Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 11:
Inference & Learning Overview,
Gaussian Graphical Models

Some figures courtesy Michael Jordan’s draft textbook,
An Introduction to Probabilistic Graphical Models
Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation
- Directed: Sequential, causal structure for generative process
- Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables
- Standardize: Convert directed to equivalent undirected form
- Sum-product BP: Exact for any tree-structured graph
- Junction tree: Convert loopy graph to consistent clique tree
Undirected Inference Algorithms

One Marginal

- **Tree**: Elimination applied recursively to leaves of tree

All Marginals

- **Graph**: Elimination algorithm
- **Tree**: Belief propagation or sum-product algorithm

Junction Tree

- **Algorithm**: Junction tree algorithm: belief propagation on a junction tree

Properties of Junction Tree

- **Consistency**: Clique nodes corresponding to any variable from the original model form a connected subtree
- **Construction**: Triangulations and elimination orderings

A junction tree is a clique tree with special properties:

- **Consistency**: Clique nodes corresponding to any variable from the original model form a connected subtree
- **Construction**: Triangulations and elimination orderings
Graphical Models, Inference, Learning

Graphical Model: A factorized probability representation
• Directed: Sequential, causal structure for generative process
• Undirected: Associate features with edges, cliques, or factors

Inference: Given model, find marginals of hidden variables
• Standardize: Convert directed to equivalent undirected form
• Sum-product BP: Exact for any tree-structured graph
• Junction tree: Convert loopy graph to consistent clique tree

Learning: Given a set of complete observations of all variables
• Directed: Decomposes to independent learning problems: Predict the distribution of each child given its parents
• Undirected: Global normalization globally couples parameters: Gradients computable by inferring clique/factor marginals

Learning: Given a set of partial observations of some variables
• E-Step: Infer marginal distributions of hidden variables
• M-Step: Optimize parameters to match E-step and data stats
Learning for Undirected Models

- Undirected graph encodes dependencies within a single training example:
 \[p(\mathcal{D} \mid \theta) = \prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_f(x_{f,n} \mid \theta_f) \quad \mathcal{D} = \{x_{\mathcal{V},1}, \ldots, x_{\mathcal{V},N}\} \]

- Given N independent, identically distributed, completely observed samples:
 \[
 \log p(\mathcal{D} \mid \theta) = \left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) \right] - NA(\theta)
 \]

 \[p(x \mid \theta) = \exp \left\{ \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_f) - A(\theta) \right\} \]

 \[\psi_f(x_f \mid \theta_f) = \exp\{\theta_f^T \phi_f(x_f)\} \quad A(\theta) = \log Z(\theta) \]
Learning for Undirected Models

• Undirected graph encodes dependencies within a single training example:

\[p(D \mid \theta) = \prod_{n=1}^{N} \frac{1}{Z(\theta)} \prod_{f \in \mathcal{F}} \psi_f(x_{f,n} \mid \theta_f) \quad D = \{x_{\mathcal{V},1}, \ldots, x_{\mathcal{V},N}\} \]

• Given N independent, identically distributed, completely observed samples:

\[
\log p(D \mid \theta) = \sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) - N A(\theta)
\]

• Take gradient with respect to parameters for a single factor:

\[
\nabla_{\theta_f} \log p(D \mid \theta) = \left[\sum_{n=1}^{N} \phi_f(x_{f,n}) \right] - N \mathbb{E}_{\theta}[\phi_f(x_f)]
\]

• Must be able to compute marginal distributions for factors in current model:
 - Tractable for tree-structured factor graphs via sum-product
 - For general graphs, use the junction tree algorithm to compute
Undirected Optimization Strategies

\[
\log p(D \mid \theta) = \left[\sum_{n=1}^{N} \sum_{f \in \mathcal{F}} \theta_f^T \phi_f(x_{f,n}) \right] - NA(\theta)
\]

\[
\nabla_{\theta_f} \log p(D \mid \theta) = \left[\sum_{n=1}^{N} \phi_f(x_{f,n}) \right] - N \mathbb{E}_\theta[\phi_f(x_f)]
\]

Gradient Ascent: Quasi-Newton methods like PCG, L-BGFS, ...
- Gradients: Difference between statistics of observed data, and inferred statistics for the model at the current iteration
- Objective: Explicitly compute log-normalization (variant of BP)

Coordinate Ascent: Maximize objective with respect to the parameters of a single factor, keeping all other factors fixed
- Simple closed form depending on ratio between factor marginal for current model, and empirical marginal from data
- *Iterative proportional fitting* (IPF) and *generalized iterative scaling* algorithms

\[
\psi_f^{(t+1)}(x_f) = \psi_f^{(t)}(x_f) \frac{\tilde{p}(x_f)}{p_f^{(t)}(x_f)}
\]
Advanced Topics on the Horizon

Graph Structure Learning

\[\psi_f(x_f \mid \theta_f) = \exp\{\theta_f^T \phi_f(x_f)\} \]

- Setting factor parameters to zero implicitly removes from model
- **Feature selection**: Search-based, sparsity-inducing priors, …
- **Topologies**: Tree-structured, directed, bounded treewidth, …

Approximate Inference: What if junction tree is intractable?

- Simulation-based (Monte Carlo) approximations
- Optimization-based (variational) approximations
- Inner loop of algorithms for approximate learning…

Alternative Objectives

- Max-Product: Global MAP configuration of hidden variables
- Discriminative learning: CRF, max-margin Markov network,…

Inference with Continuous Variables

- **Gaussian**: Closed form mean and covariance recursions
- **Non-Gaussian**: Variational and Monte Carlo approximations…
Pairwise Markov Random Fields

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph
- Any jointly Gaussian distribution can be represented by only pairwise potentials

\[\mathcal{E} \rightarrow \text{set of undirected edges } (s,t) \text{ linking pairs of nodes} \]
\[\mathcal{V} \rightarrow \text{set of } N \text{ nodes or vertices, } \{1, 2, \ldots, N\} \]
\[Z \rightarrow \text{normalization constant (partition function)} \]
Inference in Undirected Trees

• For a tree, the maximal cliques are always pairs of nodes:

\[
p(x) = \frac{1}{Z} \prod_{(s,t) \in E} \psi_{st}(x_s, x_t) \prod_{s \in V} \psi_s(x_s)
\]
Belief Propagation (Integral-Product)

BELIEFS: Posterior marginals

\[
\hat{p}_t(x_t) \propto \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t)
\]

\(\Gamma(t)\) → neighborhood of node \(t\) (adjacent nodes)

MESSAGES: Sufficient statistics

\[
m_{ts}(x_s) \propto \int_{x_t} \psi_{st}(x_s, x_t) \psi_t(x_t) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t)
\]

I) Message Product

II) Message Propagation
Is there a finitely parameterized, closed form for the message and marginal functions?

Is there an analytic formula for the message integral, phrased as an update of these parameters?

\[p(x_1) \propto \int \int \int \int \psi_1(x_1) \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \, dx_4 \, dx_3 \, dx_2 \]

\[\propto \psi_1(x_1) \int \int \int \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \, dx_4 \, dx_3 \, dx_2 \]

\[\propto \psi_1(x_1) \int \psi_{12}(x_1, x_2) \psi_2(x_2) \left[\int \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \, dx_4 \, dx_3 \right] \, dx_2 \]

\[\propto \psi_1(x_1) \int \psi_{12}(x_1, x_2) \psi_2(x_2) \left[\int \psi_{23}(x_2, x_3) \psi_3(x_3) \, dx_3 \right] \cdot \left[\int \psi_{24}(x_2, x_4) \psi_4(x_4) \, dx_4 \right] \, dx_2 \]

\[m_{21}(x_1) \propto \int \psi_{12}(x_1, x_2) \psi_2(x_2) m_{32}(x_2) \cdot m_{42}(x_2) \, dx_2 \]
Covariance and Correlation

\textbf{Covariance:} \quad \text{cov} [X, Y] \triangleq \mathbb{E} [(X - \mathbb{E} [X])(Y - \mathbb{E} [Y])] = \mathbb{E} [XY] - \mathbb{E} [X] \mathbb{E} [Y]

\[\text{cov} [\mathbf{x}] \triangleq \mathbb{E} \left[(\mathbf{x} - \mathbb{E} [\mathbf{x}]) (\mathbf{x} - \mathbb{E} [\mathbf{x}])^T \right] = \begin{pmatrix} \text{var} [X_1] & \text{cov} [X_1, X_2] & \cdots & \text{cov} [X_1, X_d] \\ \text{cov} [X_2, X_1] & \text{var} [X_2] & \cdots & \text{cov} [X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov} [X_d, X_1] & \text{cov} [X_d, X_2] & \cdots & \text{var} [X_d] \end{pmatrix} \quad \Sigma \in \mathbb{R}^{d \times d} \]

\text{Always positive semidefinite: } \quad u^T \Sigma u \geq 0 \text{ for any } u \in \mathbb{R}^{d \times 1}, u \neq 0

\text{Often positive definite: } \quad u^T \Sigma u > 0 \text{ for any } u \in \mathbb{R}^{d \times 1}, u \neq 0

\textbf{Correlation:} \quad \text{corr} [X, Y] \triangleq \frac{\text{cov} [X, Y]}{\sqrt{\text{var} [X] \text{var} [Y]}} \quad -1 \leq \text{corr} [X, Y] \leq 1

\[\text{R} = \begin{pmatrix} \text{corr} [X_1, X_1] & \text{corr} [X_1, X_2] & \cdots & \text{corr} [X_1, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ \text{corr} [X_d, X_1] & \text{corr} [X_d, X_2] & \cdots & \text{corr} [X_d, X_d] \end{pmatrix} \]

\textbf{Independence:} \quad p(X, Y) = p(X)p(Y) \quad \Rightarrow \quad \text{cov} [X, Y] = 0 \quad \Leftrightarrow \quad \text{corr} [X, Y] = 0
Gaussian Distributions

\[N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} \]

\[N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- Simplest joint distribution that can capture arbitrary mean & covariance
- Justifications from *central limit theorem* and *maximum entropy* criterion
- Probability density above assumes covariance is *positive definite*
- ML parameter estimates are *sample mean* & *sample covariance*
Two-Dimensional Gaussians
Gaussian Geometry

- Eigenvalues and eigenvectors:
 \[\Sigma u_i = \lambda_i u_i, \ i = 1, \ldots, d \]
- For a **symmetric** matrix:
 \[\lambda_i \in \mathbb{R} \quad u_i^T u_i = 1 \quad u_i^T u_j = 0 \]
 \[\Sigma = U \Lambda U^T = \sum_{i=1}^{d} \lambda_i u_i u_i^T \]
- For a **positive semidefinite** matrix:
 \[\lambda_i \geq 0 \]
- For a **positive definite** matrix:
 \[\lambda_i > 0 \]
 \[\Sigma^{-1} = U \Lambda^{-1} U^T = \sum_{i=1}^{d} \frac{1}{\lambda_i} u_i u_i^T \]

\[\Delta^2 = (x - \mu)^T \Sigma^{-1} (x - \mu) \]
\[\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i} \]
\[y_i = u_i^T (x - \mu) \]
Probabilistic PCA & Factor Analysis

- **Both Models:** Data is a linear function of low-dimensional latent coordinates, plus Gaussian noise

\[
p(x_i \mid z_i, \theta) = \mathcal{N}(x_i \mid Wz_i + \mu, \Psi) \quad p(z_i \mid \theta) = \mathcal{N}(z_i \mid 0, I)
\]

\[
p(x_i \mid \theta) = \mathcal{N}(x_i \mid \mu, WW^T + \Psi)
\]

- **Factor analysis:** Ψ is a general diagonal matrix
- **Probabilistic PCA:** $\Psi = \sigma^2 I$ is a multiple of identity matrix

\[p(z)\]
\[p(x \mid z)\]
\[p(x)\]

\[\mu\]
\[\mu\]

C. Bishop, Pattern Recognition & Machine Learning
Gaussian Graphical Models

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in E} \psi_{s,t}(x_s, x_t) \]

\[x \sim \mathcal{N}(\mu, \Sigma) \]

\[J = \Sigma^{-1} \]

\[\sum_{t \in N(s)} J_{s(t)} = J_{s,s} \]

\[\psi_{s,t}(x_s, x_t) = \exp \left\{ -\frac{1}{2} \begin{bmatrix} x_s^T & x_t^T \end{bmatrix} \begin{bmatrix} J_{s(t)} & J_{s,t} \\ J_{t,s} & J_{t(s)} \end{bmatrix} \begin{bmatrix} x_s \\ x_t \end{bmatrix} \right\} \]
Gaussian Potentials

\[
p(x) = \frac{1}{Z} \exp \left\{ -\frac{1}{2} x^T P^{-1} x \right\} = \frac{1}{Z} \prod_{s=1}^{N} \prod_{t=1}^{N} \exp \left\{ -\frac{1}{2} x_s^T J_{s,t} x_t \right\} = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \exp \left\{ -\frac{1}{2} \begin{bmatrix} x_s^T & x_t^T \end{bmatrix} \begin{bmatrix} J_{s(t)} & J_{s,t} \\ J_{t,s} & J_{t(s)} \end{bmatrix} \begin{bmatrix} x_s \\ x_t \end{bmatrix} \right\} = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{s,t}(x_s, x_t)
\]

\[
Z = \left((2\pi)^N \det P \right)^{1/2}
\]

\[
p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{s,t}(x_s, x_t) \quad \sum_{t \in N(s)} J_{s(t)} = J_{s,s}
\]

\[
\psi_{s,t}(x_s, x_t) = \exp \left\{ -\frac{1}{2} \begin{bmatrix} x_s^T & x_t^T \end{bmatrix} \begin{bmatrix} J_{s(t)} & J_{s,t} \\ J_{t,s} & J_{t(s)} \end{bmatrix} \begin{bmatrix} x_s \\ x_t \end{bmatrix} \right\}
\]