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Lecture 8:
Inference & Learning for Exponential Families,
Expectation Maximization (EM) Algorithm

Some figures courtesy Michael JordanOs draft textbook,
An Introduction to Probabilistic Graphical Models



Exponential Families of Distributions
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1l @ — unknown vector of natural parameters,
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To ensure this construction is valid, we take
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Factor Graphs & Exponential Families
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F — setof hyperedges linking subsets of nodesf | V @

\V/ — setof Nnodes or vertices, {1,2, ..., N}

Z —— normalization constant (partition function) @ @

¥ Afactor graph is created from non-negative potential functions

¥ To guarantee non-negativity, we typically define potentials as
} Local exponential family:
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Undirected Graphs & Exp. Families

P | 6) = (H uf(xf)) exp{z S O7usalay) @(9)} 2(0) = log Z(0)
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¥ Pick features to define an exponential family of distributions
¥ Use factor graph to represent structure of chosen statistics

¥ Create undirected graph with a clique for every factor node

¥ Result: Visualization of Markov properties of your family



Generalized Linear Models

¥ General framework for modeling non-Gaussian data with
linear prediction, using exponential families:
¥ Construct instance-specific natural parameters:

= w' (i)

¥ Observation comes from exponential family:
pCY: | X;,w) =exp {y;!: ! A(ty)}

¥ Special cases: linear regression and logistic regression
¥ ML and MAP estimation is generally straightforward
¥ Many possible extensions:
¥ Multivariate responses with more parameters
(biggest difficulty is notation and indexing)
¥ Link functions to allow more flexibility in how (W, X;) !



Directed Graphs & Exp. Families
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P(Xi | Xr¢iy, 0i) = exp | Xi9iT P(Xr(iy) ! A(QiT P(Xr(iy))

¥ For each node, pick an appropriate exponential family
¥ Pick features of parent nodes relevant to child variable

Most generally, indicators for all joint configurations of parents.
¥ Child parameters are a (learned) linear func. of parent features
¥ Result: Node-specific generalized linear models



Inference versus Learning

¥ Inference: Given a model with known parameters, estimate or
find marginals of OhiddenO variables for some data instance
¥ Learning: Given multiple data instances, find (often ML/MAP)
estimates of parameters for a graphical model of their structure
¥ Training instances may be completely or partially observed

Example: Expert systems for medical diagnosis

¥ Inference: Given observed symptoms for a particular patient,
Infer probabilities that they have contracted various diseases

¥ Learning: Given a database of many patient diagnoses,
learn the relationships between diseases and symptoms

Example: Markov random fields for semantic image segmentation

¥ Inference: What object category is depicted at each pixel?
¥ Learning: How do objects relate to low-level image features?



Mean Parameter Spaces
pz V) =exp{!"" (z)! A(")}

Ha = Ep[ta(X)] = Ta(x)p(x) dx
M ! {u! RY|" psuch that Ej[! (X)] = u}

¥ For a given collection of sufficient statistics,
what is the set of all realizable mean parameters?
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¥ The set of realizable parameters is always convex. Why?



Preview: Inference and Learning
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Supervised Learning

Generative ML or MAP Learning:
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max log p() +log p(0) + [|09p(y| m) +log p(zi | yi,0)]
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Discriminative ML or MAP Learning:
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max logp(!)+  logp(yi | xi,!)
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Unsupervised Learning

Clustering:

IN |

max logp(!) +log p(")+  log  p(z |1)p(x; 1Zi,") (40
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max logp(! ) +log p(")+  log  p(z | !)p(Xi|z,") dz N

Dimensionality Reduction:
!N H N

i=1 Zi

¥ No notion of training and test data: labels are never observed
¥ As before, maximize posterior probability of model parameters
¥ For hidden variables associated with each observation, we

marginalize over possible values rather than estimating

¥ Fully accounts for uncertainty in these variables

¥ There is one hidden variable per observation, so cannot

perfectly estimate even with infinite data

¥ Must use generative model (discriminative degenerates)



Unsupervised Learning Algorithms
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— parameters (shared across instances)
£Z1,...,4ZN =—> hidden data (unique to particular instances)
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¥ Initialization: Randomly select starting parameters

¥ Estimation: Given parameters, infer likely hidden data

¥ Similar to testing phase of supervised learning

¥ Learning: Given hidden & observed data, find likely parameters

¥ Similar to training phase of supervised learning
¥ lIteration: Alternate estimation & learning until convergence




Expectation Maximization (EM)
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Unsupervised
Learning

— parameters (shared across observations)

£Z1,...,4ZN =—> hidden data (unique to particular instances)

¥ Initialization: Randomly select starting parameters
¥ E-Step: Given parameters, find posterior of hidden data
¥ Equivalent to test inference of full posterior distribution
¥ M-Step: Given posterior distributions, find likely parameters
¥ Distinct from supervised ML/MAP, but often still tractable
¥ Iteration: Alternate E-step & M-step until convergence



Concavity & JensenOs Inequality
In(E[X]) ! E[IN(X)]
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EM as I__c__)wer Bound Maximization

Inp(x |!)=1In p(x,z |!)
e 0) 2 Y a) (p(xq’é )’ 9))
npx ! a@Inpxz|)"  a2inaz)! L(g,!)

Z Z
¥ Initialization: Randomly select starting parameters | ©)
¥ E-Step: Given parameters, find posterior of hidden data

gt = argmgme(q, (1)

¥ M-Step: Given posterior distributions, find likely parameters
1 (V) = arg max L(qV, 1)

¥ lteration: Alternate E-step & M-step until convergence



Lower Bounds on Marginal Likelihood

C. Bishop, Pattern Recognition & Machine Learning



EM: Expectation Step
npx !  a@Inpxz|N"  a2)inaz)! L(g,!)
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gt = argmélXL(q, (1)

¥ General solution, for any probabilistic model:
posterior distribution

q(t) (Z) — p(Z ‘ X, | (t! 1)) given current parameters

¥ For a directed graphical model.
fixes conditional distributions of @ @ @

| — : .
- every child node, given parents

X =— observed nodes (training data) @ @ @
/ ——— unobserved nodes (hidden data)

Inference: Find summary statistics of

posterior needed for following M-step (20)



