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Some figures courtesy Michael Jordan'’s draft textbook,
An Introduction to Probabilistic Graphical Models



Undirected Graphs

)) — setof Nnodes or vertices, {1,2,..., N}

g —— set of undirected edges (s,7), or equivalently (z,s),
linking pairs of nodes. The neighbors of a node are

['(t) ={se V| (s,t) €&}

XS — X — random variable associated with node s



Undirected Graphical Models

) — setof Nnodes {1,2,...,N}

E — setofedges (s,t) connecting nodes s,t € V

Graph Separation

|

Conditional
Independence

p(za,zclzp) = p(zAlrB)P(TC|TB)
* Simple graph separation, no complexities of directed models.

* This global Markov property implies a local Markov property:

p(fli‘z' | mvv) — p(fliz' | xl“(i))



HMM as an Undirected Model
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p(z,y) = p(zo) || p(ze | ze—1)p(ye | z1)
t=1

“Conditioned on the present, the past and
future are statistically independent”



Nearest-Neighbor Grids
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Markov Properties in Trees



Directed Conditional Independence

p(za,zc | zB) =p(za | zB)p(2C | TB) A, C are independent given B
p(xa|zp,2c) =p(ra | TB) - A, B,CCV

GOAL: Characterize conditional independencies which hold
for all joint distributions which factorize as in a directed graph
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Marginally independent
XU1Z|Y XU1Z|Y but conditionally dependent!



Markov: Directed vs. Undirected

w
X Y
X Y
Z
Z
X LY |{W 2} X1lY
W 1Z|{X,Y}
Can represent one, but Graph separation implies
not both simultaneously, that we cannot represent
of these conditional unconditional independence,
independencies in a but conditional dependence,

single directed model. in an undirected model.



Pairwise Markov Random Fields

p@ly) = 1 baulasae) [] vows,v)

(s,t)e& seVy
) — setof Nnodes {1,2,...,N}

E — setofedges (s,t) connectingnodes s,t € V

7/, — normalization constant (partition function)

* Product of arbitrary positive pairwise potential functions

« Guaranteed Markov with respect to corresponding graph



Markov Chain Factorizations

1

p(x | y) = 7 H VYst(Ts, Tt) H Ys(s,y)
(s,t)e& seV

pro(zy,22) o~ Y23(r2,73) o~ ¥34(73,74)
O O O O
Y1 (1) Yo (x2) Y3(x3) Y4(x4)

O p(z2 | 1) ’Q p(z3 | 2) ’O p(za | 3) ’O
O‘ p(z2 | 23) O‘ p(z3 | z4) O

p(x4)
p(x1,z2) p(x2,x3) p(x3,74)

O p(z)p(z2)  »~ pla2)p(z3) M\ pz3)p(zs) O
—/ —/

p(x1) p(z2) p(x3) p(xa)




Energy Functions

p(z |y) = i H Ysi(xs, Tt) H Ys(xs,y)

Z (s,t)e& seV
1
— “Z“eXFM — Z bst(Ts, Tt) — Z ¢s(Ts,y) ¢
(s,t)e€ scV )
1

=, &P {—E(z)}

¢st(Ts, ) = — 09 Ysi(xs, Tt) ¢ps(rs) = —log Ps(xs)

* Interpretation inspired by statistical physics

« Justifications from probability (notational convenience)



What Distributions are Markov?

* Aclique is a fully connected subset of nodes

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) o H Ve(xe) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

It is possible, but not necessary, to restrict factorization only
to the maximal cliques (not strict subsets of other cliques)



Parameterization & Representation
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Representational (storage, learning, computation) Complexity

« Joint distribution: Exponential in number of variables

* Undirected graphical model: Exponential in number of
variables contained in the maximal cliques of the graph



Potential Confusions
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For graphs with cycles:

* Potential functions usually are not marginal probabilities

» Conditional distributions of nodes given neighbors cannot
be independently specified, and guarantee a valid joint



Types of Graphical Models

Directed Factor Undirected



