Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 21:
Convexity, Duality, and Mean Field Methods

Some figures and examples courtesy M. Wainwright & M. Jordan,
Graphical Models, Exponential Families, & Variational Inference, 2008.
Tree Structured Variational Methods

- Trees exactly factorize as

\[q(x) = \prod_{(s,t) \in \mathcal{E}} \frac{q_{st}(x_s, x_t)}{q_s(x_s), q_t(x_t)} \prod_{s \in \mathcal{V}} q_s(x_s) \]

- We may then optimize over all distributions which are Markov with respect to a tree-structured graph:

\[
D(q || p) = -H(q) + \sum q(x)E(x) + \log Z \\
\sum q(x)E(x) = \sum_{(s,t) \in \mathcal{E}} \sum_{x_s, x_t} q_{st}(x_s, x_t) \phi_{st}(x_s, x_t) + \sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s) \phi_s(x_s)
\]

\[
H(q) = \sum_{s \in \mathcal{V}} H_s(q_s) - \sum_{(s,t) \in \mathcal{E}} I_{st}(q_{st})
\]
Tree Structured Variational Methods

- Trees exactly factorize as

$$q(x) = \prod_{(s,t) \in \mathcal{E}} \frac{q_{st}(x_s, x_t)}{q_s(x_s), q_t(x_t)} \prod_{s \in \mathcal{V}} q_s(x_s)$$

- We may then optimize over all distributions which are Markov with respect to a tree-structured graph:

$$D(q \mid \mid p) = -H(q) + \sum_x q(x) E(x) + \log Z$$

$$\sum_x q(x) E(x) = \sum_{(s,t) \in \mathcal{E}} \sum_{x_s, x_t} q_{st}(x_s, x_t) \phi_{st}(x_s, x_t) + \sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s) \phi_s(x_s)$$

$$H(q) = \sum_{s \in \mathcal{V}} H_s(q_s) - \sum_{(s,t) \in \mathcal{E}} I_{st}(q_{st})$$

$$H_s(q_s) = -\sum_{x_s} q_s(x_s) \log q_s(x_s) \quad I_{st}(q_{st}) = \sum_{x_s, x_t} q_{st}(x_s, x_t) \log \frac{q_{st}(x_s, x_t)}{q_s(x_s) q_t(x_t)}$$
Partition the graph edges into two sets:

\(\mathcal{E}_c \rightarrow \text{core} \) edges, dependence directly modeled: \(q_{st}(x_s, x_t) \)

\(\mathcal{E}_r \rightarrow \text{residual} \) edges, assume nodes factorize: \(q_s(x_s)q_t(x_t) \)
MF & BP: Variational Objective

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

\[\phi_{st}(x_s, x_t) = -\log \psi_{st}(x_s, x_t) \]

\[\phi_s(x_s) = -\log \psi_s(x_s) \]

\[\mathcal{L}(q, \lambda) = \]

\[+ \sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s)(\phi_s(x_s) + \log q_s(x_s)) \]

\[+ \sum_{(s,t) \in \mathcal{E}_r} \sum_{x_s, x_t} q_s(x_s)q_t(x_t)\phi_{st}(x_s, x_t) \]

\[+ \sum_{(s,t) \in \mathcal{E}_c} \sum_{x_s, x_t} q_{st}(x_s, x_t) \left(\phi_{st}(x_s, x_t) + \log \frac{q_{st}(x_s, x_t)}{q_s(x_s)q_t(x_t)} \right) \]

\[+ \sum_{s \in \mathcal{V}} \lambda_{ss} \left(1 - \sum_{x_s} q_s(x_s) \right) \]

\[+ \sum_{(s,t) \in \mathcal{E}_c} \left[\sum_{x_s} \lambda_{ts}(x_s) \left(q_s(x_s) - \sum_{x_t} q_{st}(x_s, x_t) \right) + \sum_{x_t} \lambda_{st}(x_t) \left(q_t(x_t) - \sum_{x_s} q_{st}(x_s, x_t) \right) \right] \]
MF & BP: Message Passing

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

Beliefs:

\[q_t(x_t) = \frac{1}{Z_t} \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t) \]

MF:

\[m_{ts}(x_s) \propto \exp \left\{ - \sum_{x_t} \phi_{st}(x_s, x_t) q_t(x_t) \right\} \]

BP:

\[m_{ts}(x_s) \propto \sum_{x_t} \psi_{st}(x_s, x_t) \frac{q_t(x_t)}{m_{st}(x_t)} \]

- **Naïve mean field:** All edges in residual, guaranteed convergent
- **Structured mean field:** Acyclic subset of edges in core, remainder in residual, guaranteed convergent and strictly more expressive
- **Loopy belief propagation:** All edges in core, captures most direct dependences, but approximation uncontrolled and may not converge
- **All methods:** Exist one, or more, fixed points (possibly non-convex). Strongest convergence guarantees for sequential message updates.
Exponential Families: Inference & Learning

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - A(\theta)\} \quad A(\theta) = \log \int_\chi \exp\{\theta^T \phi(x)\} \, dx \]

Alternative Representations:

Canonical parameters or moments

\[\Omega \triangleq \{ \theta \in \mathbb{R}^d \mid A(\theta) < +\infty \} \]

\[\mathcal{M} \triangleq \{ \mu \in \mathbb{R}^d \mid \exists p \text{ such that } \mathbb{E}_p[\phi(x)] = \mu \} \]

Inference: Find moments of model with known parameters

\[\mu = \nabla_\theta A(\theta) = \mathbb{E}_\theta[\phi(x)] = \int_\chi \phi(x) p(x \mid \theta) \, dx \]

Learning: Find model parameters matching data moments

\[\mathbb{E}_{\hat{\theta}}[\phi(x)] = \hat{\mu} \quad \text{inverse of mapping required for inference} \]

ML: \[\hat{\mu} = \frac{1}{N} \sum_{\ell=1}^N \phi(x^{(\ell)}) \]

MAP: \[\hat{\mu} = \frac{1}{\alpha + N} \left(\alpha \mu_0 + \sum_{\ell=1}^N \phi(x^{(\ell)}) \right) \]
Discrete Variables & Marginal Polytopes

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - A(\theta)\} \quad A(\theta) = \log \sum_x \exp\{\theta^T \phi(x)\} \]

\[\mu = \nabla_\theta A(\theta) = \mathbb{E}_\theta[\phi(x)] = \sum_x \phi(x)p(x \mid \theta) \]

\[\mathcal{M} \triangleq \{\mu \in \mathbb{R}^d \mid \exists \ p \text{ such that } \mathbb{E}_p[\phi(x)] = \mu\} \subseteq [0, 1]^d \]

\[\mathcal{M} = \text{conv}\{\phi(x) \mid x \in \mathcal{X}\} \quad \text{convex hull of possible configurations} \]

General Convex Polytope

Pair of Binary Variables
Marginal Polytope: Vertices & Faces

- Number of vertices always exponential in number of variables

\[\mathcal{M} = \text{conv}\{\phi(x) \mid x \in \mathcal{X}\} \]

\[\text{conv}\{(0,0,0),(1,0,0),(0,1,0),(1,1,1)\} \]

- Number of faces exponential in general, but grows *linearly* with problem size for certain graph topologies

\[\mathcal{M} = \{\mu \in \mathbb{R}^d \mid \langle a_j, \mu \rangle \geq b_j \ \forall j \in \mathcal{J}\} \]

General Convex Polytope

Pair of Binary Variables

\[
\begin{align*}
\mu_s &= \mathbb{E}_p [X_s] = \mathbb{P}[X_s = 1] \\
\mu_{st} &= \mathbb{E}_p [X_sX_t] = \mathbb{P}[(X_s, X_t) = (1, 1)]
\end{align*}
\]
Conjugate Duality

\[A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \} \]
\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \]

Proposition 3.2. The gradient mapping \(\nabla A : \Omega \to \mathcal{M} \) is one-to-one if and only if the exponential representation is minimal.
Conjugate Duality

\[A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \} \]

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \]

Theorem 3.3. In a minimal exponential family, the gradient map \(\nabla A \) is onto the interior of \(\mathcal{M} \), denoted by \(\mathcal{M}^\circ \). Consequently, for each \(\mu \in \mathcal{M}^\circ \), there exists some \(\theta = \theta(\mu) \in \Omega \) such that \(\mathbb{E}_\theta[\phi(X)] = \mu \).

For any \(\mu \in \mathcal{M}^\circ \), denote by \(\theta(\mu) \) the unique canonical parameter satisfying the dual matching condition (3.43). The conjugate dual function \(A^* \) takes the form

\[
A^*(\mu) = \begin{cases}
-H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\
+\infty & \text{if } \mu \notin \mathcal{M}.
\end{cases}
\]

(3.44) \(\mathbb{E}_{\theta(\mu)}[\phi(X)] = \nabla A(\theta(\mu)) = \mu \)
Conjugate Duality

For all $\theta \in \Omega$, the supremum in Equation (3.45) is attained uniquely at the vector $\mu \in \mathcal{M}^\circ$ specified by the moment-matching conditions

For any $\mu \in \mathcal{M}^\circ$, denote by $\theta(\mu)$ the unique canonical parameter satisfying the dual matching condition (3.43). The conjugate dual function A^* takes the form

\[
A^*(\mu) = \begin{cases}
-H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\
+\infty & \text{if } \mu \notin \mathcal{M}.
\end{cases}
\]
Duality and Variational Inference

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \langle \theta, \mu \rangle - A^*(\mu) \} \]
\[A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \} \]
\[\mu = \int_{\mathcal{X}^m} \phi(x)p_\theta(x)\nu(dx) = \mathbb{E}_\theta[\phi(X)] \]

To infer or approximate moments for known model, we can:
- Represent, or approximate, the marginal polytope
- Compute, bound, or approximate the entropy function
- Derive algorithms for resulting constrained optimization problem
p_\theta(x) \propto \exp(\theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_1 x_2) \quad x_i \in \{-1, +1\}

f(\mu_1, \mu_2; \theta) = \theta_{12} \mu_1 \mu_2 + \theta_1 \mu_1 + \theta_2 \mu_2 + H(\mu_1) + H(\mu_2)

H(\mu_i) = -\frac{1}{2}(1 + \mu_i) \log \frac{1}{2}(1 + \mu_i) - \frac{1}{2}(1 - \mu_i) \log \frac{1}{2}(1 - \mu_i)

(\theta_1, \theta_2, \theta_{12}) = \left(0, 0, \frac{1}{4} \log \frac{q}{1 - q}\right) =: \theta(q)

\mathbb{E}[X_1] = \mathbb{E}[X_2] = 0

q = \mathbb{P}[X_1 = X_2]

f(\tau, -\tau; \theta(q))

\mu_{12} \leq 1, \quad \mu_{12} \geq 2\mu_1 - 1, \quad \mu_{12} \geq -2\mu_1 - 1