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Lecture 16:
Markov Chain Monte Carlo Methods,
Metropolis-Hastings Algorithm, Gibbs Sampler

Some slides and figures courtesy lain Murray’s tutorial,
Markov Chain Monte Carlo, MLSS 2009



General Sequential Monte Carlo
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« Exploit temporal structure to propose sequences recursively:

Keep existing path extend path
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« Common choices of proposal distribution:

. Bootstrap filter simulates
dt (33t Lt—1, yt) — f(xt CEt—l) prior dynamical model

~ If local posterior intractable,
dt (xt LTt—1, yt) ~ p(iIJt Lt—1, yt) use Gaussian approximations




Particle Resampling or Selection
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original distribution

While remaining unbiased,
resampling avoids degeneracies in
which most weights go to zero
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Resampling: The Good
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Full Particle Filter KDEs Full Sequence Imbortance Sampling

« What is the probability that a state sequence, sampled from
the prior model, is consistent with all observations?
« Marginal estimates degenerate on single, mediocre sample



Resampling: The Bad

« After each resampling step, some particles are discarded,
and can never be restored in subsequent stages.
« Estimates of smoothed marginals/sequences typically poor



Beyond Temporal Particle Filters

« Can we avoid degeneracies in estimating “smoothed”
marginals based on all observations, past and future?

« Can we implement particle-based approximations to BP for
tree-structured models, or arbitrary factor graphs?

* Yes! We can apply importance sampling with resampling to
any sequence of distributions, such as a sequence of
approximations to a complicated graphical model:
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Hot Coupling, Hamze & de Freitas, NIPS 2006

» But to do this well, we need to not only be able to reweight
and resample particles, we must shift their locations
» Markov Chain Monte Carlo (MCMC) methods



Markov Chain Monte Carlo (MCMC)

- (0) o (1) (2) 2D gz | 2

At each time point, state 21 s a configuration of all the
variables in the model: parameters, hidden varlables etc.

+ We design the transition distribution ¢(z | 2*)) so that
the chain is irreducible and ergodic, with a unique
stationary distribution p*(2)

P ()= [ ale | () d

* For learning, the target equilibrium distribution is usually the
posterior distribution given data x: p*(z) = p(z | x)
« Popular recipes: Metropolis-Hastings and Gibbs samplers



Importance Sampling for Regression
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* Model: Gaussian noise around some unknown straight line
* Propose from prior on lines, weight by data likelihood



Metropolis Algorithm for Regression
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e Perturb parameters: Q(6';0), e.g. N(0,0%)

P(6'/D)
P(6D)

F'

e Accept with probability min<1,

e Otherwise keep old parameters
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Detail: Metropolis, as stated, requires Q(6’; 6) = Q(6;6") This subfigure from PRML, Bishop (2006)



Markov Chain Monte Carlo

Construct a biased random walk that explores target dist P*(x)

Markov steps, x; ~ T (x4« x¢_1)

GOAL: Recipes for
transforming (almost) any
proposal into a Markov
chain with a desired

target distribution

MCMC gives approximate, correlated samples from P*(x)



Transition (Proposal) Distributions

Discrete example
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P> is an invariant distribution of T’ because T P*= P*, i.e.

Y T(x'—z)P*(x) = P*(a')

Also P* is the equilibrium distribution of T":

To machine precision: 719 (é) = (i’f?) = P~

0 1/5

Ergodicity requires: T® ('« x)>0 for all ' : P*(z') > 0, for some K



Sufficient: Detailed Balance

Detailed balance means —x— 2’ and — 2’ — x are equally probable:
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T(x' — x)P*(x) =T (x «— 2")P*(x')

Detailed balance implies the invariant condition:

ZT(xQ—m)P* = P*(x ;}/

Enforcing detailed balance is easy: it only involves isolated pairs

1



Necessary: Generalized Balance

If T' satisfies stationarity, we can define a reverse operator

~ T(x'—z)P*(x)  T(2'+2x)P*(x)

Hooe) W = PO = S e @~ @)

Generalized balance condition:
T(z' —2z)P*(z) = T(z—2z")P*(z))

also implies the invariant condition and is necessary.

Operators satisfying detailed balance are their own reverse operator.



Metropolis-Hastings Algorithm

Transition operator
e Propose a move from the current state Q(2'; x), e.g. N(x, 0?)

_ . . P(z)Q(z;z)
e Accept with probability mm(la P(x)Q(w’;w))

e Otherwise next state in chain is a copy of current state

Notes

e Can use P o« P(x); normalizer cancels in acceptance ratio
e Satisfies detailed balance (shown below)

e () must be chosen to fulfill the other technical requirements

. / — x) - a;’-a; min P(x/)Q(x;x,)
P(x) - T( ) =P(z) Q=) <1’ P(:B)Q(:U’;:I:))

— min (P(:U)Q(x/; x), P(ZU/)Q(JZ; :13/))
P(z)Q(a'; z) ) /




Example: Gaussian Metropolis
Explore NV (0, 1) with different step sizes o

P(x) =N(z|0,1)

sigma(0.1)

99.8% accepts

sigma(1)
68.4% accepts

sigma(100)

0.5% accepts
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Limitations: Metropolis Random Walk

P

Generic proposals use

Q(z';2) = N(z,07)
o large — many rejections

o small — slow diffusion:
~(L/o)? iterations required



Limitations: Metropolis Random Walk

Discrete target
distribution is uniform
over all states
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(b) Metropolis

100 iterations

(c) Independent sampling

100 iterations
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Combining MCMC Transition Proposals

A sequence of operators, each with P* invariant:

rg ~ P*(x)

r1 ~ To(x1 4 T0) P(x1) = ZxoTa(xlFiUO)P*(iUO) = P*(z1)
xro ~ Ty(xo—x1) P(z2) = ), To(ra—z1)P*(21) = P*(22)
r3 ~ To(x3x2) P(zs) = >, Te(ws—x2)P*(22) = P*(x3)

— Combination 1.7, T, leaves P* invariant

— If they can reach any x, T. 1T, is a valid MCMC operator
— Individually T, T and T, need not be ergodic



Gibbs Samplers
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A method with no rejections:

— Initialize x to some value
— Pick each variable in turn or randomly |
and resample P(x;|x;;)

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.
b) Metropolis—Hastings ‘proposals’ P(x;|x;-;) = accept with prob. 1
Apply a series of these operators. Don't need to check acceptance.



Gibbs Samplers

< >

A method with no rejections:

— |Initialize x to some value

— Pick each variable in turn or randomly
and resample P(z;|x,;)

=

Alternative Justification:
e . Figure from PRML, Bishop (2006)
At equilibrium can assume x ~ P(x)

Consistent with Xt ™ P(Xj;,gi), XLy P(lexj;éz)

Pretend x; was never sampled and do it again.



Gibbs Sampling Implementation

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

e Conditionals with a few discrete settings can be explicitly normalized:

P(ZCZ"XJ'#Z') X P(.CCZ',Xj;éi)
P(x’bxj#i)

- wa_ P(ZU;;,X:,‘;AZ') < this sum is small and easy
Lo (T

e Continuous conditionals only univariate
= amenable to standard sampling methods.

> Inverse CDF sampling
» Rejection sampling

» Slice sampling

> ...




Undirected Graphical Models

Graph Separation

|

B Conditional
Independence

A C

p(xa,zc | xp) =p(za | 2B)p(TC | TB)
* This global Markov property implies a local Markov property:

p(% | 33‘V\7;) = p(ﬂ?z‘ | $F(i))
* Practical benefits of Gibbs sampling algorithm:
» Model and algorithm have same modular structure
» Conditionals can often be evaluated quickly, because they
depend only on the neighboring nodes
» Exponential families offer further efficiency improvements,
by caching and recursively updating sufficient statistics



