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Pairwise Markov Random Fields 
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp


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
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
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
(2.67)

Here, θf ! {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =
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νf (xf )

)
exp
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Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This

•  Simple parameterization, but still 
expressive and widely used in practice 

•  Guaranteed Markov with respect to graph 



Belief Propagation (Sum-Product) 
BELIEFS:  Posterior marginals 

MESSAGES:  Sufficient statistics 

neighborhood of node t 
(adjacent nodes) 

I)  Message Product 
II) Message Propagation 
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Belief Propagation for Trees 
• Dynamic programming algorithm which exactly 

computes all marginals  

• On Markov chains, BP equivalent to alpha-beta 
or forward-backward algorithms for HMMs 

• Sequential message schedules require each 
message to be updated only once 

• Computational cost: 
number of nodes 
discrete states  
for each node 

Belief Prop: 
Brute Force: 



Factor Graphs 

set of N nodes or vertices,  

set of hyperedges linking subsets of nodes 

{1, 2, . . . , N}V
normalization constant (partition function) Z

•  In a hypergraph, the hyperedges link 
arbitrary subsets of nodes (not just pairs) 

•  Visualize by a bipartite graph, with square 
(usually black) nodes for hyperedges 

•  A factor graph associates a non-negative 
potential function with each hyperedge 

•  Motivation: factorization key to computation 
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Factor Graphs & Factorization 
p(x) =

1

Z

Y

f2F
 f (xf )

•  For a given undirected graph, there exist distributions 
which have equivalent Markov properties, but different 
factorizations and different inference/learning complexities:  

Undirected 
Graphical Model 

Pairwise (edge) 
Potentials 

Potentials on 
Maximal Cliques 

Alternative 
Factorization 



Directed Graphs as Factor Graphs 

•  Associate one factor with each node, linking it to its parents 
and defined to equal the corresponding conditional distribution 

•  Information lost:  Directionality of conditional distributions, 
and fact that global partition function 

p(x) =
NY

i=1

p(xi | x�(i))

Directed Graphical Model: 

Corresponding Factor Graph: 

p(x) =
NY

i=1

 i(xi, x�(i))

Z = 1



Sum-Product Algorithm 
Belief Propagation for Factor Graphs 

(a) (b)
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•  From each variable node, the incoming and outgoing 
messages are functions only of that particular variable 

•  Factor message updates must sum over all combinations  
of the adjacent variable nodes (exponential in degree) 



Comparing Sum-Product Variants 
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•  For pairwise potentials, there is one “incoming” message for 
each outgoing factor message, simplifies to earlier algorithm: 
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Factor Graph Message Schedules 
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•  All of the previously discussed message schedules are valid 
•  Here is an example of a synchronous parallel schedule: 



Sum-Product for “Nearly” Trees 

(a)

1X

2X

3X X 4

X 5 X6

(b) (c)
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2X

3X X 4

X 5 X6

Z

1X

2X

3X X 4

X 5 X6

Undirected 
Graphical Model Factor Graph Pairwise Graphical Model 

via Auxiliary Variable 

•  Sum-product algorithm computes exact marginal distributions 
for any factor graph which is tree-structured (no cycles) 

•  This includes some undirected graphs with cycles 



Sum-Product for Polytrees 
Undirected 

Tree Factor Graph Directed 
Tree 

•  Early work on belief propagation (Pearl, 1980’s) focused on 
directed graphical models, and was complicated by 
directionality of edges and multiple parents (polytrees) 

•  Factor graph framework makes this a simple special case 

(a) (b) (c)

Directed 
Polytree 
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Learning Directed Graphical Models 
1X

2X 3X

X 4

1X

2X

1X

3X

1X

X 4

2X 3X

(a) (b)•  Directed factorization causes likelihood to locally decompose: 

p(✓) = p(✓1)p(✓2)p(✓3)p(✓4)

log p(✓) = log p(✓1) + log p(✓2) + log p(✓3) + log p(✓4)

•  Often paired with a correspondingly factorized prior: 

Intuition:  Must learn a 
good predictive model  
of each node, given  

its parent nodes 

p(x) =
Y

i2V
p(xi | x�(i), ✓i)



Complete Observations 
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Directed 
Graphical Model 

N Independent, Identically 
Distributed Training Examples Plate Notation 

•  A directed graphical model encodes assumed statistical dependencies  
among the different parts of a single training example: 

D = {xV,1, . . . , xV,N}

•  Given N independent, identically distributed, completely observed samples: 

log p(D | ✓) =
NX

n=1

X

i2V
log p(xi,n | x�(i),n, ✓i) =

X

i2V

"
NX

n=1

log p(xi,n | x�(i),n, ✓i)

#

p(D | ✓) =
NY

n=1

Y

i2V
p(xi,n | x�(i),n, ✓i)



Priors and Tied Parameters 
log p(D | ✓) =

NX

n=1

X

i2V
log p(xi,n | x�(i),n, ✓i) =

X

i2V

"
NX

n=1

log p(xi,n | x�(i),n, ✓i)

#

log p(✓) =
X

i2V
p(✓i) A “meta-independent” factorized prior 

log p(✓ | D) = C +

X

i2V

"
log p(✓i) +

NX

n=1

log p(xi,n | x�(i),n, ✓i)

#
•  Factorized posterior allows independent learning for each node: 

•  Learning remains tractable when subsets of nodes are  
“tied” to use identical, shared parameter values: 

log p(D | ✓) =
X

i2V

"
NX

n=1

log p(xi,n | x�(i),n, ✓bi)

#

log p(✓b | D) = C + log p(✓b) +

X

i|bi=b

NX

n=1

log p(xi,n | x�(i),n, ✓b)



Example: Temporal Models 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

z1 z2 z3

x1 x2 x3

z1 z2 z3 z4

x1 x2 x3 x4

p(x, z | ✓) =
NY

n=1

TnY

t=1

p(zt,n | zt�1,n, ✓time

)p(xt,n | zt,n, ✓obs)

z0

z0

z0

Sequence 1 

Sequence 2 

Sequence 3 



Learning Binary Probabilities 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

0  ✓  1

Xi ⇠ Ber(✓), i = 1, . . . , N

•  Suppose we observe N samples from a Bernoulli 
distribution with unknown mean: 

•  What is the maximum likelihood parameter estimate? 

p(x1, . . . , xN | ✓) = ✓

N1(1� ✓)N0

Ber(x | ✓) = ✓

I(x=1)(1� ✓)I(x=0)

ˆ

✓ = argmax

✓
log p(x | ✓) = N1

N



Beta Distributions 

Probability density function: 
x 2 [0, 1]

�(k) = (k � 1)!

�(x+ 1) = x�(x)



Beta Distributions 

E[x] = a

a+ b

V[x] = ab

(a+ b)2(a+ b+ 1)

Mode[x] = arg max

x2[0,1]
Beta(x | a, b) = a� 1

(a� 1) + (b� 1)



Bayesian Learning of Probabilities 
Bernoulli Likelihood:  Single toss of a (possibly biased) coin   

0  ✓  1Ber(x | ✓) = ✓

I(x=1)(1� ✓)I(x=0)

p(x1, . . . , xN | ✓) = ✓

N1(1� ✓)N0

Beta Prior Distribution: 

p(✓) = Beta(✓ | a, b) / ✓a�1(1� ✓)b�1

p(✓ | x) / ✓

N1+a�1(1� ✓)N0+b�1 / Beta(✓ | N1 + a,N0 + b)

Posterior Distribution: 

•  This is a conjugate prior, because posterior is in same family 
•  Estimate by posterior mode (MAP) or mean (preferred) 
•  Here, posterior predictive equivalent to mean estimate 



Sequence of Beta Posteriors 
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Multinomial Simplex 



Constrained Optimization 

✓k � 0
KX

k=1

✓k = 1

ˆ✓ = argmax

✓

KX

k=1

ak log ✓k ak � 0

subject to 

✓̂k =
ak
a0

a0 =
KX

k=1

ak•  Solution: 

•  Proof for K=2:  Change of variables to unconstrained problem 
•  Proof for general K:  Lagrange multipliers (see textbook) 



Learning Categorical Probabilities 
Multinoulli Distribution:  Single roll of a (possibly biased) die 

Cat(x | ✓) =
KY

k=1

✓

xk
k

X = {0, 1}K ,

KX

k=1

xk = 1

p(x1, . . . , xN | ✓) =
QK

k=1 ✓
Nk
k

•  If we have Nk observations of outcome k in N trials: 

•  The maximum likelihood parameter estimates are then: 

•  Will this produce sensible predictions when K is large? 

ˆ

✓ = argmax

✓
log p(x | ✓) ✓̂k =

Nk

N



Dirichlet Probability Densities 
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Dirichlet Probability Densities 



Dirichlet Samples 

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1) Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)



Bayesian Learning of Probabilities 

Dirichlet Prior Distribution: 

Posterior Distribution: 

•  This is a conjugate prior, because posterior is in same family 

Multinoulli Distribution:  Single roll of a (possibly biased) die 

Cat(x | ✓) =
KY

k=1

✓

xk
k

X = {0, 1}K ,

KX

k=1

xk = 1

p(x1, . . . , xN | ✓) =
QK

k=1 ✓
Nk
k

p(✓) = Dir(✓ | ↵) /
KY

k=1

✓↵k�1
k

p(✓ | x) /
KY

k=1

✓

Nk+↵k�1
k / Dir(✓ | N1 + ↵1, . . . , NK + ↵K)



Learning Directed Graphical Models 

•  For nodes with no parents, parameters define a single 
Bernoulli or categorical distribution 
Ø Bayesian or ML learning as in previous slides 

•  More generally, there are multiple categorical distributions 
per node, one for every combination of parent variables 
Ø  Learning objective decomposes into multiple terms, one 

for subset of training data with each parent configuration 
Ø Apply independent Bayesian or ML learning to each 

•  Concerns for nodes with many parents: 
Ø Computation:  Large number of parameters to estimate 
Ø Sparsity:  May have little (or even no) data for some 

configurations of the parent variables 
Ø Priors can help, but may still be inadequate… 

log p(✓ | D) = C +

X

i2V

"
log p(✓i) +

NX

n=1

log p(xi,n | x�(i),n, ✓i)

#



Naïve Bayes:  ML & Bayes 

Nc number of examples of training class c 

•  Maximizing the sum of functions of independent parameters 
can be done by maximizing them independently: 

•  Similarly, if the parameters for different features are 
independent under the prior, they remain independent under 
the posterior, and Bayesian analysis decomposes 

if Maximum 
Likelihood 



Example: Medical Diagnosis 

•  Learning independent finding distribution for every 
combination of diseases may be computationally intractable 
and lead to poor statistical generalization 

•  Instead assume restricted parameterizations, in which child 
distributions depend on some features of parents.  Example: 



Logistic Regression 
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•  Linear discriminant analysis: 

•  Quadratic discriminant analysis: 

•  Can derive weights from Gaussian generative model if that 
happens to be known, but more generally: 
•  Choose any convenient feature set 
•  Do discriminative Bayesian learning: 

p(w | x, y) / p(w)
NY

i=1

Ber(yi | sigm(wT
�(xi)))

�(x)

p(yi | xi, w) = Ber(yi | sigm(wT
�(xi)))

�(xi) = [1, xi1, xi2, . . . , xid]

�(xi) = [1, xi1, . . . , xid, x
2
i1, xi1xi2, x

2
i2, . . .]



Logistic Regression 



Multinomial Logistic Regression 
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Kernel−RBF Multinomial Logistic Regression


