Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth

Lecture 16: Markov Chain Monte Carlo Methods, Metropolis-Hastings Algorithm, Gibbs Sampler

> Some slides and figures courtesy lain Murray's tutorial, Markov Chain Monte Carlo, MLSS 2009

General Sequential Monte Carlo

Exploit temporal structure to propose sequences recursively:

$$\begin{split} q_{0:t}(x_{0:t}|y_{0:t}) &= \overbrace{q_{0:t-1}(x_{0:t-1}|y_{0:t-1})}^{\text{Keep existing path}} \overbrace{q_{t}(x_{t}|x_{t-1},y_{t})}^{\text{extend path}} \\ \tilde{\omega}_{t}^{(i)} &= \frac{\pi_{0:t|0:t}\left(\tilde{x}_{0:t}^{(i)}|y_{0:t}\right)}{q_{0:t}\left(\tilde{x}_{0:t}^{(i)}|y_{0:t}\right)} \propto \omega_{t-1}^{(i)} \times \frac{f\left(\tilde{x}_{t}^{(i)}|\tilde{x}_{t-1}^{(i)}\right)g\left(y_{t}|\tilde{x}_{t}^{(i)}\right)}{q_{t}\left(\tilde{x}_{0:t}^{(i)}|y_{0:t}\right)} \end{split}$$

• Common choices of proposal distribution:

$$q_t(x_t \mid x_{t-1}, y_t) = f(x_t \mid x_{t-1})$$
$$q_t(x_t \mid x_{t-1}, y_t) \approx p(x_t \mid x_{t-1}, y_t)$$

Bootstrap filter simulates prior dynamical model

If local posterior intractable, use Gaussian approximations

Particle Resampling or Selection

$$p(x_t \mid y_{\bar{t}}) \approx \sum_{\ell=1}^{L} \omega_t^{(\ell)} \delta_{x_t^{(\ell)}}(x_t)$$

Resampling with replacement produces a random discrete distribution whose mean is the original distribution

While remaining unbiased, resampling avoids degeneracies in which most weights go to zero

- What is the probability that a state sequence, sampled from the prior model, is consistent with all observations?
- Marginal estimates degenerate on single, mediocre sample

- After each resampling step, some particles are discarded, and can never be restored in subsequent stages.
- Estimates of *smoothed* marginals/sequences typically poor

Beyond Temporal Particle Filters

- Can we avoid degeneracies in estimating "smoothed" marginals based on all observations, past and future?
- Can we implement particle-based approximations to BP for tree-structured models, or arbitrary factor graphs?
- Yes! We can apply importance sampling with resampling to any sequence of distributions, such as a sequence of approximations to a complicated graphical model:

Hot Coupling, Hamze & de Freitas, NIPS 2006

• But to do this well, we need to not only be able to reweight and resample particles, we must shift their locations

Markov Chain Monte Carlo (MCMC) methods

Markov Chain Monte Carlo (MCMC) $\xrightarrow{z^{(0)}} \xrightarrow{z^{(1)}} \xrightarrow{z^{(2)}} \xrightarrow{z^{(t+1)}} \sim q(z \mid z^{(t)})$

- At each time point, state $z^{(t)}$ is a configuration of *all the variables in the model:* parameters, hidden variables, etc.
- We design the transition distribution $q(z \mid z^{(t)})$ so that the chain is *irreducible* and *ergodic*, with a unique stationary distribution $p^*(z)$

$$p^*(z) = \int_{\mathcal{Z}} q(z \mid z') p^*(z') \, dz'$$

- For learning, the target equilibrium distribution is usually the posterior distribution given data *x*: $p^*(z) = p(z \mid x)$
- Popular recipes: *Metropolis-Hastings and Gibbs samplers*

Importance Sampling for Regression

w = 0.00548 w = 1.59e-08 w = 9.65e-06 w = 0.371 w = 0.103

w = 1.01e-08 w = 0.111 w = 1.92e-09 w = 0.0126 w = 1.1e-51

- Model: Gaussian noise around some unknown straight line
- Propose from prior on lines, weight by data likelihood

Metropolis Algorithm for Regression

- Perturb parameters: $Q(\theta';\theta)$, e.g. $\mathcal{N}(\theta,\sigma^2)$
- Accept with probability $\min\left(1, \frac{\tilde{P}(\theta'|\mathcal{D})}{\tilde{P}(\theta|\mathcal{D})}\right)$
- $\frac{\tilde{P}(\theta'|\mathcal{D})}{\tilde{P}(\theta|\mathcal{D})}\right)^{2.5} \\
 \frac{1.5}{1} \\
 \frac{1.5}{0.5}$

• Otherwise keep old parameters

Detail: Metropolis, as stated, requires $Q(\theta'; \theta) = Q(\theta; \theta')$

Markov Chain Monte Carlo Construct a biased random walk that explores target dist $P^{\star}(x)$

Markov steps, $x_t \sim T(x_t \leftarrow x_{t-1})$

MCMC gives approximate, correlated samples from $P^{\star}(x)$

Transition (Proposal) Distributions Discrete example

$$P^{\star} = \begin{pmatrix} 3/5\\1/5\\1/5 \end{pmatrix} \qquad T = \begin{pmatrix} 2/3 & 1/2 & 1/2\\1/6 & 0 & 1/2\\1/6 & 1/2 & 0 \end{pmatrix} \qquad T_{ij} = T(x_i \leftarrow x_j)$$

 P^{\star} is an invariant distribution of T because $TP^{\star} = P^{\star}$, i.e.

$$\sum_{x} T(x' \leftarrow x) P^{\star}(x) = P^{\star}(x')$$

Also P^* is the equilibrium distribution of T: To machine precision: $T^{100} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 1/5 \\ 1/5 \end{pmatrix} = P^*$

Ergodicity requires: $T^{K}(x' \leftarrow x) > 0$ for all $x' : P^{\star}(x') > 0$, for some K

Sufficient: Detailed Balance

Detailed balance means $\rightarrow x \rightarrow x'$ and $\rightarrow x' \rightarrow x$ are equally probable:

Detailed balance implies the invariant condition:

$$\sum_{x} T(x' \leftarrow x) P^{\star}(x) = P^{\star}(x') \sum_{x} T(x \leftarrow x')^{\perp}$$

Enforcing detailed balance is easy: it only involves isolated pairs

Necessary: Generalized Balance

If T satisfies stationarity, we can define a reverse operator

$$\widetilde{T}(x \leftarrow x') \propto T(x' \leftarrow x) P^{\star}(x) = \frac{T(x' \leftarrow x) P^{\star}(x)}{\sum_{x} T(x' \leftarrow x) P^{\star}(x)} = \frac{T(x' \leftarrow x) P^{\star}(x)}{P^{\star}(x')}$$

Generalized balance condition:

$$T(x'\!\leftarrow\!x)P^{\star}(x) \ = \ \widetilde{T}(x\!\leftarrow\!x')P^{\star}(x')$$

also implies the invariant condition and is necessary.

Operators satisfying detailed balance are their own reverse operator.

Metropolis-Hastings Algorithm

Transition operator

- Propose a move from the current state Q(x';x) , e.g. $\mathcal{N}(x,\sigma^2)$
- Accept with probability $\min\left(1, \frac{P(x')Q(x;x')}{P(x)Q(x';x)}\right)$
- Otherwise next state in chain is a copy of current state

Notes

- Can use $\tilde{P} \propto P(x)$; normalizer cancels in acceptance ratio
- Satisfies detailed balance (shown below)
- Q must be chosen to fulfill the other technical requirements $P(x) \cdot T(x' \leftarrow x) = P(x) \cdot Q(x'; x) \min\left(1, \frac{P(x')Q(x; x')}{P(x)Q(x'; x)}\right)$ $= \min\left(P(x)Q(x'; x), P(x')Q(x; x')\right)$ $= P(x') \cdot Q(x; x') \min\left(1, \frac{P(x)Q(x'; x)}{P(x')Q(x; x')}\right) = P(x') \cdot T(x \leftarrow x')$

Example: Gaussian Metropolis Explore $\mathcal{N}(0,1)$ with different step sizes σ $P(x) = \mathcal{N}(x \mid 0, 1)$ $Q(x'; x) = \mathcal{N}(x' \mid x, \sigma^2)$

Limitations: Metropolis Random Walk

Generic proposals use $Q(x';x) = \mathcal{N}(x,\sigma^2)$

 $\sigma \; {\rm large} \to {\rm many} \; {\rm rejections}$

 σ small \rightarrow slow diffusion: $\sim (L/\sigma)^2$ iterations required

Limitations: Metropolis Random Walk

Discrete target distribution is uniform over all states

$$Q(x';x) = \begin{cases} \frac{1}{2} & x' = x \pm 1\\ 0 & \text{otherwise} \end{cases}$$

Combining MCMC Transition Proposals

A sequence of operators, each with P^* invariant:

- $x_{0} \sim P^{\star}(x)$ $x_{1} \sim T_{a}(x_{1} \leftarrow x_{0}) \qquad P(x_{1}) = \sum_{x_{0}} T_{a}(x_{1} \leftarrow x_{0})P^{\star}(x_{0}) = P^{\star}(x_{1})$ $x_{2} \sim T_{b}(x_{2} \leftarrow x_{1}) \qquad P(x_{2}) = \sum_{x_{1}} T_{b}(x_{2} \leftarrow x_{1})P^{\star}(x_{1}) = P^{\star}(x_{2})$ $x_{3} \sim T_{c}(x_{3} \leftarrow x_{2}) \qquad P(x_{3}) = \sum_{x_{1}} T_{c}(x_{3} \leftarrow x_{2})P^{\star}(x_{2}) = P^{\star}(x_{3})$...
 - Combination $T_cT_bT_a$ leaves P^{\star} invariant
 - If they can reach any x, $T_cT_bT_a$ is a valid MCMC operator
 - Individually T_c , T_b and T_a need not be ergodic

Gibbs Samplers

A method with no rejections:

- Initialize \mathbf{x} to some value
- Pick each variable in turn or randomly and resample $P(x_i | \mathbf{x}_{j \neq i})$

Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update. b) Metropolis–Hastings 'proposals' $P(x_i|\mathbf{x}_{j\neq i}) \Rightarrow$ accept with prob. 1 Apply a series of these operators. Don't need to check acceptance.

Gibbs Samplers

A method with no rejections:

- Initialize \mathbf{x} to some value
- Pick each variable in turn or randomly and resample $P(x_i | \mathbf{x}_{j \neq i})$

Alternative Justification:

At equilibrium can assume $\mathbf{x} \sim P(\mathbf{x})$

Figure from PRML, Bishop (2006)

Consistent with $\mathbf{x}_{j\neq i} \sim P(\mathbf{x}_{j\neq i}), \ x_i \sim P(x_i | \mathbf{x}_{j\neq i})$

Pretend x_i was never sampled and do it again.

Gibbs Sampling Implementation

Gibbs sampling benefits from few free choices and convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

$$P(x_i | \mathbf{x}_{j \neq i}) \propto P(x_i, \mathbf{x}_{j \neq i})$$

=
$$\frac{P(x_i, \mathbf{x}_{j \neq i})}{\sum_{x'_i} P(x'_i, \mathbf{x}_{j \neq i})} \leftarrow \text{this sum is small and easy}$$

 Y_6

Y₅

 Y_1

Y2

- Continuous conditionals only univariate
 - \Rightarrow amenable to standard sampling methods.
 - Inverse CDF sampling
 - Rejection sampling
 - Slice sampling

▶ ...

Undirected Graphical Models

 $p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$

• This global Markov property implies a local Markov property:

$$p(x_i \mid x_{\mathcal{V}\setminus i}) = p(x_i \mid x_{\Gamma(i)})$$

- Practical benefits of Gibbs sampling algorithm:
 - Model and algorithm have same modular structure
 - Conditionals can often be evaluated quickly, because they depend only on the neighboring nodes
 - Exponential families offer further efficiency improvements, by caching and recursively updating sufficient statistics