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Basic Monte Carlo Methods 
Monte Carlo: 

Importance Sampling:  Approximate expectations, not samples 
•  Larger class of permissible proposals: q(x) > 0 where p(x) > 0
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Rejection Sampling:  Exact sampling with random computation 

cq

⇤
(x) > p

⇤
(x) for all x

we must know the envelope constant c 

•  Auxiliary variable method: 
•  Scaled proposal must bound target: 

p(x, u) = p(x)p(u | x) = p(x)Unif(u | 0, p⇤(x))



Failures for High-Dimensional Posteriors 
Monte Carlo:  Computationally intractable 

Rejection Sampling:  Computationally intractable 
•  Small errors in matching individual marginal distributions compound 

to produce a very small overall rejection rate 
•  Problem worse if we can only find a conservative envelope bound: 

cq

⇤
(x) > p

⇤
(x) for all x we must know the envelope constant c 

•  In most cases, must be able to tractably manipulate inverse CDF 
•  Discrete variables:  Sums exponential in number of variables 
•  Continuous variables:  Intractable integrals, quadrature exponential 

Importance Sampling:  Efficiently gives inaccurate estimates 

•  If we don’t satisfy the (difficult) envelope bound condition from 
rejection sampling, the weights for some samples will be very large 

•  For some proposals, the variance of the estimator may be infinite 
•  If we actually want samples, doesn’t directly provide them 

Varq[f(x)w(x)] = Eq[f
2(x)w2(x)]� µ

2Eq[f̂L] = Ep[f ] , µ



Selecting Proposal Distributions 
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•  For a toy one-dimensional, heavy-tailed target distribution: 

Gaussian Proposal Cauchy (Student’s-t) Proposal 

Empirical variance of weights may not predict estimator variance 
•  Always (asymptotically) unbiased, but variance of estimator 

can be enormous unless weight function bounded above:  

Varq[f̂L] =
1

L

Varq[f(x)w(x)] w(x) =
p(x)

q(x)
Eq[f̂L] = Ep[f ]



Selecting Proposal Distributions 
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Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.
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Sec. 2.4. Monte Carlo Methods 85

the poorly matched proposal distribution of Fig. 2.17(e) causes many samples to have
negligible weight, greatly reducing the effective sample size. Heavy–tailed proposal dis-
tributions, which are more dispersed than the target density, typically provide greater
robustness [107, 192]. For high–dimensional problems, however, designing good propos-
als is extremely challenging, since even minor discrepancies can produce widely varying
importance weights. In graphical models, importance sampling is thus typically used
as a building block within more sophisticated Monte Carlo methods.

! 2.4.2 Kernel Density Estimation

In some applications of Monte Carlo methods, an explicit estimate p̂(x) of the target
density p(x) is desired, rather than a summary statistic as in eq. (2.138). Nonparametric
density estimators avoid choosing a particular form for p̂(x), and allow the complexity
of the estimated density to grow as more samples are observed. Given L independent
samples {x(!)}L

!=1, the corresponding kernel or Parzen window density estimate [230,
263] can be written as follows:

p̂(x) =
L∑

!=1

w(!)N (x; x(!), Λ) (2.142)

This estimator uses a Gaussian kernel function to smooth the raw sample set, intuitively
placing more probability mass in regions with many samples. Other kernel functions
may also be considered [263], but we focus on the Gaussian case. If these samples are
drawn from the target density p(x), the weights are set uniformly to w(!) = 1/L. More
generally, they could come from an importance sampling scheme [220] as in eq. (2.141).

The kernel density estimate of eq. (2.142) depends on the bandwidth or covariance
Λ of the Gaussian kernel function. There is an extensive literature on methods for
automatic bandwidth selection [263]. For example, the simple “rule of thumb” method
combines a robust covariance estimate with an asymptotic formula which assumes the
target density is Gaussian. While fast to compute, it often oversmooths multimodal
distributions. In such cases, more sophisticated cross–validation schemes can improve
performance [263]. Fig. 2.17 illustrates kernel density estimates constructed from three
different proposal distributions, with bandwidth automatically selected via likelihood
cross–validation. Note that inaccurate importance densities produce less reliable density
estimators (compare Fig. 2.17(d) and Fig. 2.17(f)).

! 2.4.3 Gibbs Sampling

We now describe a family of iterative, Markov chain Monte Carlo (MCMC) methods
which draw samples from an otherwise intractable target density p(x). Starting from
some initial global configuration x(0) ∈ X , subsequent states are determined via a first–
order Markov process:

x(t) ∼ q(x | x(t−1)) t = 1, 2, . . . (2.143)

Kernel or Parzen window estimators 
interpolate for nonparametric  

density prediction 



High-Dimensional Importance Sampling 

Empirical variance of weights may not predict estimator variance 
•  Always (asymptotically) unbiased, but variance of estimator 

can be enormous unless weight function bounded above:  

Varq[f̂L] =
1

L

Varq[f(x)w(x)] w(x) =
p(x)

q(x)
Eq[f̂L] = Ep[f ]

Uniform Target Distribution: 

Gaussian Proposal Distribution: 

•  Consider an N-dimensional importance sampling problem: 

q(x) = N (x | 0,�2
IN )

•  By Gaussian central limit 
theorem, norm of samples 
from proposal is nearly  

•  After 100 samples, ratio  
of largest weight to median 
weight will then be 
approximately 



Nonlinear State Space Models 

•  State dynamics and measurements given by 
potentially complex nonlinear functions 

•  Noise sampled from non-Gaussian distributions 



A Toy Nonlinear Model 

benchmarking numerical filtering techniques [1]–[3]. The
state-space equations are as follows:

xt ¼
xt"1

2
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xt"1
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u ¼ 10
and !2v ¼1 are considered fixed and known; N ð";!2Þ
denotes the normal distribution with mean " and variance
!2. The initial state distribution is x0 & N ð0; 10Þ. The
representation in terms of densities fðxtjxt"1Þ and gð ytjxtÞ is
given by
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The form of these densities was straightforward to obtain in
this case. For more complex cases a Jacobian term might be
required when either xt or yt is a nonlinear function of ut or
vt, respectively. Note that we usually consider only
probability density functions pðxÞ but in some specific
cases, we will use the notation pðdxÞ to refer to the
associated probability measure.

A dynamical model of this sort may easily be simulated
owing to the Markovian assumptions on xt and yt, which
imply that the joint probability density of states and obser-
vations, denoted #0:T;0:Tðx0:T; y0:TÞ, may be factorized as

#0:T;0:Tðx0:T; y0:TÞ ¼ #0ðx0Þgð y0jx0Þ

'
YT

t¼1

fðxtjxt"1Þgð ytjxtÞ:

A graphical representation of the dependencies between
different states and observations is shown in Fig. 1.

In this model, states and data may be sampled one by
one by successively drawing random samples from the
transition and the observation densities as indicated in

Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model
Initialization: sample ~x0 & #0ðx0Þ, ~y0 & gð y0j~x0Þ.
for t ¼ 1; . . . ; T do

Sample ~xt & fðxtj~xt"1Þ.
Sample ~yt & gð ytj~xtÞ.

end for
ð~x0; . . . ; ~xT; ~y0; . . . ; ~yTÞ is a random draw from
#0:T;0:Tðx0:T; y0:TÞ.

The ability to simulate random states and to evaluate
the transition and observation densities (at least up to an
unknown normalizing constant) will be the chief compo-
nents of the particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic
system above involves computing the posterior distribution
of a collection of state variables xs:s0 ¼

def ðxs; . . . ; xs0Þ condi-
tioned on a batch of observations, y0:t ¼ ð y0; . . . ; ytÞ, which
we denote #s:s0 j0:tðxs:s0 jy0:tÞ. Specific problems include
filtering, for s ¼ s0 ¼ t, fixed lag smoothing, when
s ¼ s0 ¼ t" L and fixed interval smoothing, if s ¼ 0 and
s0 ¼ t. Despite the apparent simplicity of the above prob-
lem, the posterior distribution can be computed in closed
form only in very specific cases, principally, the linear
Gaussian model (where the functions aðÞ and bðÞ are linear
and ut and vt are Gaussian) and the discrete hidden Markov
model (where xt takes its values in a finite alphabet). In the
vast majority of cases, nonlinearity or non-Gaussianity
render an analytic solution intractable [4]–[7].

The classical inference methods for nonlinear dynamic
systems are the extended Kalman filter (EKF) and its
variants, which are based on linearization of the state and
measurement equations along the trajectories [8]. The
EKF has been successfully applied to many nonlinear
filtering problems. However, the EKF is known to fail if
the system exhibits substantial nonlinearity and/or if the
state and the measurement noise are significantly non-
Gaussian.

Many algorithms have been developed to correct poor
performance in the EKF algorithm. One of the earliest
approaches was to approximate the posterior distribution
by expansion in a prespecified function basis. For example,
the Gaussian sum filter [9] approximates the posterior
density by a mixture of Gaussians (see [10] for an in-depth
discussion and some generalizations).

More recently, several algorithms have been proposed
that attempt to choose a set of deterministic points to

Fig. 1. Graphical model illustrating the Markovian dependencies

between states and observations.
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end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series
model. This is presented purely as an example of the type
of results obtainable and their interpretation: others have
provided extensive simulation studies in this type of
model. A single data set is generated from the model, see
Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and
resampling occurs at every time stepVthis is then the
bootstrap version of the particle filter. The number of
particles used is fixed over time to N ¼ 10 000, a large
number that may be reduced substantially in practice,
depending on the accuracy of inference required. Figs. 7
and 8 show two time snapshots of the filter output, i.e.,
estimates of !tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞt ; !ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as
there are so many particles covering important regions.
As a dashed line we plot a kernel density estimate ob-
tained from the weighted sample, using a Gaussian kernel
having fixed width of 0.5. Notice that the filter is easily
able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).
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able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).
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benchmarking numerical filtering techniques [1]–[3]. The
state-space equations are as follows:

xt ¼
xt"1

2
þ 25

xt"1

1þ x2t"1

þ 8 cosð1:2tÞ þ ut;

yt ¼
x2t
20

þ vt

where ut & N ð0;!2
uÞ and vt & N ð0;!2v Þ and here !2

u ¼ 10
and !2v ¼1 are considered fixed and known; N ð";!2Þ
denotes the normal distribution with mean " and variance
!2. The initial state distribution is x0 & N ð0; 10Þ. The
representation in terms of densities fðxtjxt"1Þ and gð ytjxtÞ is
given by

fðxtjxt"1Þ¼N xt
xt"1

2
þ 25

xt"1

1þ x 2t"1

þ 8 cosð1:2tÞ;!2
u

!!!!

" #

gð ytjxtÞ¼N yt
x2t
20

;!2
v

!!!!

" #
:

The form of these densities was straightforward to obtain in
this case. For more complex cases a Jacobian term might be
required when either xt or yt is a nonlinear function of ut or
vt, respectively. Note that we usually consider only
probability density functions pðxÞ but in some specific
cases, we will use the notation pðdxÞ to refer to the
associated probability measure.

A dynamical model of this sort may easily be simulated
owing to the Markovian assumptions on xt and yt, which
imply that the joint probability density of states and obser-
vations, denoted #0:T;0:Tðx0:T; y0:TÞ, may be factorized as

#0:T;0:Tðx0:T; y0:TÞ ¼ #0ðx0Þgð y0jx0Þ

'
YT

t¼1

fðxtjxt"1Þgð ytjxtÞ:

A graphical representation of the dependencies between
different states and observations is shown in Fig. 1.

In this model, states and data may be sampled one by
one by successively drawing random samples from the
transition and the observation densities as indicated in

Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model
Initialization: sample ~x0 & #0ðx0Þ, ~y0 & gð y0j~x0Þ.
for t ¼ 1; . . . ; T do

Sample ~xt & fðxtj~xt"1Þ.
Sample ~yt & gð ytj~xtÞ.

end for
ð~x0; . . . ; ~xT; ~y0; . . . ; ~yTÞ is a random draw from
#0:T;0:Tðx0:T; y0:TÞ.

The ability to simulate random states and to evaluate
the transition and observation densities (at least up to an
unknown normalizing constant) will be the chief compo-
nents of the particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic
system above involves computing the posterior distribution
of a collection of state variables xs:s0 ¼

def ðxs; . . . ; xs0Þ condi-
tioned on a batch of observations, y0:t ¼ ð y0; . . . ; ytÞ, which
we denote #s:s0 j0:tðxs:s0 jy0:tÞ. Specific problems include
filtering, for s ¼ s0 ¼ t, fixed lag smoothing, when
s ¼ s0 ¼ t" L and fixed interval smoothing, if s ¼ 0 and
s0 ¼ t. Despite the apparent simplicity of the above prob-
lem, the posterior distribution can be computed in closed
form only in very specific cases, principally, the linear
Gaussian model (where the functions aðÞ and bðÞ are linear
and ut and vt are Gaussian) and the discrete hidden Markov
model (where xt takes its values in a finite alphabet). In the
vast majority of cases, nonlinearity or non-Gaussianity
render an analytic solution intractable [4]–[7].

The classical inference methods for nonlinear dynamic
systems are the extended Kalman filter (EKF) and its
variants, which are based on linearization of the state and
measurement equations along the trajectories [8]. The
EKF has been successfully applied to many nonlinear
filtering problems. However, the EKF is known to fail if
the system exhibits substantial nonlinearity and/or if the
state and the measurement noise are significantly non-
Gaussian.

Many algorithms have been developed to correct poor
performance in the EKF algorithm. One of the earliest
approaches was to approximate the posterior distribution
by expansion in a prespecified function basis. For example,
the Gaussian sum filter [9] approximates the posterior
density by a mixture of Gaussians (see [10] for an in-depth
discussion and some generalizations).

More recently, several algorithms have been proposed
that attempt to choose a set of deterministic points to

Fig. 1. Graphical model illustrating the Markovian dependencies

between states and observations.
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Monte Carlo Estimation 

•  Procedure only tractable for a limited class of models: 
Ø Discrete states:  Sum-product belief propagation algorithm 
Ø Gaussian continuous states:  Kalman smoothing algorithm 

•  Can efficiently draw joint samples from posterior marginals: 
Ø  Forward Message Passing: 
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Standard Importance Sampling 

E[f ] =
Z

f(x)p(x | y) dx ⇡ 1

L

LX

`=1

f(x(`)) x

(`) ⇠ p(x | y)

•  Suppose interested in some complex, global function of state: 

•  Could use Markov structure to construct efficient proposal: 

q(x | y) = q(x0)
TY

t=1

q(xt | xt�1, yt)

q(xt | xt�1, yt) ⇡ p(xt | xt�1, y)
Small local errors give large global estimator variance 



Sequential Monte Carlo 
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by the graph of Fig. 2.7, the joint distribution factors as

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (3.1)

In this section, we suppose that the hidden states take values in some continuous space
xt ∈ Xt, and develop computational methods which tractably approximate their poste-
rior distribution.

In Markov chains and other tree–structured graphs, the belief propagation (BP)
algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
recursion:

mt,t+1(xt+1) ∝
∫

Xt

p(xt+1 | xt) p(yt | xt)mt−1,t(xt) dxt (3.2)

For such HMMs, these BP messages have an interesting probabilistic interpretation. In
particular, the outgoing message from the starting timepoint equals

m0,1(x1) ∝
∫

X0

p(x1 | x0) p(x0) p(y0 | x0) dx0 ∝ p(x1 | y0) (3.3)

Letting yt = {y0, y1, . . . , yt} denote those observations seen up to time t, a simple
induction argument then shows that

mt−1,t(xt) ∝ p
(
xt | yt−1

)
(3.4)

mt−1,t(xt) p(yt | xt) ∝ p(xt | yt) (3.5)

Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:

mt−1,t(xt) ≈
L∑

!=1

w(!)
t−1,tδ(xt, x

(!)
t )

L∑

!=1

w(!)
t−1,t = 1 (3.6)
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Particle-Based Density Estimates 

where hð"Þ is some useful function for estimation, for
example the mean value is obtained with hðxÞ ¼ x. In cases
where this cannot be achieved analytically, the approxi-
mation problem can be tackled indirectly by generating
random samples from p, denote these fxðiÞg1%i%N, and
approximating the distribution p by point masses so that

!h & 1

N

XN

i¼1

h xðiÞ
! "

:

See Figs. 2 and 3 for a graphical example where a complex
non-Gaussian density function is represented using Monte
Carlo samples. Clearly N needs to be large in order to give
a good coverage of all regions of interest.

More generally, when we cannot sample directly from
the distribution p, we can sample from another distribu-
tion q (the importance distribution, or instrumental distri-
bution) having a support larger than p. So we make N
random draws xðiÞ, i ¼ 1; . . . ;N from q instead of p. Now
we have to make a correction to ensure that the obtained
estimate is an unbiased estimator of !h. This correction
involves assigning a positive weight to each of the random
points. It turns out that the required value of the weights is
proportional to the ratio r ¼def p=q evaluated at the random
points; the function r is termed the importance function.
The expectation !h can thus be estimated using a weighted
average

!h ¼
Z

hðxÞ qðxÞpðxÞ
qðxÞ dx

¼
Z

hðxÞrðxÞqðxÞdx &
XN

i¼1

~!ðiÞ
PN

j¼1 ~!
ð jÞ

h xðiÞ
! "

(3)

where ~!ðiÞ ¼def rðxðiÞÞ ¼ pðxðiÞÞ=qðxðiÞÞ is termed the unnor-
malized importance weight.

Remark 1: In many situations, the target distribution p
or the importance distribution q are known only up to a
normalizing factor (this is particularly true when applying
importance sampling ideas to state-space models and,
more generally, in Bayesian statistical inference; see
below). The importance function r ¼ p=q is then known
only up to a (constant) scaling factor. In (3), the weights
are renormalized to sum to unity and hence the estimator
of !h does not require knowledge of the actual normalizing
factor. Theoretical issues relating to this renormalization
are discussed in [28].

Although importance sampling is primarily intended to
overcome difficulties with direct sampling from p when
approximating expectations under p, it can also be used for
sampling from the distribution p. The latter can be
achieved by the sampling importance resampling (or SIR)
method originally introduced by [16] and [29]. Sampling
importance resampling is a two-stage procedure in which
importance sampling is followed by an additional random
sampling step, as discussed below. In the first stage, an
i.i.d. sample ð~xð1Þ; . . . ; ~xðMÞÞ is drawn from the importance
distribution q, and one computes the normalized version of
the importance weights

!ðiÞ ¼def
~!ðiÞ

PM
i¼1 ~!

ðiÞ
; i ¼ 1; . . . ;M: (4)

In the resampling stage, a sample of size N denoted by
xð1Þ; . . . ; xðNÞ is drawn from the intermediate set of points

Fig. 2. 2-D probability density function.

Fig. 3. 2-D probability density functionVrepresentation by random

points, or ‘‘particles.’’
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Particle-Based Posterior State Estimates: 
•  Approximate density by set of  

(possibly weighted) samples 
•  Dynamically move samples to the  

most probable parts of space 
•  Do this in a way which minimizes bias 
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Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
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typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:
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by the graph of Fig. 2.7, the joint distribution factors as
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In this section, we suppose that the hidden states take values in some continuous space
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rior distribution.
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algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
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Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(!)
t ,

and corresponding weights w(!)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(!)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

!=1

w(!)
t−1,t p(yt | x(!)

t ) δ(xt, x
(!)
t ) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

!=1

w(!)
t δ(xt, x

(!)
t ) w(!)

t "
w(!)

t−1,t p(yt | x(!)
t )

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t )

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).
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Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

!=1

w(!)
t,t+1δ(xt+1, x

(!)
t+1)

x(!)
t+1 ∼ p(xt+1 | x(!)

t )

w(!)
t,t+1 = w(!)

t

(3.9)

Given that x(!)
t+1 is sampled from the prior, these weights w(!)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(!)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

!=1

(
w(!)

)2
)−1

(3.10)

For uniform weights w(!) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(!)
t are resampled, and then propagated to subsequent timesteps:

x̃(!)
t ∼ qt(xt)

x(!)
t+1 ∼ p(xt+1 | x̃(!)

t )
" = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(!)
t,t+1 = 1/L.

Because new samples x̃(!)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.
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Justify as importance estimate of joint distribution 

Assumption for now:  Can simulate temporal dynamics 
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operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(!)
t are resampled, and then propagated to subsequent timesteps:

x̃(!)
t ∼ qt(xt)
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After such resampling, outgoing message particles are equally weighted as w(!)
t,t+1 = 1/L.

Because new samples x̃(!)
t are drawn with replacement, they typically repeat those x(m)
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with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

Resampling with replacement preserves expectations, 
but increases the variance of subsequent estimators 
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Given that x(!)
t+1 is sampled from the prior, these weights w(!)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(!)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[ distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
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‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights
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t ¼
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Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(!)
t ,

and corresponding weights w(!)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(!)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

!=1

w(!)
t−1,t p(yt | x(!)

t ) δ(xt, x
(!)
t ) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

!=1

w(!)
t δ(xt, x

(!)
t ) w(!)

t "
w(!)

t−1,t p(yt | x(!)
t )

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t )

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

!=1

w(!)
t,t+1δ(xt+1, x

(!)
t+1)

x(!)
t+1 ∼ p(xt+1 | x(!)

t )

w(!)
t,t+1 = w(!)

t

(3.9)

Given that x(!)
t+1 is sampled from the prior, these weights w(!)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(!)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

!=1

(
w(!)

)2
)−1

(3.10)

For uniform weights w(!) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(!)
t are resampled, and then propagated to subsequent timesteps:

x̃(!)
t ∼ qt(xt)

x(!)
t+1 ∼ p(xt+1 | x̃(!)

t )
" = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(!)
t,t+1 = 1/L.

Because new samples x̃(!)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

Resampling with replacement preserves expectations, 
but increases the variance of subsequent estimators 
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[ distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼
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q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z
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As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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Given that x(!)
t+1 is sampled from the prior, these weights w(!)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(!)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).
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By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:
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For uniform weights w(!) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles
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t are resampled, and then propagated to subsequent timesteps:

x̃(!)
t ∼ qt(xt)

x(!)
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After such resampling, outgoing message particles are equally weighted as w(!)
t,t+1 = 1/L.

Because new samples x̃(!)
t are drawn with replacement, they typically repeat those x(m)
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with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

1  Le↵  L
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Bootstrap Filters 
Particle filters where temporal dynamics used to propagate samples. 

In the original version of the algorithm resampling is
carried out at each and every time step, in which case the
term !ðiÞ

t#1 ¼ 1=N is a constant, which may thus be ignored.
In more sophisticated schemes, resampling is only carried
out when the distribution of the importance weights
becomes degenerate, which can be measured by monitor-
ing the changes of the coefficient of variation or the
entropy of the weight pattern over time [22], [23], [36].

A distinctive feature of the bootstrap filter is that the
incremental weight does not depend on the past trajectory
of the particles but only on the likelihood of the
observation, gð ytjxtÞ. The use of the prior kernel is popular
because sampling is often straightforward, and computing
the incremental weight simply amounts to evaluating the
conditional likelihood of the new observation given the
updated particle position.

A diagrammatic representation of the bootstrap filter in
operation is given in Fig. 5, in which the resampling
(selection) step is seen to concentrate particles (asterisks)
into the two high probability modes of the density function.

D. How to Build Better Proposals
Despite its appealing properties, the use of the state

transition density f as importance distribution can often
lead to poor performance, which is manifested in a lack of
robustness with respect to the values taken by the observed
sequence, for example when outliers occur in the data (the
observation is not informative) or on the contrary when
the variance of the observation noise is small (the obser-
vation is very informative). This results from a mismatch
between the prior predictive distribution and the posterior
distribution of the state conditioned on the new measure-
ment. In order to reduce this mismatch a natural option is
to propose the new particle position under the following
distribution:

qtðxtjxt#1; ytÞ ¼
fðxtjxt#1Þgð ytjxtÞR
fðxjxt#1Þgð ytjxÞdx

(11)

which may be recognized as the conditional distribution of
the hidden state xt given xt#1 and the current observation
yt. The normalization constant can be seen to equal the
predictive distribution of yt conditional on xt#1, i.e.,
pð ytjxt#1Þ. Below, we will refer to this kernel as the optimal
kernel, following the terminology found in the sequential
importance sampling literature. This terminology dates
back probably to [37] and [38] and is largely adopted by
authors such as [18], [20], [23], [26], and [39]. The optimal
property of this kernel is that the conditional variance of
the weights is zero, given the past history of the particles

!ðiÞ
t / !ðiÞ

t#1pð ytjxt#1Þ ¼ !ðiÞ
t#1

Z
f xjxðiÞt#1

! "
gð ytjxÞdx: (12)

Fig. 5. The bootstrap filter in operation from time t to tþ 1,

nonlinear time series Example 1. Asterisks show the positions of

(a small selection of) the particles at each stage. The solid line

shows a kernel density estimate of the distributions

represented at each stage. Ten thousand particles were

used in total. Notice that resampling concentrates

particles into the region of high probability.
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General Sequential Monte Carlo 
benchmarking numerical filtering techniques [1]–[3]. The
state-space equations are as follows:

xt ¼
xt"1

2
þ 25

xt"1

1þ x2t"1

þ 8 cosð1:2tÞ þ ut;

yt ¼
x2t
20

þ vt

where ut & N ð0;!2
uÞ and vt & N ð0;!2v Þ and here !2

u ¼ 10
and !2v ¼1 are considered fixed and known; N ð";!2Þ
denotes the normal distribution with mean " and variance
!2. The initial state distribution is x0 & N ð0; 10Þ. The
representation in terms of densities fðxtjxt"1Þ and gð ytjxtÞ is
given by

fðxtjxt"1Þ¼N xt
xt"1

2
þ 25

xt"1

1þ x 2t"1

þ 8 cosð1:2tÞ;!2
u

!!!!

" #

gð ytjxtÞ¼N yt
x2t
20

;!2
v

!!!!

" #
:

The form of these densities was straightforward to obtain in
this case. For more complex cases a Jacobian term might be
required when either xt or yt is a nonlinear function of ut or
vt, respectively. Note that we usually consider only
probability density functions pðxÞ but in some specific
cases, we will use the notation pðdxÞ to refer to the
associated probability measure.

A dynamical model of this sort may easily be simulated
owing to the Markovian assumptions on xt and yt, which
imply that the joint probability density of states and obser-
vations, denoted #0:T;0:Tðx0:T; y0:TÞ, may be factorized as

#0:T;0:Tðx0:T; y0:TÞ ¼ #0ðx0Þgð y0jx0Þ

'
YT

t¼1

fðxtjxt"1Þgð ytjxtÞ:

A graphical representation of the dependencies between
different states and observations is shown in Fig. 1.

In this model, states and data may be sampled one by
one by successively drawing random samples from the
transition and the observation densities as indicated in

Algorithm 1 below.

Algorithm 1 Generating from a State-Space Model
Initialization: sample ~x0 & #0ðx0Þ, ~y0 & gð y0j~x0Þ.
for t ¼ 1; . . . ; T do

Sample ~xt & fðxtj~xt"1Þ.
Sample ~yt & gð ytj~xtÞ.

end for
ð~x0; . . . ; ~xT; ~y0; . . . ; ~yTÞ is a random draw from
#0:T;0:Tðx0:T; y0:TÞ.

The ability to simulate random states and to evaluate
the transition and observation densities (at least up to an
unknown normalizing constant) will be the chief compo-
nents of the particle filtering algorithms described later.

Statistical inference for the general nonlinear dynamic
system above involves computing the posterior distribution
of a collection of state variables xs:s0 ¼

def ðxs; . . . ; xs0Þ condi-
tioned on a batch of observations, y0:t ¼ ð y0; . . . ; ytÞ, which
we denote #s:s0 j0:tðxs:s0 jy0:tÞ. Specific problems include
filtering, for s ¼ s0 ¼ t, fixed lag smoothing, when
s ¼ s0 ¼ t" L and fixed interval smoothing, if s ¼ 0 and
s0 ¼ t. Despite the apparent simplicity of the above prob-
lem, the posterior distribution can be computed in closed
form only in very specific cases, principally, the linear
Gaussian model (where the functions aðÞ and bðÞ are linear
and ut and vt are Gaussian) and the discrete hidden Markov
model (where xt takes its values in a finite alphabet). In the
vast majority of cases, nonlinearity or non-Gaussianity
render an analytic solution intractable [4]–[7].

The classical inference methods for nonlinear dynamic
systems are the extended Kalman filter (EKF) and its
variants, which are based on linearization of the state and
measurement equations along the trajectories [8]. The
EKF has been successfully applied to many nonlinear
filtering problems. However, the EKF is known to fail if
the system exhibits substantial nonlinearity and/or if the
state and the measurement noise are significantly non-
Gaussian.

Many algorithms have been developed to correct poor
performance in the EKF algorithm. One of the earliest
approaches was to approximate the posterior distribution
by expansion in a prespecified function basis. For example,
the Gaussian sum filter [9] approximates the posterior
density by a mixture of Gaussians (see [10] for an in-depth
discussion and some generalizations).

More recently, several algorithms have been proposed
that attempt to choose a set of deterministic points to

Fig. 1. Graphical model illustrating the Markovian dependencies

between states and observations.
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[ distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
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•  Exploit temporal structure to propose sequences recursively: 

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[ distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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•  Sequential importance sampling without resampling: 

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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General Sequential Monte Carlo 

•  Exploit temporal structure to propose sequences recursively: 

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[ distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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•  Sequential importance sampling without resampling: 

to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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to the normalized weight, so that !ðiÞ
t ¼ ~!ðiÞ

t =
PN

j¼1 ~!
ðjÞ
t . We

may also sample (approximately) from the posterior
distribution !0:tj0:t by drawing N particle paths fxðiÞ0:tg1$i$N

from the collection f~xðiÞ0:tg1$i$N according to the importance
weights f!ðiÞ

t g1$i$N.
The trick behind the sequential importance sampling

procedure is to choose the importance distribution in a
clever way so that all these steps can be carried out
sequentially. To achieve this we construct the proposal
such that it factorizes in a form similar to that of the target
posterior distribution

q0:tðx0:tjy0:tÞ ¼ q0:t%1ðx0:t%1jy0:t%1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{

Keep existing path

qtðxtjxt%1; ytÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

extend path

: (9)

The unnormalized importance weights then take the fol-
lowing appealing form:

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
" #

q0:t ~xðiÞ0:tjy0:t
" #

/!ðiÞ
t%1 &

f ~xðiÞt j~xðiÞt%1

" #
g ytj~xðiÞt
" #

qt ~xðiÞt j~xðiÞt%1; yt
" #

‘tj0:t%1ð ytjy0:t%1Þ
(10)

where the symbol / is used to denote proportionality,
up to a normalization constant (which does not matter
here due to the use of the self-normalized form of
importance sampling). This multiplicative decomposition
implies that the importance weights may be computed
recursively in time as successive observations become
available, and without having to modify past paths, prior
to time t. In the sequential Monte Carlo literature, the
multiplicative update factor on the right-hand side of
(10) is often called the incremental weight. Note that the
scaling factor ‘tj0:t%1ð ytjy0:t%1Þ, which would in general
cases be difficult to evaluate, does not depend on the
state sequence, and hence need not in fact be computed,
since the weights will subsequently be renormalized as
in (8).

An important feature of the basic sequential impor-
tance sampling method, as originally proposed in [14] and
[15], is that the N trajectories ~xð1Þ0:t ; . . . ; ~x

ðNÞ
0:t are indepen-

dent and identically distributed. Following the terminol-
ogy in use in the nonlinear filtering community, we shall
refer to the sample at time index t, ~xð1Þt ; . . . ; ~xðNÞt , as the
population (or system) of particles and to ~xðiÞ0:t for a specific
value of the particle index i as the history (or trajectory, or
path) of the ith particle. The sequential importance
sampling method is summarized in Algorithm 2.

Algorithm 2 Sequential Importance Sampling (SIS)

for i ¼ 1; . . . ;N do . Initialization
Sample ~xðiÞ0 ' q0ðx0jy0Þ.
Assign initial importance weights

~!ðiÞ
0 ¼

g y0j~xðiÞ0
" #

!0 ~xðiÞ0

" #

q0 ~xðiÞ0 jy0
" # :

end for
for t ¼ 1; . . . ; T do

for i ¼ 1; . . . ;N do
Propagate particles

~xðiÞt ' qt ~xðiÞt j~xðiÞt%1; yt
" #

:

Compute weight

~!ðiÞ
t ¼ !ðiÞ

t%1

g ytj~xðiÞt
" #

f ~xðiÞt j~xðiÞt%1

" #

qt ~xðiÞt j~xðiÞt%1; yt
" # :

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ðjÞ
t ; i ¼ 1; . . . ;N:

Compute filtering estimate

!ht ¼
XN

i¼1

!ðiÞ
t ht ~xðiÞt
" #

end for

Despite quite successful results for short data records,
it turns out that the sequential importance sampling
approach discussed so far is bound to fail in the long run.
In particular, the weights will become highly degenerate
after a few time steps, in the sense that a small proportion
of them contain nearly all of the probability mass, and
hence most particles contribute nothing significant to the
expectation estimates; see for example [35]. The reason for
this is that we are effectively sampling from a very high
dimensional state-space, i.e., the entire path history of
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•  Resampling happens at the end of one of the updates below, 
after importance reweighting but before propagation: 
Ø Mean is unchanged, does not introduce extra bias 
Ø Variance for estimates up to that time strictly increases 
Ø But, equalizing weights improves subsequent steps 

•  Fancier proposals try to approximate 

In the original version of the algorithm resampling is
carried out at each and every time step, in which case the
term !ðiÞ

t#1 ¼ 1=N is a constant, which may thus be ignored.
In more sophisticated schemes, resampling is only carried
out when the distribution of the importance weights
becomes degenerate, which can be measured by monitor-
ing the changes of the coefficient of variation or the
entropy of the weight pattern over time [22], [23], [36].

A distinctive feature of the bootstrap filter is that the
incremental weight does not depend on the past trajectory
of the particles but only on the likelihood of the
observation, gð ytjxtÞ. The use of the prior kernel is popular
because sampling is often straightforward, and computing
the incremental weight simply amounts to evaluating the
conditional likelihood of the new observation given the
updated particle position.

A diagrammatic representation of the bootstrap filter in
operation is given in Fig. 5, in which the resampling
(selection) step is seen to concentrate particles (asterisks)
into the two high probability modes of the density function.

D. How to Build Better Proposals
Despite its appealing properties, the use of the state

transition density f as importance distribution can often
lead to poor performance, which is manifested in a lack of
robustness with respect to the values taken by the observed
sequence, for example when outliers occur in the data (the
observation is not informative) or on the contrary when
the variance of the observation noise is small (the obser-
vation is very informative). This results from a mismatch
between the prior predictive distribution and the posterior
distribution of the state conditioned on the new measure-
ment. In order to reduce this mismatch a natural option is
to propose the new particle position under the following
distribution:

qtðxtjxt#1; ytÞ ¼
fðxtjxt#1Þgð ytjxtÞR
fðxjxt#1Þgð ytjxÞdx

(11)

which may be recognized as the conditional distribution of
the hidden state xt given xt#1 and the current observation
yt. The normalization constant can be seen to equal the
predictive distribution of yt conditional on xt#1, i.e.,
pð ytjxt#1Þ. Below, we will refer to this kernel as the optimal
kernel, following the terminology found in the sequential
importance sampling literature. This terminology dates
back probably to [37] and [38] and is largely adopted by
authors such as [18], [20], [23], [26], and [39]. The optimal
property of this kernel is that the conditional variance of
the weights is zero, given the past history of the particles

!ðiÞ
t / !ðiÞ

t#1pð ytjxt#1Þ ¼ !ðiÞ
t#1

Z
f xjxðiÞt#1

! "
gð ytjxÞdx: (12)

Fig. 5. The bootstrap filter in operation from time t to tþ 1,

nonlinear time series Example 1. Asterisks show the positions of

(a small selection of) the particles at each stage. The solid line

shows a kernel density estimate of the distributions

represented at each stage. Ten thousand particles were

used in total. Notice that resampling concentrates

particles into the region of high probability.
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Resampling:  The Good 

•  What is the probability that a state sequence, sampled from 
the prior model, is consistent with all observations? 

•  Marginal estimates degenerate on single, mediocre sample 

end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series
model. This is presented purely as an example of the type
of results obtainable and their interpretation: others have
provided extensive simulation studies in this type of
model. A single data set is generated from the model, see
Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and
resampling occurs at every time stepVthis is then the
bootstrap version of the particle filter. The number of
particles used is fixed over time to N ¼ 10 000, a large
number that may be reduced substantially in practice,
depending on the accuracy of inference required. Figs. 7
and 8 show two time snapshots of the filter output, i.e.,
estimates of !tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞt ; !ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as
there are so many particles covering important regions.
As a dashed line we plot a kernel density estimate ob-
tained from the weighted sample, using a Gaussian kernel
having fixed width of 0.5. Notice that the filter is easily
able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).
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end for
Normalize weights

!ðiÞ
t ¼ ~!ðiÞ

t =
XN

j¼1

~!ð jÞ
t ; i ¼ 1; . . . ;N:

end for

F. Simulation Example
We now provide brief simulation results for the

particle filter, using Example 1, the nonlinear time series
model. This is presented purely as an example of the type
of results obtainable and their interpretation: others have
provided extensive simulation studies in this type of
model. A single data set is generated from the model, see
Fig. 6. The full particle filter (see Algorithm 3) is run on
this data. The prior importance function f is used, and
resampling occurs at every time stepVthis is then the
bootstrap version of the particle filter. The number of
particles used is fixed over time to N ¼ 10 000, a large
number that may be reduced substantially in practice,
depending on the accuracy of inference required. Figs. 7
and 8 show two time snapshots of the filter output, i.e.,
estimates of !tj0:t. In these we plot the particle weights
(unnormalized) against raw particle values as small dots,

i.e we plot the set of f~xðiÞt ; !ðiÞ
t g pointsVnote that the dots

merge almost into a continuous line in some places as
there are so many particles covering important regions.
As a dashed line we plot a kernel density estimate ob-
tained from the weighted sample, using a Gaussian kernel
having fixed width of 0.5. Notice that the filter is easily
able to track multimodality in the distributions over time.

Notice also that the highest weighted particles are not
necessarily the most probable state estimates: the kernel
density estimator places the maximum of the filtering
density wherever the weights and the local density of
particles combine to give the highest probability density.
This is an elementary point which is often overlooked by
practitioners starting in the field. Finally, to give the
whole picture, the kernel density estimates over time are
compiled into an intensity image to show the evolution
with time of the densities, see Fig. 9. As a comparison we
have run the SIS algorithm, i.e., with no resampling

Fig. 6. Data set drawn from the nonlinear time series model

of Example 1.

Fig. 7. Particle filter output, t ¼ 40. Weighted samples f~xðiÞ40; !
ðiÞ
40g

(shown as small dotsValmost continuous line) and

kernel density estimate (dashed).

Fig. 8. Particle filter output, t ¼ 50. Weighted samples f~xðiÞ50; !
ðiÞ
50g

(shown as small dotsValmost continuous line)

and kernel density estimate (dashed).
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incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).
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Full Particle Filter KDEs 

incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).
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Resampling: The Bad 

These formulae then form the basis of a sequence-based
smoother using the weighted sample generated in the
forward pass of the SMC procedure, see [66], and also [32]
and [67].

Assume initially that Monte Carlo filtering has already
been performed on the entire dataset, leading to an
approximate representation of the filtering distribution
!tj0:tðxtjy0:tÞ for each time step t 2 f0; . . . ; Tg, consisting
of weighted particles fðxðiÞt ; !ðiÞ

t Þgi¼1;...;N .
Using this weighted sample representation, it is

straightforward to construct a particle approximation to
pðxtjxtþ1; y0:TÞ from (27) as follows:

pðdxtjxtþ1; y0:TÞ %
XN

i¼1

"ðiÞt ðxtþ1Þ#xðiÞt ðdxtÞ (28)

where the modified weights are defined as

"ðiÞt ðxtþ1Þ ¼
def

!ðiÞ
t f xtþ1jxðiÞt
! "

PN
j¼1 !

ð jÞ
t f xtþ1jxð jÞt

! " : (29)

This revised particle-based distribution can now be used
to generate states successively in the reverse-time
direction, conditioning upon future states, using the
sampling importance resampling idea. Specifically, given
a random sample extþ1:T drawn approximately from
!tþ1:Tj0:T , take one step back in time and sample ext from

the particle approximation (28) to pðdxtjextþ1; y0:TÞ. The
pair ðext;extþ1:TÞ is then approximately a random realization
from !t:Tj0:T . Repeating this process sequentially back over
time produces the general particle smoother outlined in
Algorithm 5.

Algorithm 5 Particle Smoother

for t ¼ 0 to T do . Forward Pass Filter
Run Particle filter, storing at each time step the particles
and weights fxðiÞt ; !ðiÞ

t g1&i&N.
end for
Choose exT ¼ xðiÞT with probability !ðiÞ

t .
for t ¼ T ' 1 to 0 do . Backward Pass Smoother

Calculate "ðiÞt / !ðiÞ
t fðextþ1jxðiÞt Þ, for i ¼ 1; . . . ;N; and

normalize the modified weights.
Choose ext ¼ xðiÞt with probability "ðiÞt .

end for

Further independent realizations are obtained by
repeating this procedure as many times as required. The
computational complexity for each random realization is
OðNTÞ, so the procedure is quite expensive if many
realizations are required. Developments to these basic
techniques that consider the Rao–Blackwellized setting
can be found in [68], see Section II-G.

To illustrate this smoothing technique, consider the
nonlinear time series model of Example 1. Smoothing is
carried out using the above particle smoother, applying
10 000 repeated draws from the smoothing density. A
simple bootstrap particle filter was run through the data
initially, itself with 10 000 particles, and the weighted
particles fðxðiÞt ; !ðiÞ

t Þg1&i&N were stored at each time step,
exactly as in the simulations for this model presented in
the section on particle filtering. Smoothing then follows
exactly as in the above algorithm statement. A small
random selection of the smoothed trajectories drawn from
!0:100j0:100ðx0:100jy0:100Þ is shown in Fig. 12. Note some
clear evidence of multimodality in the smoothing distri-
bution can be seen, as shown by the separated paths of
the process around t ¼ 46 and t ¼ 82. We can also show
the posterior distribution via grey-scale histograms of the
particles, see Fig. 13. Finally, see Figs. 14 and 15 for
visualization of an estimated bivariate marginal,
!3:4j0:100ðx3:4jy0:100Þ, using 2-D scatter plots and kernel
density estimates, again showing evidence of multimodality
and strong non-Gaussianity that will not be well captured
by more standard methods.

This algorithm is quite generic in that it allows joint
random draws from arbitrary groupings of state variables
over time. See also [67] for related methods that generate
smoothed sample paths by rejection sampling ideas.
Sometimes, however, one is specifically interested in the
marginal smoothing distributions, i.e., !tj0:T for some
t G T. There are several specialized methods available for

Fig. 11. Typical plot of the particle trajectories after a few

time steps; the width of the lines is proportional to the number of

current particles which share a particular ancestor path.
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•  After each resampling step, some particles are discarded, 
and can never be restored in subsequent stages. 

•  Estimates of smoothed marginals/sequences typically poor 


