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Pairwise Markov Random Fields
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(s,t)eE seV

« Simple parameterization, but still
expressive and widely used in practice
« Guaranteed Markov with respect to graph

g —— set of undirected edges (s,7) linking pairs of nodes

)) — setof Nnodes or vertices, {1,2,..., N}

Z —— normalization constant (partition function)



Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals
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MESSAGES: Sufficient statistics
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Belief Propagation for Trees

» Dynamic programming algorithm which exactly
computes all marginals

* On Markov chains, BP equivalent to alpha-beta
or forward-backward algorithms for HMMs

« Sequential message schedules require each

message to be updated only once
O

« Computational cost:

/N —— number of nodes

N — discrete states 2 - 2 -
for each node

Belief Prop: O(NM?)

BruteForce:O(MN) O0OO00O00O00O0O0OO0OO0OOOOO



Factor Graphs
p(z) = % 11 ¢s(z) (%)

fer
In a hypergraph, the hyperedges link @
arbitrary subsets of nodes (not just pairs)
Visualize by a bipartite graph, with square
(usually black) nodes for hyperedges @ e
A factor graph associates a non-negative
potential function with each hyperedge
Motivation: factorization key to computation

J — setof hyperedges linking subsets of nodes fCcy

)) — setof Nnodes or vertices, {1,2,..., N}

Z —— normalization constant (partition function)



Factor Graphs & Factorization
p(a) = - [] vr(ay)

JeF

* For a given undirected graph, there exist distributions
which have equivalent Markov properties, but different
factorizations and different inference/learning complexities:

Undirected Pairwise (edge) Potentials on Alternative
Graphical Model Potentials Maximal Cliques Factorization

T




Directed Graphs as Factor Graphs

Directed Graphical Model: @ @ e @
N
p(x) = [ plai | re)
© (%,
Corresponding Factor Graph:
N
e @ @ @
i=1

« Associate one factor with each node, linking it to its parents
and defined to equal the corresponding conditional distribution
* Information lost: Directionality of conditional distributions,
and fact that global partition function 2 =1




Sum-Product Algorithm

Belief Propagation for Factor Graphs

i
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Vis(2i) = H poti () psi(zi) = ) (f.s(ﬂf.\f(s)) 11 Vj.s(flfj))
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* From each variable node, the incoming and outgoing
messages are functions only of that particular variable

* Factor message updates must sum over all combinations
of the adjacent variable nodes (exponential in degree)



Comparing Sum-Product Variants
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* For pairwise potentials, there is one “incoming” message for
each outgoing factor message, simplifies to earlier algorithm:

Mys(Ts) X E Vet (T, ) We(T4) | | Mot (T4)



Factor Graph Message Schedules

 All of the previously discussed message schedules are valid
« Here is an example of a synchronous parallel schedule:




Sum-Product for “Nearly” Trees

Undirected Pairwise Graphical Model
Graphical Model via Auxiliary Variable

Factor Graph

O

q;Xz

« Sum-product algorithm computes exact marginal distributions
for any factor graph which is tree-structured (no cycles)
* This includes some undirected graphs with cycles



Sum-Product for Polytrees

Undirected Directed Directed Eactor Graoh
Tree Tree Polytree ¥ P
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« Early work on belief propagation (Pearl, 1980’s) focused on
directed graphical models, and was complicated by
directionality of edges and multiple parents (polytrees)

« Factor graph framework makes this a simple special case




Learning Directed Graphical Models

X,

? p(x) = HP(%’ | Tr(iy, i)
i€V

Intuition: Must learn a
good predictive model
Q\ f) of each node, given
its parent nodes

* Directed factorization causes likelihood to locally decompose:
p(z|0) = p(x1 |01)p(z2 | 21,02)p(23 | 21,03)p(T4 | T2, 23, 04)
logp(z|60) =logp(zy|01) + logp(ze | x1,02) + logp(xs|z1,603) + logp(xy | T2, 23, 04)
» Often paired with a correspondingly factorized prior:
p(0) = p(61)p(62)p(03)p(64)
log p(0) = log p(61) + log p(62) + log p(63) + log p(6a4)



Complete Observatlons

X X
@ @ XoN X5
)(3 X3 )1 X3 2 X3 ,N X3 N
Directed N Independent, Identically

Graphical Model Distributed Training Examples Plate Notation

« Adirected graphical model encodes assumed statistical dependencies
among the different parts of a single training example:

p010) = T] [Toin | 2r00me0) D= {ovr,.. o]
n=1€V
« Given N independent identically distributed, completely observed samples:

N
logp(D | 0) Z ZlOgP Tin | Zriym,0) =Y | Y logp(Tin | Triym,0:)

n=1€V 1€V Ln=1




Priors and Tied Parameters
logp(D | 6) Zzlogp Tim | Trym: 0i) = Y [Sj log p(;,n | xF(i),na‘gi)]

n=1€V 1€y Ln=1

log p(0) = Z p(6;) A “meta-independent” factorized prior
i€V
Factorized posterior allows independent learning for each node:

logp(6 | D) =C+
ey

lng Zlng Lin ‘ xF(z nae ):|

n=1

Learning remains tractable when subsets of nodes are
“tied” to use |dent|cal shared parameter values:

logp(D ‘ 9) — Z Zlogp Lin ‘ LT (1), nae )

1€y Ln=1 _

logp(fy | D) = C +logp(fy) + Y S‘logp (Tin | 0y 0, O0b)
i|b;=bn=1




Example: Temporal Models

| | | | | Sequence 1
:l: :l: :l: Sequence 2
! ! ! ! Sequence 3

n

N T
p($, < ‘ 9) — H Hp(zt,n | Rt—1,m Htime)p(xt,n | 2t Hobs)

n=1t=1



Learning Binary Probabillities

Bernoulli Distribution: Single toss of a (possibly biased) coin
Ber(z | 0) = 0"*=Y(1 - 9)1*==0 p<h<1

« Suppose we observe N samples from a Bernoulli
distribution with unknown mean:

X; ~Ber(0),i=1,...,N
p(zi,....,xn | 0) = 0N (1 — )N
N1 = Zi\; [(x; = 1) Ny = Zivﬂ [(z; = 0)

« What is the maximum likelihood parameter estimate?
. Ny
0 = argmaxlogp(x | ) = ~

0



. Beta Distri4butions
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Bayesian Learning of Probabilities

Bernoulli Likelihood: Single toss of a (possibly biased) coin
Ber(z | 0) = 0"*=Y(1 - 9)1*==0 p<h<1
p(zi,...,zn | 0) = 0N (1 — 9)No
Beta Prior Distribution:

p(0) = Beta(f | a,b) oc % 1(1 — )"~
Posterior Distribution:

p(0 | x) oc @M1 Fra=1(1 — g)Notv=1 « Beta(d | N1 + a, Ny + b)

* This is a conjugate prior, because posterior is in same family
« Estimate by posterior mode (MAP) or mean (preferred)
* Here, posterior predictive equivalent to mean estimate



Sequence of Beta Posteriors
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Multinomial Simplex




Constrained Optimization

0, > 0
K
A a/k
* Solution: Hk = — ap = Zak
ag k=1

* Proof for K=2: Change of variables to unconstrained problem
* Proof for general K: Lagrange multipliers (see textbook)



Learning Categorical Probabilities

Multinoulli Distribution Single roll of a (possibly biased) die
Cat(z | 0) = He%’k X ={0,1}5)) a =1
k=1
 If we have N, observations of outcome k in N trials:

p($1,...,$N | 9) :Hleel]c\[k

 The maximum likelihood parameter estimates are then:
Ny,
N

 Will this produce sensible predictions when K is large?

) = arg max log p(x | 0) 0 =



Dirichlet Probability Densmes

o=10.00

- Dir(x|a) £ Hazo"" I(x € Sk)
SK—{X.OSZngl,ZIk:1}

' | k=1
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Dirichlet Probability Densities

»

1
m ~ Dir(1,1,1)

,

1
m ~ Dir(4,9,7)

1
m ~ Dir(4, 4, 4)

L

s
1
7 ~ Dir(0.2,0.2,0.2)



Dirichlet Samples

Samples from Dir (alpha=0.1) Samples from Dir (alpha=1)
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Bayesian Learning of Probabilities

Multinoulli Distribution Single roll of a (possibly biased) die
Cat(z | 0) = He%’k X ={0,1}5)) a =1
B 12 N. k=1
p(xla ey LN | 9) — Hk:l ek

Dirichlet Prior Distribution: K

p(0) = Dir(0 | a) x H oo
k=1
Posterior Distribution:

p(0 | x) x H gt =l o Dir(0 | Ny + o, ..., Ng + ax)
k=1
* This is a conjugate prior, because posterior is in same family



Learning Directed Graphical Models

logp(6 | D) =C + ) _ |logp(b; Zlogp Tim | Tr(i)n, 0i)
1€V n=1

* For nodes with no parents, parameters define a single
Bernoulli or categorical distribution
» Bayesian or ML learning as in previous slides
* More generally, there are multiple categorical distributions
per node, one for every combination of parent variables
» Learning objective decomposes into multiple terms, one
for subset of training data with each parent configuration
» Apply independent Bayesian or ML learning to each
« Concerns for nodes with many parents:
» Computation: Large number of parameters to estimate
» Sparsity: May have little (or even no) data for some
configurations of the parent variables
» Priors can help, but may still be inadequate...



Naive Bayes. ML & Bayes
p(xi,9i|0) = p(yi|m) Hp(l‘z'j\ej) — HWHC(%:C) HHP(C%\BJ'C)H(%:C)
log p(D|0) ZN 10g7TC—|—S‘Y S‘ log p(x;]0;c)

7=1c=11:y;,=c

N, —— number of examples of training class ¢

« Maximizing the sum of functions of independent parameters
can be done by maximizing them independently:
Maximum . N, N
Likelihood ~ fe = Y5e = N
« Similarly, if the parameters for different features are
Independent under the prior, they remain independent under

the posterior, and Bayesian analysis decomposes

if x;ly = ¢~ Ber(0;c)




Example: Medical Diagnosis

diseases
d] dn

J; S
findings
« Learning independent finding distribution for every
combination of diseases may be computationally intractable
and lead to poor statistical generalization

* |nstead assume restricted parameterizations, in which child
distributions depend on some features of parents. Example:



Logistic Regression

p(y; | 74, w) = Ber(y; | sigm(w” ¢(x;))) =

* Linear discriminant analysis:
o(xi) = |1, xi1, 2, - - -, Tid]
1 e’

» Quadratic discriminant analysis: Sgm(n) = T ) T e+

¢(£Ijz) — [17 Lily - -y Lid; .CU,?l, Li1L52, CU,?Q, .. ]

« Can derive weights from Gaussian generative model if that
happens to be known, but more generally:
+ Choose any convenient feature set ()
* Do discriminative Bayesian learning:

plw |z, y) x plw HBer yi | sigm(w? ¢(x;)))



Logistic Regression

W=(1,4) W=(5,4)

| 1 | 1

3 2 1 0

p(y|x,w) = Ber(y|sigm(w’ x))




Viuftino

nial Logistic Regression

R T p(ylx, W) = Cat(y|S(WTx))
05 _t.;...-, '.' .-..:.: \ . ..:.:..:.\..:' ,.. ‘ g =.:s enc

o L AT AU R S(n)e =

S R S

o ....:..-:'.'. .':':'::.-. - : ..:: . ..- '1..'.' o

W e - asT—0

s i e e oy _ [ 10 ife=argmaxe e
LA e e Sm/T)e = { 0.0 otherwise

Linear Multinomial Logistic Regression

Kernel-RBF Multinomial Logistic Regression
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