Probabilistic Graphical Models

Brown University CSCI 2950-P, Spring 2013
Prof. Erik Sudderth

Lecture 5:
Belief Propagation & Factor Graphs

Some figures courtesy Michael Jordan’s draft textbook,
An Introduction to Probabilistic Graphical Models
Inference in Graphical Models

- x_E → observed *evidence* variables (subset of nodes)
- x_F → unobserved *query* nodes we’d like to infer
- x_R → remaining variables, *extraneous* to this query but part of the given graphical representation

\[
p(x_E, x_F) = \sum_{x_R} p(x_E, x_F, x_R)
\]

Posterior Marginal Densities

\[
p(x_F | x_E) = \frac{p(x_E, x_F)}{p(x_E)}
\]

\[
p(x_E) = \sum_{x_F} p(x_E, x_F)
\]

- Provides Bayesian estimators, confidence measures, and sufficient statistics for iterative parameter estimation

- The *elimination algorithm* assumed a single query node. What if we want the marginals for *all* unobserved nodes?
Inference in Undirected Trees

- For a tree, the maximal cliques are always pairs of nodes:

\[
p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s)
\]
Inference via the Distributed Law

\[
p_1(x_1) = \sum_{x_2,x_3,x_4} \psi_1(x_1) \psi_{12}(x_1,x_2) \psi_2(x_2) \psi_{23}(x_2,x_3) \psi_3(x_3) \psi_{24}(x_2,x_4) \psi_4(x_4)
\]

\[
= \psi_1(x_1) \sum_{x_2,x_3,x_4} \psi_{12}(x_1,x_2) \psi_2(x_2) \psi_{23}(x_2,x_3) \psi_3(x_3) \psi_{24}(x_2,x_4) \psi_4(x_4)
\]
Inference via the Distributed Law

\[p_1(x_1) = \sum_{x_2, x_3, x_4} \psi_1(x_1) \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]

\[= \psi_1(x_1) \sum_{x_2, x_3, x_4} \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]

\[= \psi_1(x_1) \sum_{x_2} \psi_{12}(x_1, x_2) \psi_2(x_2) \sum_{x_3, x_4} \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]
Inference via the Distributed Law

\[p_1(x_1) = \sum_{x_2, x_3, x_4} \psi_1(x_1) \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]

\[= \psi_1(x_1) \sum_{x_2, x_3, x_4} \psi_{12}(x_1, x_2) \psi_2(x_2) \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]

\[= \psi_1(x_1) \sum_{x_2} \psi_{12}(x_1, x_2) \psi_2(x_2) \sum_{x_3, x_4} \psi_{23}(x_2, x_3) \psi_3(x_3) \psi_{24}(x_2, x_4) \psi_4(x_4) \]

\[= \psi_1(x_1) \sum_{x_2} \psi_{12}(x_1, x_2) \psi_2(x_2) \left[\sum_{x_3} \psi_{23}(x_2, x_3) \psi_3(x_3) \right] \cdot \left[\sum_{x_4} \psi_{24}(x_2, x_4) \psi_4(x_4) \right] \]

\[m_{21}(x_1) = \sum_{x_2} \psi_{12}(x_1, x_2) \psi_2(x_2) m_{32}(x_2) m_{42}(x_2) \]
Computing Multiple Marginals

- Can compute all marginals, at all nodes, by combining incoming messages from adjacent edges
- Each message must only be computed once, via some message update schedule
Belief Propagation (Sum-Product)

BELIEFS: Posterior marginals

\[q_t(x_t \mid y) = \alpha \psi_t(x_t, y) \prod_{u \in \Gamma(t)} m_{ut}(x_t) \]

\[\Gamma(t) \rightarrow \text{neighborhood of node } t \] (adjacent nodes)

MESSAGES: Sufficient statistics

\[m_{ts}(x_s) = \alpha \sum_{x_t} \psi_{st}(x_s, x_t) \psi_t(x_t, y) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \]

I) Message Product
II) Message Propagation
Message Update Schedules

- **Message Passing Protocol**: A node can send a message to a neighboring node when, and only when, it has received incoming messages from all of its other neighbors.

- **Synchronous Parallel Schedule**: At each iteration, every node computes all outputs for which it has needed inputs.

- **Global Sequential Schedule**: Choose some node as the root of the tree. Pass messages from the leaves to the root, and then from the root back to the leaves.

- **Asynchronous Parallel Schedule**: Initialize messages arbitrarily. At each iteration, all nodes compute all outputs from all current inputs. Iterate until convergence.
Belief Propagation for Trees

• Dynamic programming algorithm which exactly computes all marginals

• On Markov chains, BP equivalent to alpha-beta or forward-backward algorithms for HMMs

• Sequential message schedules require each message to be updated only once

• Computational cost:
 \[N \quad \rightarrow \quad \text{number of nodes} \]
 \[M \quad \rightarrow \quad \text{discrete states for each node} \]

 Belief Prop: \(O(NM^2) \)
 Brute Force: \(O(M^N) \)
BP for Continuous Variables

\[
p(x_1) \propto \iiint \psi_1(x_1) \psi_1(x_2) \psi_2(x_2) \psi_3(x_2) \psi_3(x_3) \psi_4(x_3) \psi_4(x_4) \, dx_4 \, dx_3 \, dx_2
\]

\[
\propto \psi_1(x_1) \iiint \psi_2(x_1) \psi_2(x_2) \psi_3(x_2) \psi_3(x_3) \psi_4(x_2) \psi_4(x_4) \, dx_4 \, dx_3 \, dx_2
\]

\[
\propto \psi_1(x_1) \int \psi_2(x_1) \psi_2(x_2) \left[\iiint \psi_3(x_2) \psi_3(x_3) \psi_4(x_2) \psi_4(x_4) \, dx_4 \, dx_3 \right] \, dx_2
\]

\[
\propto \psi_1(x_1) \int \psi_2(x_1) \psi_2(x_2) \left[\int \psi_3(x_2) \psi_3(x_3) \, dx_3 \right] \cdot \left[\int \psi_4(x_2) \psi_4(x_4) \, dx_4 \right] \, dx_2
\]

\[
m_{32}(x_2) \quad m_{42}(x_2)
\]

\[
m_{21}(x_1) \propto \int \psi_2(x_1) \psi_2(x_2) m_{32}(x_2) m_{42}(x_2) \, dx_2
\]
BP is Exact for Trees

Proof on Board

\[x^\pi_j \]

\[x^\pi_i \]

\[x_{\pi_i} \]

\[x_j \]

\[x_i \]

\[x_k \]

\[x_{\pi_i} \]

\[j \setminus i \triangleq \{ j \} \cup \{ k \in V \mid \text{no path from } k \rightarrow j \text{ intersects } i \} \]

\[\Psi_A(x_A) \triangleq \prod_{(i, j) \in E(A)} \psi_{ij}(x_i, x_j) \prod_{i \in A} \psi_i(x_i, y) \quad A \subset V \]

\[E(A) \triangleq \{(i, j) \in E \mid i, j \in A\} \]
BP Algorithm

\[q_i(x_i) \propto \psi_i(x_i, y) \prod_{j \in \Gamma(i)} m_{ji}(x_i) \]
BP Algorithm

\[q_{ij}(x_i, x_j) \propto \psi_{ij}(x_i, x_j) \psi_i(x_i, y) \psi_j(x_j, y) \prod_{\ell \in \Gamma(i) \setminus j} m_{\ell i}(x_i) \prod_{k \in \Gamma(j) \setminus i} m_{kj}(x_j) \]
BP Algorithm

\[m_{ji}(x_i) \propto \int_{x_j} \psi_{ij}(x_i, x_j) \psi_j(x_j, y) \prod_{k \in \Gamma(j) \setminus i} m_{kj}(x_j) \, dx_j \]
Inference for Graphs with Cycles

- For graphs with cycles, the dynamic programming BP derivation breaks

Junction Tree Algorithm
- Cluster nodes to break cycles
- Run BP on the tree of clusters
- Exact, but often intractable

Loopy Belief Propagation
- Iterate local BP message updates on the graph with cycles
- Hope beliefs converge
- Empirically, often very effective
A Brief History of Loopy BP

• 1993: Turbo codes (and later LDPC codes, rediscovered from Gallager’s 1963 thesis) revolutionize error correcting codes (Berrou et. al.)

• 1995-1997: Realization that turbo decoding algorithm is equivalent to loopy BP (MacKay & Neal)

• 1997-1999: Promising results in other domains, & theoretical analysis via computation trees (Weiss)

• 2000: Connection between loopy BP & variational approximations, using ideas from statistical physics (Yedidia, Freeman, & Weiss)

• 2001-2007: Many results interpreting, justifying, and extending loopy BP
Pairwise Markov Random Fields

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

- Simple parameterization, but still expressive and widely used in practice
- Guaranteed Markov with respect to graph

\[\mathcal{E} \rightarrow \text{set of undirected edges } (s,t) \text{ linking pairs of nodes} \]
\[\mathcal{V} \rightarrow \text{set of } N \text{ nodes or vertices, } \{1, 2, \ldots, N\} \]
\[Z \rightarrow \text{normalization constant (partition function)} \]
Undirected Graphical Models

\[p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c) \]

- Parameterization exactly captures those non-degenerate distributions which are Markov with respect to this graph
- Sometimes restricted to maximal cliques, but this is not necessary

\(\mathcal{C} \rightarrow \) set of cliques (fully connected subsets) of nodes
\(\mathcal{E} \rightarrow \) set of undirected edges \((s, t)\) linking pairs of nodes
\(\mathcal{V} \rightarrow \) set of \(N \) nodes or vertices, \(\{1, 2, \ldots, N\} \)
\(Z \rightarrow \) normalization constant (partition function)
Factor Graphs

$$p(x) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_f(x_f)$$

- In a hypergraph, the hyperedges link arbitrary subsets of nodes (not just pairs)
- Visualize by a bipartite graph, with square (usually black) nodes for hyperedges
- A factor graph associates a non-negative potential function with each hyperedge
- Motivation: factorization key to computation

\[\mathcal{F} \longrightarrow \text{set of hyperedges linking subsets of nodes} \quad f \subseteq \mathcal{V}\]
\[\mathcal{V} \longrightarrow \text{set of } N \text{ nodes or vertices, } \{1, 2, \ldots, N\}\]
\[Z \longrightarrow \text{normalization constant (partition function)}\]
Factor Graphs & Factorization

\[p(x) = \frac{1}{Z} \prod_{f \in \mathcal{F}} \psi_f(x_f) \]

- For a given undirected graph, there exist distributions which have equivalent Markov properties, but different factorizations and different inference/learning complexities:
Pairwise Nearest-Neighbor MRF
Low Density Parity Check (LDPC) Code
Directed Graphs as Factor Graphs

Directed Graphical Model:

\[p(x) = \prod_{i=1}^{N} p(x_i \mid x_{\Gamma(i)}) \]

Corresponding Factor Graph:

\[p(x) = \prod_{i=1}^{N} \psi_i(x_i, x_{\Gamma(i)}) \]

- Associate one factor with each node, linking it to its parents and defined to equal the corresponding conditional distribution.
- Information lost: Directionality of conditional distributions, and fact that global partition function \(Z = 1 \).