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Reweighted Belief Propagation

Some figures and examples courtesy M. Wainwright & M. Jordan,
Graphical Models, Exponential Families, & Variational Inference, 2008.



Discrete Variables & Marginal Polytopes
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Inference as Optimization

T (VA)
pla | 6) = exp{87d(x) — A(B))} “
A(6) =log Y exp{6” ¢(x)}
rEX (VA7)
Express log-partition as optimization over all distributions 9

sup{zeT =Y ga) log gl }

reX reX

Jensen’s inequality gives arg max: ¢(z) = p(z | 6)

 More compact to optimize over relevant sufficient statistics:
concave function

A(@) = Sup {HT,U i H(p(x ‘ 9(#))} (linear plus entropy)

peM over a convex set

M:Zgb(a? Zﬁb p(z | 0(u))
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Variational Inference Approximations

(VA)
p(a | 0) = expl67o(x) — A(0)) “
A(f) = sup }

{9% + Hple | 0(1))
peM
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Mean Field: Lower bound log-partition function

» Restrict optimization to some simpler subset M_ C M
* Imposing conditional independencies makes entropy tractable

Bethe & Loopy BP: Approximate log-partition function

- Define tractable outer bound on constraints M4+ DO M
* Tree-based models give approximation to true entropy

Reweighted BP: Upper bound log-partition function

- Define tractable outer bound on constraints M4+ DO M
* Tree-based models give tractable upper bound on true entropy



Marginal Polytope: Inner Approximations
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Equivalent views of mean field approximations:
« Assume some independencies not valid for true model
» Consider distributions on subgraph of original graphical model
« Constrain some exponential family parameters to equal zero

Consequences for mean field algorithms:

« Extreme points (degenerate distributions) always in family
« But mean field is a strict subset of full marginal polytope

* Thus, the inner approximation is never a convex set



Non-Convexity of Naive Mean Field

p@(il?) X exp(@lgxlajg) xr; € {_17_|_1}
012 = 1log d E[X;] = E[X3] =0
4 1=q q = P[X1 = X5

MF: 0101 po + H(p1) + H(p2) pi = Elz;]

Symmetry breaking in naive mean field

1B iz oo s STt
195k et ..........................
g [ SR RTEISTETOOTC SO SUTPRTOTRIPPEPIRETIS ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
NG
S 0.7 R SRRt s
3] E
[ :
LE B
0.5 ol ===q=0.50 |
----- q=0.04
.25y —q=0.01
] : —_—
] N
0 ; H1 — 2
-1 0.5 0 0.5 1
Mean val

pi2 <1, p12>2p1 —1, pi2 > —2p —1



Tree- Based Outer Approximations

For some graph G, denote true marginal polytope by M(G

Associate marginals with nodes and edges, and impose
the following /ocal consistency constraints L(G)

ZILLS(QZ’S) — 1, S & V ,us($s) Z Oaﬂst(msaxt) Z 0

Y pst(@s, m) = ps(xs), (s,1) € E, w5 € X,

For any graph, this is a convex outer bound: M((G) C L(G)
For any tree-structured graph T, we have M(T') = L(T)



Marginals and Pseudo-Marginals

Local Constraints Exactly Represent Trees:
Construct joint consistent with any marginals

plu(flf) — H luSt xs,mt H ,us xs

(s,t)€E s (s ) 112 () sEV

For Any Graph with Cycles, Local Constraints are Loose:
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pseudo-marginals

Consider three binary variables and restrict 1 = pus = 3 = 0.5

Bst 05— ﬁst] denote potentially invalid

ra(ee) = (05 05] Tulwnm) = [0.5 — Bt Bt pseudo-marginals by T, Tst



Properties of Local Constraint Polytope

Wi

ZILLS(QZ’S) — 1, S & V ,us($s) Z O;,Ust(ivsaxt) Z 0

> pst(ws, m) = ps(@s),  (s,t) € E, w5 € X,

» Number of faces upper bounded by O(K N + K2E)
for graphs with N nodes, E edges, K discrete states per node

« Contains all of the degenerate vertices of true marginal
polytope, as well as additional fractional vertices

(total number unknown in general)




Beﬂ’ghe Variational Methods
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» Local consistency constraints are convex, but allow globally
inconsistent pseudo-marginals on graphs with cycles

* Bethe entropy approximation may be not be concave, and
may not even be a valid (non-negative) entropy

Example: Four binary variables p,(0,0,0,0) =p,(1,1,1,1) = 0.5

pus(zs) = (0.5 0.5] for s=1,2,3,4
0.5 0
= E.
Mst($37xt> ] 0 0.5 \v/ (S7t) E

Hp(p) =4log2 —6log2 = —2log2 H () = log2




Loopy BP and Reparameterization

p@ st Ls; ) H wst(ajsawt;e)
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» If 7" are pseudo-marginals corresponding to a fixed point of
loopy BP on the graphical model pg(z)

po(x) = pr+(T) forall x € X

* On a tree, this reparameterization is our standard local
factorization, and the normalization Z(77) =1
* Any locally consistent pseudo-marginals are thus a fixed point

of loopy BP for some graphical model:

0s(zs) == logTs(zs) =log[0.5 0.5] VseV,and fixed pojnt is invalid
pseudo-marginals from
previous slide
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Reminder: Maximum Entropy Models

p(x]0) = %h(x)exp[eﬂb(x)] Z(0) = /mh(x)exp[HT(b(x)]dx

— h(x)expl0”d(x) — A6)]  AO) = logZ(6)

Consider a collection of d target statistics ¢.(z), whose
expectations with respect to some distribution p(x) are

/% r)dr = pq

The unique distribution p(x) maximizing the entropy H (p),
subject to the constraint that these moments are exactly
matched, is then an exponential family distribution with

Eé[qba(x)] = Ha h(ﬂ?) =1

Out of all distributions which reproduce the observed
Sufficient statistics, the exponential family distribution
(roughly) makes the fewest additional assumptions.



Tree-Based Entropy Bounds
p(z) = %GXP { Z Pst(Ts, Tt) — Z%(Z‘s)}

(s,t)e€ seV

— ZHS(ILLS) — Z Ist(:ust) G

seV (s,t)e&E(T)

H(p) < H(u (T)) for any tree T

,u <ZH Z pstlst(,ust) T

scV (s,t)eE

« Family of bounds depends on edge appearance probabilities
from some distribution over subtrees in the original graph:

H(pw) <3 p(MHuT)  ps =By [1[(s,t) € B(T)]]

Must only specify a single scalar parameter per edge



Reweighted Sum-Product

Theorem 7.2 (Tree-Reweighted Bethe and Sum-Product).

(a)

For any choice of edge appearance vector (ps, (s,t) € E)
in the spanning tree polytope, the cumulant function A(6)
evaluated at 6 is upper bounded by the solution of the tree-
reweighted Bethe variational problem (BVP):

Bz (6;p.) := max {<T, 0) + > Hir) — > pstfst(m)}.

TeL(@) seV (s,t)eE
(7.11)

For any edge appearance vector such that pg > 0 for all
edges (s,t), this problem is strictly convex with a unique
optimum.

The tree-reweighted BVP can be solved using the tree-
reweighted sum-product updates

[T [Ma(ah)]™

vEN(t)\s
(M)

Mts(xs)%/f Z Spst(xs;x;) ) (712)

T, X
where  pulonal)i= exp (i 0a(ena) +0el) ). Tho

updates (7.12) have a unique fixed point under the
assumptions of part (a).
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