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Discrete Random Variables 
X
X

p(X = x)
p(x)

0  p(x)  1 for all x 2 X
X

x2X
p(x) = 1

discrete random variable 
sample space of possible outcomes, 
which may be finite or countably infinite 

x 2 X outcome of sample of discrete random variable 
probability distribution (probability mass function) 

shorthand used when no ambiguity 

uniform distribution degenerate distribution 

X = {1, 2, 3, 4}



Marginal Distributions 

p(x, y) =
X

z2Z
p(x, y, z)

p(x) =
X

y2Y
p(x, y)



Conditional Distributions 

p(x, y | Z = z) =
p(x, y, z)

p(z)



Independent Random Variables 

p(x, y) = p(x)p(y)

X ? Y

for all x 2 X , y 2 Y

Equivalent conditions on conditional probabilities: 
p(x | Y = y) = p(x) and p(y) > 0 for all y 2 Y
p(y | X = x) = p(y) and p(x) > 0 for all x 2 X



Bayes Rule (Bayes Theorem) 
p(x, y) = p(x)p(y | x) = p(y)p(x | y)

p(x | y) = p(x, y)

p(y)
=

p(y | x)p(x)P
x

02X p(x0)p(y | x0)

•  A basic identity from the definition of conditional probability 
•  Used in ways that have nothing to do with Bayesian statistics! 
•  Typical application to learning and data analysis: 

X unknown parameters we would like to infer 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) 

posterior distribution (learned information) 

Y = y
p(x)

p(y | x)
p(x | y)

/ p(y | x)p(x)



Binary Random Variables 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

Ber(x | ✓) = ✓

�(x,1)(1� ✓)�(x,0)

X = {0, 1}
0  ✓  1

Binomial Distribution:  Toss a single (possibly biased) coin 
n times, and record the number k of times it comes up heads 

0  ✓  1
K = {0, 1, 2, . . . , n}

Bin(k | n, ✓) =
✓

n
k

◆
✓k(1� ✓)n�k

✓
n
k

◆
=

n!

(n� k)!k!



Binomial Distributions 
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Categorical Random Variables 
Multinoulli Distribution:  Single roll of a (possibly biased) die 

X = {0, 1}K ,

KX

k=1

xk = 1

✓ = (✓1, ✓2, . . . , ✓K), ✓k � 0,
KX

k=1

✓k = 1

binary vector 
encoding 

Cat(x | ✓) =
KY

k=1

✓

xk
k

Multinomial Distribution:  Roll a single (possibly biased) die 
n times, and record the number nk of each possible outcome 

nk =
nX

i=1

xikMu(x | n, ✓) =
✓

n

n1 . . . nK

◆ KY

k=1

✓

nk
k



Directed Acyclic Graphs (DAGs) 

set of N nodes or vertices,  

set of oriented edges  (s,t)  linking parents s to children t, 
so that the set of parents of a node is 

1X

2X

3X

X 4

X 5

X6

{1, 2, . . . , N}V
E

pa(t) = �(t) = {s 2 V | (s, t) 2 E}

random variable associated with node s 
Xs = xs



Directed Graphical Models 
Chain rule implies that any joint distribution equals: 

Directed graphical model implies a restricted factorization: 

pa(t) ! parents with edges pointing to node t
nodes ! random variables

Valid for any directed acyclic graph (DAG): 
equivalent to dropping conditional 
dependencies in standard chain rule 



Name That Model 

Naïve Bayes: 



Tree-Augmented Naïve Bayes 



Parameterization & Representation 
0

1

0 1
2x

4x

0
1

x 1

0

1

0 1
x 1

2x

0

1

0 1

3x

x 1

5x 0

1

0 1
3x

0
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0 1

0
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6x
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5x

1X

2X

3X

X 4

X 5

X6

Representational (storage, learning, computation) Complexity 
•  Joint distribution:  Exponential in number of variables 
•  Directed graphical model:  Exponential in number of 

parents (“fan-in”) of each node, linear in number of nodes 



Shading & Plate Notation 

Naïve Bayes Inference: 

Convention:  Shaded nodes are observed, open nodes are latent/hidden 

Y 

Xj 
D 

Plates denote 
replication of 
random variables 



Learning and Unknown Parameters 

p(⇡)

2

4
CY

c=1

DY

j=1

p(✓cj)

3

5
NY

i=1

2

4
p(yi | ⇡)

DY

j=1

p(xij | yi, ✓j1, . . . , ✓jC)

3

5



Example: Markov Chains 

Markov Property 
Conditioned on the present, the past and future are independent 

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · ·



Graphical Models vs. State Diagrams 

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · ·

Graphical Model:  One node per time point 

xt 2 {1, 2, . . . ,K}

State Transition Matrix: A 2 RK⇥K
, Aij = p(xt = j | xt�1 = i)

State Transition Diagram:  One node per discrete state 

Not a graphical model!  Interesting when state transition matrix is sparse. 

Interesting when Markov chain is part of a more complex model. 



Hidden Markov Models (HMMs) 

zt ! Hidden states taking one of K discrete values 

xt ! Observations taking values in any space 

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Discrete: 
 
Continuous Gaussian: 
 
Or any convenient family, e.g. an exponential family… 

p(xt = ` | zt = k) = Bk`

M observation symbols ! B 2 RK⇥M

p(xt | zt = k) = N (xt | µk,⌃k)



Examples:  Sequence Labeling in NLP 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

M. Johnson, 2009 



Example:  Discrete Language HMM 

M. Johnson, 2009 

start 
state 

terminal 
state 

buy a pan 
eat the flour 
buy flour eat the flour buy pan eat a pan 



Example:  3-State Gaussian HMM 

xt
zt

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

State 1 State 2 

State 3 



Gaussian Mixture Models 
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Mixture models are a special case of HMMs, in which the 
state transition distribution happens to not depend on the 
previous state, and becomes the mixture prior probability. 



Gaussian Mixture Models vs. HMMs 
z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Mixture 
Model 

p(xi | zi,⇡, µ,⌃) = Norm(xi | µzi ,⌃zi)

p(zi | ⇡, µ,⌃) = Cat(zi | ⇡)

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

Hidden 
Markov 
Model 

p(zt | ⇡, µ,⌃, zt�1, zt�2, . . .) = Cat(zt | ⇡zt�1)
p(xt | zt,⇡, µ,⌃) = Norm(xt | µzt ,⌃zt)

Recover mixture model when all rows of state transition matrix are equal. 

zi 2 {1, . . . ,K}



Learning Mixture Models 



Graphs and Independence 

p(x, y) = p(x)p(y)

X ? Y

for all x 2 X , y 2 Y

x

y
x

y
x

y

p(x, y) = p(x)p(y | x)
p(x, y) = p(y)p(x | y)

p(x, y) = p(x)p(y)



Conditional Independence 
A,B,C ✓ V

X Y Z X Y Z

(a) (b)

X Y Z X Y Z

(a) (b)

X Y Z X Y Z

(a) (b)

GOAL:  Characterize conditional independencies which hold 
for all joint distributions which factorize as in a directed graph 

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z X

Y

Z

(b)

X Y Z X Y Z

(a) (b)

(a) (b)

X

Y

Z

X Z

(a)

X

Y

Z X

Y

Z

(b)

(a) (b)

X

Y

Z

X Z

Marginally independent  
but conditionally dependent! 

p(xA, xC | xB) = p(xA | xB)p(xC | xB)

p(xA | xB , xC) = p(xA | xB)

A, C are independent given B 



Reachability:  Bayes Ball Algorithm 

Place a ball at each node A, allow to bounce around graph 
according to rules below, check whether any balls reach nodes C.  

We interpret observed (shaded) nodes B as follows:  

X Y Z X Y Z

(a) (b)

X Y Z X Y Z

(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y
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X
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X
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X
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X
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X

Y

Z X
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(a)

X

Y

Z

(b)

X

Y

Z

A,B,C ✓ V
p(xA, xC | xB) = p(xA | xB)p(xC | xB)

p(xA | xB , xC) = p(xA | xB)

A, C are independent given B 



Bayes Ball Examples 

(a) (b)

X Y X Y

(a) (b)

X Y X Y
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aliens

late

watch

Explaining Away 



Example: Medical Diagnosis 

Parameterization: Noisy-OR, logistic regression, generalized 
linear models… 


