(\theta) \), but non-convex
- **Message-passing:** Guaranteed convergent, but local optima
Undirected Graphical Models

$$p(x \mid \theta) = \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_f(x_f \mid \theta_f)$$

$$Z(\theta) = \sum \prod_{x \in \mathcal{V}} \psi_f(x_f \mid \theta_f)$$

- Set of hyperedges linking subsets of nodes \(f \subseteq \mathcal{V} \)
- Set of \(N \) nodes or vertices, \(\{1, 2, \ldots, N\} \)

- Assume an exponential family representation of each factor:
 $$p(x \mid \theta) = \exp \left\{ \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_f) - A(\theta) \right\}$$
 $$\psi_f(x_f \mid \theta_f) = \exp\{\theta_f^T \phi_f(x_f)\} \quad A(\theta) = \log Z(\theta)$$

- Partition function \textit{globally} couples the local factor parameters
Learning for Undirected Models

• Undirected graph encodes dependencies within a single training example:

\[p(D \mid \theta) = \prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_f(x_{f,n} \mid \theta_f) \quad D = \{x_{\mathcal{V},1}, \ldots, x_{\mathcal{V},N}\} \]

• Given N independent, identically distributed, completely observed samples:

\[
\log p(D \mid \theta) = \left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) \right] - N A(\theta)
\]

\[p(x \mid \theta) = \exp \left\{ \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_f) - A(\theta) \right\} \]
Learning for Undirected Models

• Undirected graph encodes dependencies within a single training example:

\[p(D \mid \theta) = \prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in F} \psi_f(x_{f,n} \mid \theta_f) \quad D = \{x_{\mathcal{V},1}, \ldots, x_{\mathcal{V},N}\} \]

• Given N independent, identically distributed, completely observed samples:

\[
\log p(D \mid \theta) = \left[\sum_{n=1}^{N} \sum_{f \in F} \theta_f^T \phi_f(x_{f,n}) \right] - NA(\theta)
\]

• Take gradient with respect to parameters for a single factor:

\[
\nabla_{\theta_f} \log p(D \mid \theta) = \left[\sum_{n=1}^{N} \phi_f(x_{f,n}) \right] - N \mathbb{E}_{\theta}[\phi_f(x_f)]
\]

• Must be able to compute \textit{marginal distributions} for factors in current model:
 - Tractable for tree-structured factor graphs via sum-product
 - What about general factor graphs or undirected graphs?
Convex Likelihood Surrogates

\[
\log p(D \mid \theta) = \left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) \right] - NA(\theta)
\]

\[
\log p(D \mid \theta) \geq \left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) \right] - NB(\theta) \triangleq LB(\theta)
\]

where we pick a bound satisfying \(A(\theta) \leq B(\theta), B(\theta) \) convex

• Apply reweighted Bethe (generalizes to higher-order factors):

\[
B(\theta) = \sup_{\tau \in \mathbb{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \quad H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st})
\]

\[
\nabla_{\theta_f} LB(\theta) = \left[\sum_{n=1}^{N} \phi_f(x_{f,n}) \right] - N \mathbb{E}_\tau[\phi_f(x_f)]
\]

• Gradients depend on expectations of pseudo-marginals produced by applying reweighted BP to current model
Approximate Learning & Inference:
Two Wrongs Make a Right

- **Empirical Folk Theorem:** Performance is better if the inference approximations used to learn parameters from training data are “matched” to those used for test examples.
- **Actual Theorem roughly shows:** If learn based on *convex* upper bound to true partition function, can bound error on predictions for test examples which are “close” to training data.
- **Non-convexity & local optima bad in theory & practice**

Wainwright 2006
Example: Spatially Coupled Mixtures

Real-valued spatial fields from mixture of two Gaussians, with positive spatial correlation in mixture component selection.

Wainwright 2006
Example: Spatially Coupled Mixtures

Real-valued spatial fields from mixture of two Gaussians, with positive spatial correlation in mixture component selection