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Some figures courtesy Michael Jordan'’s draft textbook,
An Introduction to Probabilistic Graphical Models



Minimizing Expected Loss

Y - y — unknown class or category, finite set of options
T € X — observed data, can take values in any space

A — y — action is to choose one of the categories
L(y7 CL) —— table giving loss for all possible mistakes

* The posterior expected loss of taking action a is
A
plalx) = Epyix) [L Z L(y, a)p(yx)

* The optimal Bayes decision rule is then

6(x) = arg min p(alx)

« Bayesian classification requires both model and loss



Minimizing Probability of Error

0 ifta=
L(y,a) =1(y # a) = { 1 ;f Z 7+ z

* The posterior expected loss of taking action a is

plalx) = Epyx) [L ZL y, a)p(y|x)

p(aIw)=p(a#y\w)—1—p(a—y\w)

« Optimal decision is the maximum a posteriori (MAP) estimate:

A

y(z) = argmaxp(y | x)
yey

 |If classes are equally likely a priori, this becomes

A

1
— 'f _
jlz) = argmaxp(z |y) it py) =7



Inference in Graphical Models

rrp —— oObserved evidence variables (subset of nodes)

T —— unobserved query nodes we'd like to infer

remaining variables, extraneous to this query
but part of the given graphical representation

p(a:E,a:F):Zp(a:E,a;F,a:R) R=V\A{E,F}

-CCR—»

Maximum a Posteriori (MAP) Estimates
Tp =argmaxp(rp | Tg) = argmax p(Tg, Tr)
xr xr

F F
Posterior Marginal Densities
TE,XT
pler | zg) = P(&p, Tr) p(rg) = ZP@EJF)

Provides Bayesian estimators, confidence measures,
and sufficient statistics for iterative parameter estimation



Directed Graphical Models

X
X, i
X3 X
)) — setof Nnodes or vertices, {1,2,..., N}

g —— set of oriented edges (s,¢) linking parents s to children ¢,
so that the set of parents of a node is

pa(t) =T'(t) ={se€ V| (s,t) € &}

XS — X — random variable associated with node s



Parameterization & Representation

0
X1
1

0
X3 1
1

Representational (storage, learning, computation) Complexity

« Joint distribution: Exponential in number of variables

* Directed graphical model: Exponential in number of
parents (“fan-in”) of each node, linear in number of nodes



Inference with Two Variables

QO @  xO

\
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r,y) = p(z)p(y

p(x,
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r () ' @
Table Lookup:

py |z =)
Bayes Rule:

| x

p(z|y=7g) ="



Naive Inference is Intractable

X4
X>

X,

X5 X
. Suppose each variable takes one of k discrete states:

p(z1, T2, . .. ZP 21)p(z2 | 71)p(73 | 21)p(24a | 22)p(25 | 23)p(T6 | T2, T5)

Costs O(k;) operatlons to update each of O(k®) table entries
» Use factorization and distributive law to reduce complexity:

= p(z)p(ws |21)p(as | 21)p(@a | 22)p(es | x3) Y plag | w2, 25)

Te



Inference in Directed Graphs
X4
X, R=1{2,3,4,5}

X

F={1 > E = {6}
p(x1 | Tg) =7 X6 = Tg
O—

X3 Xs

pla1,Z6) = > > > ¥ plar)pzs | z1)p(zs | z1)p(zs | 22)p(w5 | 23)p(Z6 | 22, 5)

r2 X3 T4 5

= pla1) ) _plaz|e1) ) plag|ar) Y pled|z2) Y plas|x3)p(@s | w2, x5)
= plz1) Y plra|z1) Y plos|z1) Y plas|z)ms(zs, z3)




Inference in Directed Graphs

X4
X, R=1{2,3,4,5}

X

F={1 > E = {6}
p(x1 | Tg) =7 X6 = Tg
O—

X3 X5

pla1,Z6) = > > > ¥ plar)pzs | z1)p(zs | z1)p(zs | 22)p(w5 | 23)p(Z6 | 22, 5)

r2 X3 T4 5

= plz1) Y _p@a|z) Y plas|z)ms(@e, a3) Y plws|zo)
p(z1) Y pza | z1)ma(w2) Y plas|z1)ms(zs, z3).

T2 T3




Inference in Directed Graphs
X4
X, R=1{2,3,4,5}

X

F={1 > E = {6}
p(x1 | Tg) =7 X6 = Tg
O—

X3 X5

pla1,Z6) = > > > ¥ plar)pzs | z1)p(zs | z1)p(zs | 22)p(w5 | 23)p(Z6 | 22, 5)

r2 X3 T4 5

= P(%)ZP(@|351)m4(1172)m3(11?1,$2)

T2

= p(z1)mao(zy).

p(ay | 7g) = PTm2(@1) p(zs) = 3 plar)ma(a)

le p(z1)ma(z1)




Evidence Potentials

= Zg(mi)(s(flfz‘,fti)‘ O(x;,x;) =11if x; = T,
5(xi, ;) = 0 if @; # 2,

me(Ta, T5) = ZP(IBG | T2, 25)0(x6,Tg) = 10(11_36 ’ L2, 5[;5)

Ie

Encoding observations via evidence potentials:

fUE fBE H5 xufvz ])E(w) é])("I")(S(IEEa='1_3E)
1€F

pler,ip) =) pler,z)d(ep, 2p)

TE

— Z Zp(.’l?p, rp)d(rp, TE).

TF TE

For undirected graphical models:

“a) & ] ¥4 () P () 2 (i) d(wi, 71)

ceC



Undirected Graphical Models

* Aclique is a fully connected subset of nodes

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) o H Ve(xe) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

It is possible, but not necessary, to restrict factorization only
to the maximal cliques (not strict subsets of other cliques)



Inference Iin Und)i(rected Graphs

X>
X, s
X3 Xs
p(r1,Z6) = %y:y:y:y:y:iﬁ(xla@)%b(wla1113)1#(11?2’374)¢($3,$5)¢($2,975,376)5(136,516)

oy T3 T4 T Te

%Zw(xl,xz) S (o, s) wzfﬁ(:cz,m) ;«p(xs,xs) ;w(xz,xs,m)é(me,fs)
_ %Zzﬁ(ml,xz)Zw(ml,xg);w(xg,xz;);¢(x3,$5)m6($2,m5)

- %Z¢<x1,x2);w(xl,w3>m5<x2,w3);wxz,m)

= 2 S U mma(en) 3 (e, ws)ms e, )

1

- %gw(xl,xg)m4(w2)m3(:r1,xz)= 2m2($1)



A Graph Elimination Algorithm

Algebraic Marginalization Operations

« Marginalize out the variable associated with sum node
« Compute a new potential table involving all other variables
which depend on the just-marginalized variable

Graph Manipulation Operations

 Remove, or eliminate, a single node from the graph
« Add edges (if they don’t already exist) between all pairs of
nodes who were neighbors of the just-removed node

A Graph Elimination Algorithm

« Choose an elimination ordering (query nodes should be last)

« Eliminate a node, remove its incoming edges, add edges
between all pairs of its neighbors

* lterate until all non-query nodes are eliminated



Graph Elimination Example
Elimination Order: (6,5,4,3,2,1)

X4 X4
X5 X>
X; X, X, X X,
X,



Graph Elimination Example
Elimination Order: (6,5,4,3,2,1)

X4 X4
X2 X2 X2
X3 X5 X3 X3
X

O %

508



Elimination Algorithm Complexity

X4
X>

X,

X3 Xs

Elimination cliques: Sets of neighbors of eliminated nodes
Marginalization cost: Exponential in number of variables in
each elimination clique (dominated by largest clique)
Treewidth of graph: QOver all possible elimination orderings,
the smallest possible max-elimination-clique size, minus one
NP-Hard: Finding the best elimination ordering for an
arbitrary input graph (but heuristic algorithms often effective)



Elimination Order Matters

O

S LI

O

Treewidth = 1 Treewidth = 2




Elimination in Undirected Trees

p(x)=— [ wsls,2e) [] vs(=s)

(s,t)eE seV

Cost linear in number of nodes, quadratic in number of states



Directed to Undirected Graphs

Directed Graph Moral Graph

MORALIZE(G)
for each node X; in I
connect all of the parents of X;
end
drop the orientation of all edges
return GG

* Moral graph links (“marries”) all parents with a common child
* Any directed graphical model factorizes according to the
cliques of the resulting undirected graph, and is thus Markov



Types of Graphical Models

Directed Factor Undirected



Factor Graphs Allow
Fine-grained Factorization
1
p(z) = - 1] vr(zy)
feFr
« Each potential, or factor, depends on a subset of nodes f

* Create factor nodes (black squares) linked to dependent
variable nodes, resulting in bipartite factor graph

%@ o@e @‘@




