
Probabilistic
Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 16:
Markov Chain Monte Carlo Methods,

Metropolis-Hastings Algorithm, Gibbs Sampler

Some slides and figures courtesy Iain Murray’s tutorial,
Markov Chain Monte Carlo, MLSS 2009

General Sequential Monte Carlo
benchmarking numerical filtering techniques [1]–[3]. The
state-space equations are as follows:

xt ¼
xt"1

2
þ 25

xt"1

1þ x2t"1

þ 8 cosð1:2tÞ þ ut;

yt ¼
x2t
20

þ vt

where ut & N ð0;!2
uÞ and vt & N ð0;!2v Þ and here !2

u ¼ 10
and !2v ¼1 are considered fixed and known; N ð";!2Þ
denotes the normal distribution with mean " and variance
!2. The initial state distribution is x0 & N ð0; 10Þ. The
representation in terms of densities fðxtjxt"1Þ and gð ytjxtÞ is
given by

fðxtjxt"1Þ¼N xt
xt"1

2
þ 25

xt"1

1þ x 2t"1

þ 8 cosð1:2tÞ;!2
u

!!!!

" #

gð ytjxtÞ¼N yt
x2t
20

;!2
v

!!!!

" #
:

The form of these densities was straightforward to obtain in
this case. For more complex cases a Jacobian term might be
required when either xt or yt is a nonlinear function of ut or
vt, respectively. Note that we usually consider only
probability density functions pðxÞ but in some specific
cases, we will use the notation pðdxÞ to refer to the
associated probability measure.

A dynamical model of this sort may easily be simulated
owing to the Markovian assumptions on xt and yt, which
imply that the joint probability density of states and obser-
vations, denoted #0:T;0:Tðx0:T; y0:TÞ, may be factorized as

#0:T;0:Tðx0:T; y0:TÞ ¼ #0ðx0Þgð y0jx0Þ

'
YT

t¼1

fðxtjxt"1Þgð ytjxtÞ:

A graphical representation of the dependencies between
different states and observations is shown in Fig. 1.

In this model, states and data may be sampled one by
one by successively drawing random samples from the
transition and the observation densities as indicated in

Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model
Initialization: sample ~x0 & #0ðx0Þ, ~y0 & gð y0j~x0Þ.
for t ¼ 1; . . . ; T do

Sample ~xt & fðxtj~xt"1Þ.
Sample ~yt & gð ytj~xtÞ.

end for
ð~x0; . . . ; ~xT; ~y0; . . . ; ~yTÞ is a random draw from
#0:T;0:Tðx0:T; y0:TÞ.

The ability to simulate random states and to evaluate
the transition and observation densities (at least up to an
unknown normalizing constant) will be the chief compo-
nents of the particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic
system above involves computing the posterior distribution
of a collection of state variables xs:s0 ¼

def ðxs; . . . ; xs0Þ condi-
tioned on a batch of observations, y0:t ¼ ð y0; . . . ; ytÞ, which
we denote #s:s0 j0:tðxs:s0 jy0:tÞ. Specific problems include
filtering, for s ¼ s0 ¼ t, fixed lag smoothing, when
s ¼ s0 ¼ t" L and fixed interval smoothing, if s ¼ 0 and
s0 ¼ t. Despite the apparent simplicity of the above prob-
lem, the posterior distribution can be computed in closed
form only in very specific cases, principally, the linear
Gaussian model (where the functions aðÞ and bðÞ are linear
and ut and vt are Gaussian) and the discrete hidden Markov
model (where xt takes its values in a finite alphabet). In the
vast majority of cases, nonlinearity or non-Gaussianity
render an analytic solution intractable [4]–[7].

The classical inference methods for nonlinear dynamic
systems are the extended Kalman filter (EKF) and its
variants, which are based on linearization of the state and
measurement equations along the trajectories [8]. The
EKF has been successfully applied to many nonlinear
filtering problems. However, the EKF is known to fail if
the system exhibits substantial nonlinearity and/or if the
state and the measurement noise are significantly non-
Gaussian.

Many algorithms have been developed to correct poor
performance in the EKF algorithm. One of the earliest
approaches was to approximate the posterior distribution
by expansion in a prespecified function basis. For example,
the Gaussian sum filter [9] approximates the posterior
density by a mixture of Gaussians (see [10] for an in-depth
discussion and some generalizations).

More recently, several algorithms have been proposed
that attempt to choose a set of deterministic points to

Fig. 1. Graphical model illustrating the Markovian dependencies

between states and observations.

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

900 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

Target Posterior

Proposal Density

•  Exploit temporal structure to propose sequences recursively:

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1iN

from the collection f~xðiÞ0:tg1iN according to the importance
weights f!ðiÞ

t g1iN.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

904 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1iN

from the collection f~xðiÞ0:tg1iN according to the importance
weights f!ðiÞ

t g1iN.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

904 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

•  Common choices of proposal distribution:
qt(xt | xt�1, yt) = f(xt | xt�1)

Bootstrap filter simulates
prior dynamical model

qt(xt | xt�1, yt) ⇡ p(xt | xt�1, yt) If local posterior intractable,
use Gaussian approximations

Particle Resampling or Selection
p(x

t

| y
t̄

) ⇡
LX

`=1

!

(`)
t

�

x

(`)
t
(x

t

) p(x
t

| y
t̄

) ⇡
LX

`=1

1

L

�

x̄

(`)
t
(x

t

)

x̄

(`)
t = x

(j`)
t

j` ⇠ Cat(!t)

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

Resampling with replacement
produces a random discrete

distribution whose mean is the
original distribution

While remaining unbiased,
resampling avoids degeneracies in

which most weights go to zero

Resampling: The Good

•  What is the probability that a state sequence, sampled from
the prior model, is consistent with all observations?

•  Marginal estimates degenerate on single, mediocre sample

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series
model. This is presented purely as an example of the type
of results obtainable and their interpretation: others have
provided extensive simulation studies in this type of
model. A single data set is generated from the model, see
Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and
resampling occurs at every time stepVthis is then the
bootstrap version of the particle filter. The number of
particles used is fixed over time to N ¼ 10 000, a large
number that may be reduced substantially in practice,
depending on the accuracy of inference required. Figs. 7
and 8 show two time snapshots of the filter output, i.e.,
estimates of !tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞt ; !ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as
there are so many particles covering important regions.
As a dashed line we plot a kernel density estimate ob-
tained from the weighted sample, using a Gaussian kernel
having fixed width of 0.5. Notice that the filter is easily
able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 909

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series
model. This is presented purely as an example of the type
of results obtainable and their interpretation: others have
provided extensive simulation studies in this type of
model. A single data set is generated from the model, see
Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and
resampling occurs at every time stepVthis is then the
bootstrap version of the particle filter. The number of
particles used is fixed over time to N ¼ 10 000, a large
number that may be reduced substantially in practice,
depending on the accuracy of inference required. Figs. 7
and 8 show two time snapshots of the filter output, i.e.,
estimates of !tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞt ; !ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as
there are so many particles covering important regions.
As a dashed line we plot a kernel density estimate ob-
tained from the weighted sample, using a Gaussian kernel
having fixed width of 0.5. Notice that the filter is easily
able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 909

incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

910 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Full Particle Filter KDEs

incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

910 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Full Sequence Importance Sampling

Resampling: The Bad

These formulae then form the basis of a sequence-based
smoother using the weighted sample generated in the
forward pass of the SMC procedure, see [66], and also [32]
and [67].

Assume initially that Monte Carlo filtering has already
been performed on the entire dataset, leading to an
approximate representation of the filtering distribution
!tj0:tðxtjy0:tÞ for each time step t 2 f0; . . . ; Tg, consisting
of weighted particles fðxðiÞt ; !ðiÞ

t Þgi¼1;...;N .
Using this weighted sample representation, it is

straightforward to construct a particle approximation to
pðxtjxtþ1; y0:TÞ from (27) as follows:

pðdxtjxtþ1; y0:TÞ %
XN

i¼1

"ðiÞt ðxtþ1Þ#xðiÞt ðdxtÞ (28)

where the modified weights are defined as

"ðiÞt ðxtþ1Þ ¼
def

!ðiÞ
t f xtþ1jxðiÞt
! "

PN
j¼1 !

ð jÞ
t f xtþ1jxð jÞt

! " : (29)

This revised particle-based distribution can now be used
to generate states successively in the reverse-time
direction, conditioning upon future states, using the
sampling importance resampling idea. Specifically, given
a random sample extþ1:T drawn approximately from
!tþ1:Tj0:T , take one step back in time and sample ext from

the particle approximation (28) to pðdxtjextþ1; y0:TÞ. The
pair ðext;extþ1:TÞ is then approximately a random realization
from !t:Tj0:T . Repeating this process sequentially back over
time produces the general particle smoother outlined in
Algorithm 5.

Algorithm 5 Particle Smoother

for t ¼ 0 to T do . Forward Pass Filter
Run Particle filter, storing at each time step the particles
and weights fxðiÞt ; !ðiÞ

t g1&i&N.
end for
Choose exT ¼ xðiÞT with probability !ðiÞ

t .
for t ¼ T ' 1 to 0 do . Backward Pass Smoother

Calculate "ðiÞt / !ðiÞ
t fðextþ1jxðiÞt Þ, for i ¼ 1; . . . ;N; and

normalize the modified weights.
Choose ext ¼ xðiÞt with probability "ðiÞt .

end for

Further independent realizations are obtained by
repeating this procedure as many times as required. The
computational complexity for each random realization is
OðNTÞ, so the procedure is quite expensive if many
realizations are required. Developments to these basic
techniques that consider the Rao–Blackwellized setting
can be found in [68], see Section II-G.

To illustrate this smoothing technique, consider the
nonlinear time series model of Example 1. Smoothing is
carried out using the above particle smoother, applying
10 000 repeated draws from the smoothing density. A
simple bootstrap particle filter was run through the data
initially, itself with 10 000 particles, and the weighted
particles fðxðiÞt ; !ðiÞ

t Þg1&i&N were stored at each time step,
exactly as in the simulations for this model presented in
the section on particle filtering. Smoothing then follows
exactly as in the above algorithm statement. A small
random selection of the smoothed trajectories drawn from
!0:100j0:100ðx0:100jy0:100Þ is shown in Fig. 12. Note some
clear evidence of multimodality in the smoothing distri-
bution can be seen, as shown by the separated paths of
the process around t ¼ 46 and t ¼ 82. We can also show
the posterior distribution via grey-scale histograms of the
particles, see Fig. 13. Finally, see Figs. 14 and 15 for
visualization of an estimated bivariate marginal,
!3:4j0:100ðx3:4jy0:100Þ, using 2-D scatter plots and kernel
density estimates, again showing evidence of multimodality
and strong non-Gaussianity that will not be well captured
by more standard methods.

This algorithm is quite generic in that it allows joint
random draws from arbitrary groupings of state variables
over time. See also [67] for related methods that generate
smoothed sample paths by rejection sampling ideas.
Sometimes, however, one is specifically interested in the
marginal smoothing distributions, i.e., !tj0:T for some
t G T. There are several specialized methods available for

Fig. 11. Typical plot of the particle trajectories after a few

time steps; the width of the lines is proportional to the number of

current particles which share a particular ancestor path.

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

914 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

•  After each resampling step, some particles are discarded,
and can never be restored in subsequent stages.

•  Estimates of smoothed marginals/sequences typically poor

Beyond Temporal Particle Filters
•  Can we avoid degeneracies in estimating “smoothed”

marginals based on all observations, past and future?
•  Can we implement particle-based approximations to BP for

tree-structured models, or arbitrary factor graphs?
•  Yes! We can apply importance sampling with resampling to

any sequence of distributions, such as a sequence of
approximations to a complicated graphical model:

mechanism. The “fitness” of the particles is measured via their importance weights. When
the set of samples has become skewed, that is with some containing high weights and
many containing low ones, the particles are resampled according to their weights. The
sequential structure is thus imposed by the propose-and-resample mechanism rather than by
any property of the original system. The algorithm is formally described after an overview
of SMC and recent work presenting a unifying framework of the SMC methodology outside
the context of Bayesian dynamic filtering[16].

Figure 2: A graphical illustration of our algorithm. First we construct a spanning tree, of which a
population of iid samples can be easily drawn using the forward filtering/backward sampling algo-
rithm for trees. The tree then becomes the proposal mechanism for generating samples for a graph
with an extra potential. The process is repeated until we obtain samples from the target distribution
(defined on a fully connected graph in this case). Edges can be added “slowly” using a coupling
parameter.

2 Sequential Monte Carlo
As shown in Figure 2, we consider a sequence of auxiliary distributions
π̃1(x1), π̃2(x1:2), . . . , π̃n(x1:n), where π̃1(x1) is the distribution on the weighted
spanning tree. The sequence of distributions can be constructed so that it satisfies
π̃n(x1:n) = πn(xn)π̃n(x1:n−1|x1:n). Marginalizing over x1:n−1 gives us the target
distribution of interest πn(xn) (the distribution of the graphical model that we want to
sample from as illustrated in Figure 2 for n = 4). So we first focus on sampling from
the sequence of auxiliary distributions. The joint distribution is only known up to a
normalization constant: π̃n(x1:n) = Z−1

n fn(x1:n), where Zn !
∫

fn(x1:n)dx1:n is the
partition function. We are often interested in computing this partition function and other
expectations, such as I(g(xn)) =

∫
g(xn)πn(xn)dxn, where g is a function of interest

(e.g. g(x) = x if we are interested in computing the mean of x).

If we had a set of samples {x(i)
1:n}N

i=1 from π̃, we could approximate this integral with the
following Monte Carlo estimator: ̂̃πn(dx1:n) = 1

N

∑N
i=1 δx(i)

1:n
(dx1:n), where δ

x(i)
1:n

(dx1:n)

denotes the delta Dirac function, and consequently approximate any expectations of inter-
est. These estimates converge almost surely to the true expectation as N goes to infinity. It
is typically hard to sample from π̃ directly. Instead, we sample from a proposal distribution
q and weight the samples according to the following importance ratio

wn =
fn(x1:n)

qn(x1:n)
=

fn(x1:n)

qn(x1:n)

qn−1(x1:n−1)

fn−1(x1:n−1)
wn−1

The proposal is constructed sequentially: q(x1:n) = qn−1(x1:n−1)qn(xn|x1:n−1). Hence,
the importance weights can be updated recursively

wn =
fn(x1:n)

qn(xn|x1:n−1)fn−1(x1:n−1)
wn−1 (1)

Given a set of N particles x(i)
1:n−1, we obtain a set of particles x(i)

n by sampling from
qn(xn|x(i)

1:n−1) and applying the weights of equation (1). To overcome slow drift in the
particle population, a resampling (selection) step chooses the fittest particles (see the intro-
ductory chapter in [13] for a more detailed explanation). We use a state-of-the-art minimum
variance resampling algorithm [18].

The ratio of successive partition functions can be easily estimated using this algorithm as
follows:
Zn

Zn−1
=

∫
fn(x1:n)dx1:n

Zn−1
=

∫
ŵn π̃n−1(x1:n−1)qn(xn|x1:n−1)dx1:n ≈

N∑

i=1

ŵ(i)
n w̃(i)

n−1,

Hot Coupling, Hamze & de Freitas, NIPS 2006

•  But to do this well, we need to not only be able to reweight
and resample particles, we must shift their locations
Ø Markov Chain Monte Carlo (MCMC) methods

Markov Chain Monte Carlo (MCMC)

•  At each time point, state is a configuration of all the
variables in the model: parameters, hidden variables, etc.

•  We design the transition distribution so that
the chain is irreducible and ergodic, with a unique
stationary distribution

z(0) z(1) z(2) z(t+1) ⇠ q(z | z(t))

z(t)

q(z | z(t))

p⇤(z)

p⇤(z) =

Z

Z
q(z | z0)p⇤(z0) dz0

•  For learning, the target equilibrium distribution is usually the
posterior distribution given data x:

•  Popular recipes: Metropolis-Hastings and Gibbs samplers
p

⇤(z) = p(z | x)

Importance Sampling for Regression
Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51

•  Model: Gaussian noise around some unknown straight line
•  Propose from prior on lines, weight by data likelihood

Metropolis Algorithm for Regression Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ,σ2)

• Accept with probability min

(

1,
P̃ (θ′|D)

P̃ (θ|D)

)

• Otherwise keep old parameters
0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)

Markov Chain Monte Carlo
Markov chain Monte Carlo

Construct a biased random walk that explores target dist P !(x)

Markov steps, xt ∼ T (xt←xt−1)

MCMC gives approximate, correlated samples from P !(x)

GOAL: Recipes for
transforming (almost) any

proposal into a Markov
chain with a desired

target distribution

Transition (Proposal) Distributions Transition operators
Discrete example

P ! =




3/5
1/5
1/5



 T =




2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0



 Tij = T (xi←xj)

P ! is an invariant distribution of T because TP !=P !, i.e.

∑

x

T (x′←x)P !(x) = P !(x′)

Also P ! is the equilibrium distribution of T :

To machine precision: T 100
0

@

1
0
0

1

A =
0

@

3/5
1/5
1/5

1

A = P !

Ergodicity requires: TK(x′←x)>0 for all x′ : P !(x′) > 0, for some K

Sufficient: Detailed Balance
Detailed Balance

Detailed balance means →x→x′ and →x′→x are equally probable:

T (x′← x)P !(x) = T (x← x′)P !(x′)

Detailed balance implies the invariant condition:

∑

x

T (x′←x)P !(x) = P !(x′)

!!!!!!!!!!!!!!!"1∑

x

T (x←x′)

Enforcing detailed balance is easy: it only involves isolated pairs

Necessary: Generalized Balance
Reverse operators

If T satisfies stationarity, we can define a reverse operator

T̃ (x←x′) ∝ T (x′←x) P !(x) =
T (x′←x) P !(x)∑
x T (x′←x) P !(x)

=
T (x′←x) P !(x)

P !(x′)
.

Generalized balance condition:

T (x′←x)P !(x) = T̃ (x←x′)P !(x′)

also implies the invariant condition and is necessary.

Operators satisfying detailed balance are their own reverse operator.

Metropolis-Hastings Algorithm
Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)

• Otherwise next state in chain is a copy of current state

Notes

• Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x′←x) = P (x) · Q(x′; x) min

1,
P (x′)Q(x; x′)

P (x)Q(x′; x)

!

= min
“

P (x)Q(x′; x), P (x′)Q(x; x′)
”

= P (x′)·Q(x; x′) min

1,
P (x)Q(x′; x)

P (x′)Q(x; x′)

!

= P (x′)·T (x←x′)

Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x,σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)

• Otherwise next state in chain is a copy of current state

Notes

• Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x′←x) = P (x) · Q(x′; x) min

1,
P (x′)Q(x; x′)

P (x)Q(x′; x)

!

= min
“

P (x)Q(x′; x), P (x′)Q(x; x′)
”

= P (x′)·Q(x; x′) min

1,
P (x)Q(x′; x)

P (x′)Q(x; x′)

!

= P (x′)·T (x←x′)

Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x,σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)

• Otherwise next state in chain is a copy of current state

Notes

• Can use P̃ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x′←x) = P (x) · Q(x′; x) min

1,
P (x′)Q(x; x′)

P (x)Q(x′; x)

!

= min
“

P (x)Q(x′; x), P (x′)Q(x; x′)
”

= P (x′)·Q(x; x′) min

1,
P (x)Q(x′; x)

P (x′)Q(x; x′)

!

= P (x′)·T (x←x′)

Example: Gaussian Metropolis
Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));

sigma(0.1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

99.8% accepts

sigma(1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

68.4% accepts

sigma(100)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

0.5% accepts

Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));

sigma(0.1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

99.8% accepts

sigma(1)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

68.4% accepts

sigma(100)

0 100 200 300 400 500 600 700 800 900 1000
−4
−2
0
2
4

0.5% accepts

Q(x0;x) = N (x0 | x,�2)P (x) = N (x | 0, 1)

Limitations: Metropolis Random Walk

Metropolis limitations

Q

P

L

Generic proposals use
Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Limitations: Metropolis Random Walk

0

2

4

6

8

10

12

0 5 10 15 20

100 iterations

0

5

10

15

20

25

30

35

40

0 5 10 15 20

400 iterations

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20

1200 iterations

0

2

4

6

8

10

12

0 5 10 15 20

100 iterations

0
5

10
15
20
25
30
35
40

0 5 10 15 20

400 iterations

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20

1200 iterations

Discrete target
distribution is uniform

over all states

Combining MCMC Transition Proposals
Combining operators

A sequence of operators, each with P ! invariant:

x0 ∼ P !(x)

x1 ∼ Ta(x1←x0)

x2 ∼ Tb(x2←x1)

x3 ∼ Tc(x3←x2)

· · ·

P (x1) =
∑

x0
Ta(x1←x0)P !(x0) = P !(x1)

P (x2) =
∑

x1
Tb(x2←x1)P !(x1) = P !(x2)

P (x3) =
∑

x1
Tc(x3←x2)P !(x2) = P !(x3)

· · ·

— Combination TcTbTa leaves P ! invariant

— If they can reach any x, TcTbTa is a valid MCMC operator

— Individually Tc, Tb and Ta need not be ergodic

Gibbs Samplers
Gibbs sampling

A method with no rejections:

– Initialize x to some value
– Pick each variable in turn or randomly

and resample P (xi|xj !=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.
b) Metropolis–Hastings ‘proposals’ P (xi|xj !=i)⇒ accept with prob. 1
Apply a series of these operators. Don’t need to check acceptance.

Gibbs sampling

A method with no rejections:

– Initialize x to some value
– Pick each variable in turn or randomly

and resample P (xi|xj !=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.
b) Metropolis–Hastings ‘proposals’ P (xi|xj !=i)⇒ accept with prob. 1
Apply a series of these operators. Don’t need to check acceptance.

Gibbs Samplers
Gibbs sampling

A method with no rejections:

– Initialize x to some value
– Pick each variable in turn or randomly

and resample P (xi|xj !=i)

z1

z2

L

l

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update.
b) Metropolis–Hastings ‘proposals’ P (xi|xj !=i)⇒ accept with prob. 1
Apply a series of these operators. Don’t need to check acceptance.

Gibbs sampling

Alternative explanation:

Chain is currently at x

At equilibrium can assume x ∼ P (x)

Consistent with xj !=i ∼ P (xj !=i), xi ∼ P (xi |xj !=i)

Pretend xi was never sampled and do it again.

This view may be useful later for non-parametric applications

Alternative Justification:

Gibbs Sampling Implementation
“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj !=i) ∝ P (xi,xj !=i)

=
P (xi,xj !=i)∑
x′i

P (x′i,xj !=i) ← this sum is small and easy

• Continuous conditionals only univariate
⇒ amenable to standard sampling methods.

WinBUGS and OpenBUGS sample graphical models using these tricks

Ø  Inverse CDF sampling
Ø  Rejection sampling
Ø  Slice sampling
Ø  …

Undirected Graphical Models
Graph Separation

Conditional
Independence

•  This global Markov property implies a local Markov property:

52 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

xg are independent conditioned on the variables xh in any separating set:

p(xf , xg | xh) = p(xf | xh) p(xg | xh) if h separates f from g (2.69)

This property generalizes temporal Markov processes, for which the past and future
are independent conditioned on the present. For example, the undirected graph of
Fig. 2.5(a) implies the following conditional independencies, among others:

p(x1, x2, x5 | x3, x4) = p(x1, x2 | x3, x4) p(x5 | x3)

p(x1, x4, x5 | x2, x3) = p(x1 | x2, x3) p(x4 | x2, x3) p(x5 | x3)

An important special case of eq. (2.69) guarantees that conditioned on its immediate
neighbors, the random variable at any node is independent of the rest of the process:

p
(
xi | xV\i

)
= p

(
xi | xΓ(i)

)
(2.70)

As we discuss in later sections, this local Markov property plays an important role in
the design of efficient learning and inference algorithms.

The following theorem, due to Hammersley and Clifford, shows that Markov random
fields are naturally parameterized via potential functions defined on the cliques of the
corresponding undirected graph.

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) ∝
∏

c∈C

ψc(xc) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

Proof. There are a variety of ways to prove this result; see [26, 35, 43] for examples and
further discussion. For a degenerate Markov distribution which cannot be factored as
in eq. (2.71), see Lauritzen [177].

Comparing eq. (2.71) to eq. (2.66), we see that Markov random fields can always be
represented by a factor graph with one hyperedge for each of the graph’s cliques [175,
339]. This representation is also known as the clique hypergraph corresponding to
G [177]. Note that it is possible, but not necessary, to restrict this factorization to
maximal cliques which are not a strict subset of any other clique (see Fig. 2.5(c)).

In practice, Markov properties are used in two complementary ways. If a stochastic
process is known to satisfy certain conditional independencies, the Hammersley–Clifford
Theorem then motivates models parameterized by local sufficient statistics. Conversely,

p(xA, xC | xB) = p(xA | xB)p(xC | xB)

•  Practical benefits of Gibbs sampling algorithm:
Ø Model and algorithm have same modular structure
Ø Conditionals can often be evaluated quickly, because they

depend only on the neighboring nodes
Ø Exponential families offer further efficiency improvements,

by caching and recursively updating sufficient statistics

