Probabilistic
Graphical Models

Special Topics in Machine Learning
Brown University CSCI 2950-P, Spring 2013
Tuesdays & Thursdays, 1:00-2:20pm, CIT506

Instructor: Erik Sudderth
Teaching Assistant: Jason Pacheco
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Learning from Structured Data
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Hidden Markov Models (HMMs)

Visual Tracking
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“Conditioned on the present, the past and
future are statistically independent”



Kinematic Hand Tracking

Nl
/

Kinematic Structural
Prior Prior




Dynamic Bayesian Networks
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Nearest-Neighbor Grids
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« Bandpass decomposition
of images into multiple
scales & orientations

* Dense features which
simplify statistics of
natural images



Hidden Markov Trees

* Hidden states model
evolution of image
patterns across scale and
location



Medical Diagnosis

diseases
d] dn

O
] I
findings

Parameterization: Noisy-OR, logistic regression, generalized
linear models...



Low Density Parity Check
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Sensor localization
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Sensor localization




Example Data for a Topic Model

Poisoning by ice-cream.

No chemist certainly would suppose that the same
poison exists in all samples of ice-cream which have
produced untoward symptoms in man. Mineral poi-
sons, copper, lead, arsenic, and mercury, have all
been found in ice cream. In some instances these
have been used with criminal intent. In other cases
their presence has been aceidental. Likewise, that
vanilla is sometimes the bearer, at least, of the poi-
son, is well known to all chemists. Dr. Bartley’s
idea that the poisonous properties of the cream which
he examined were due to putrid gelatine is certainly
a rational theory. The poisonous principle might in
this case arise from the decomposition of the gelatine ;
or with the gelatine there may be introduced into the
milk a ferment, by the growth of which a poison is
produced.

But in the cream which I examined, none of the

above sources of the poisoning existed. There were.

no mineral poisons present.
had been used in making the cream. The vanilla
used was shown to be not poisonous. This showing
was made, not by a chemical analysis, which might
not have been conclusive, but Mr. Novie and I drank
of the vanilla extract which was used, and no ill re-
sults followed. Still, from this cream we isolated
the same poison which I had before found in poison-
ous cheese (Zeitschrift fiir physiologische chemie, x,

No gelatine of any kind

The kinetoplastid flagellates, together
with their sister group of euglenoids, repre-
sent the earliest extant lineage of eukaryot-
ic organisms containing mitochondria (1).
Within the kinetoplastids, there are two
major groups, the poorly studied bodonids-
cryptobiids, which consist of both free-liv-
ing and parasitic cells, and the better
known trypanosomatids, which are obligate
parasites (2).

trypanosomatid lineage, these cells possess
several unique genetic fea-

tures (see accompanying Per-
spective by Nilsen)—one of
which is RNA editing of mi-
tochondrial transcripts. This
RNA editing function (3-7)
creates open reading frames
in “cryptogenes” by insertion
(or occasional deletion) of
uridine (U) residues at a few

tion
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ture of the primary parasitic host. The “in-  nucle

vertebrate first” model (10, 11) states that  as an

the initial parasitism was in the gut of pre-  tical

Cambrian invertebrates. Coevolution of . Trypc

parasite and host would have led to a wide  the t
distribution of trypanosomatids in insects by th
and leeches. In this theory, digenetic life  fish

cycles (alternating invertebrate and verte-  tutes
brate hosts) evolved later as a result of the  trypal
Perhaps because of the antiquity of the  acquisition by some hemipterans and  branc
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specific sites within the cod-
ing region of an mRNA (5'-
editing) or at multiple spe-
cific sites throughout the

mRNA  (pan-editing). The
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Chaotic Beetles

Charles Godfray and Michael Hassell

Ecologists have known since the pioncering
work of May in the mid-1970s (I) that the
population dynamics of animals and plants
can be exceedingly complex. This complex-
ity arises from two sources: The tangled web
of interactions that constitute any natural
community provide a myriad of different
pathways for species to interact, both di
rectly and indirectly. And even in isolated
populations the nonlinear feedback pro-
cesses present in all natural populations can
result in complex dynamic behavior. Natural
populations can show persistent oscillatory
dynamics and chaos, the latter characterized
by extreme sensitivity to initial conditions. If
such chaotic dynamics were common in na-
ture, then this would have important ramifi
cations for the management and conserva-
tion of natural resources. On page 389 of this
issue, Costantino et al. (2) provide the most

The authors are in the Departme: logy, Imperial
College at Silwood Park 57PZ UK. E
mail m.hy

convincing evidence to date of
complex dynamics and chaos
in a biological population—of
the flour beetle, Tribolium
castaneum (see figure).

It has proven extremely dif-
ficult to demonstrate complex
dynamics in populations in the
field. By its very nature, a cha-
otically fluctuating population
will superficially resemble a
stable or cyclic population buf-
fered by the normal random per-
turbations experienced by all
species. Given a long enough
time series, diagnostic tools
from nonlinear mathematics

move over the surface of the attractor, sets of
adjacent trajectories are pulled apart, then
stretched and folded, so that it becomes im-
possible to predict exact population densities
into the future. The strength of the mixing
that gives rise to the extreme sensitivity to
initial conditions can be measured math-
ematically estimating the Liapunov expo-
nent, which is positive for cha-
otic dynamics and nonposi-
tive otherwise. There have been
many attempts to estimate at-
tractor dimension and Liap
unov exponents from time se-
ries data, and some candidate
chaotic population have been
identified (some insects, ro-
dents, and most convine-
ingly, human childhood dis-
cases), but the statistical diffi-
culties preclude any broad

approach is
population
models with data from natural

can be used to identify the rell-
tale signatures of chaos. In phase
space, chaotic trajectories come
to lie on “strange attractors,”
curious geometric objects with
fractal structure and hence
noninteger dimension. As they

SCIENCE e VOL. 275 ¢ 17 JANUARY 1997

Cannibalism and chaos.
The flour beetle, Tribo-

namics when the amount
of cannibalism is altered
in @ mathematical model.

populations and then compare
their predictions with the dy-
namics in the field. This tech-
nique has been gaining popu-
larity in recent years, helped by
statistical advances in pa
rameter estimation. Good ex-

exhibits
on  dy-

323

e Our data are the pages Science from 1880-2002 (from JSTOR
e No reliable punctuation, meta-data, or references.
e Note: this is just a subset of JSTOR’s archive.

D. Blei, 2008



Example Output: 4 Topics

human evolution disease computer
genome evolutionary host models
dna species bacteria information
genetic Organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis simulations

Columns sorted by probability of word given topic.
D. Blei, 2008



LDA: Intuition

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anorganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The
other rescarcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don'’t

match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE o VOL. 272 & 24 MAY 1996

Every document discusses a mixture of multiple topics.
D. Blei, 2008

goname
1703 genes

My_cap[asmé
_._genome
469 genes

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
80C number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains

Arcady Mushegian, a computational mo-
lecular biologist at the National Center
for Biotechnology Information (NCBI)
in Bethesda, Maryland. Comparing an

Redundant and

( Related and
Genes parasite-specific modern genes
needed genes removed removed
for biochemical -4 genes —-122 genes

pathways
+22 genes / /
. : i Minimat
M gi?gs' A gene set @ffi
: 250 genes
Ancestral
gene set

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

ADAPTED FROM NCBI



LDA: Generative Model

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anjorganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life:
One research team, using computer analy
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes
in a simple parasite and esti
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

Haemophilus
genome
.. 1703 genes.

Mycoplasma
genome
469 genes

* Genome Mapping and Sequenc-

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
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sequenced. “It may be a way of organizimg
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo
lecular biologist at the Natiqgal Center
for Biotechnology Information tNCBI)
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Stripping down. Computer analysis yields an esti-
May 8 to 12.

mate of the minimum modern and ancient genomes.

SCIENCE e VOL. 272 ¢ 24 MAY 1996

e Cast these intuitions into a generative probabilistic process
e Each document is a random mixture of corpus-wide topics

e Each word is drawn from one of those topics
D. Blei, 2008



LDA: Graphical Model

Per-word
topic assignment

Dirichlet
parameter

Per-document

|

Observed

topic proportions word

|
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D. Blei, 2008



Graphical Models

Directed Undirected
Bayesian Network Factor Graph Graphical Model



Undirected Graphical Models

An undirected graph G is defined by
) — setof Nnodes {1,2,...,N}

E — setofedges (s,t) connecting nodes s,t € V

Nodes s € V are associated with random variables g

Graph Separation

|

Conditional
Independence

p(za, zolrg) = p(zalep)p(zc|zB)



Inference in Graphical Models
p@ly) = I] wsCes) I ol m)

seV (s,t)e€

Yy —— observations (implicitly encoded via compatibilities)

Maximum a Posteriori (MAP) Estimates
T =argmax p(z |y)
xXr

Posterior Marginal Densities

pe(ze |y) = ) plz]|y)

LY\t
* Provide both estimators and confidence measures

 Sufficient statistics for iterative parameter estimation



Why the Partition Function?
Z=> Il vs(xs) 11 wst(zs,xt)

T sey (s,t)e&

Statistical Physics
« Sensitivity of physical systems to external stimuli

Hierarchical Bayesian Models
« Marginal likelihood of observed data

« Fundamental in hypothesis testing & model selection

Cumulant Generating Function

* For exponential families, derivatives with respect
to parameters provide marginal statistics

PROBLEM: Computing Z in general graphs is NP-complete



Exact Inference

MESSAGES: Sum-product or belief propagation algorithm
mis(xs) = a Y si(xs, z)Pi(ze,y) [ mue(ae)
Lt

uel (t)\s
y M
O— O
Ts Lt =
(2 ()
Computational cost: e 0 ® ®

N —— number of nodes
M — discrete states

fOfeaChl’g)de O0OO000000O0OO0OO0OO0OOOOO
Belief Prop: O(INM*)

Brute Force: O(M™)



Continuous Variables
m;i(z;) OC/'%,?;(%',%'W@'(%,?J) 1T mgi(es) de;
i kel (3)\j
Discrete State Variables

» Messages are finite vectors

» Updated via matrix-vector products
Gaussian State Variables

» Messages are mean & covariance

» Updated via information Kalman filter
Continuous Non-Gaussian State Variables

» Closed parametric forms unavailable

» Discretization can be intractable even
with 2 or 3 dimensional states



Variational Inference: An Example

1

p(x | y) = 7 H Yst(xs, Tt) H VYs(Ts,y)
(s,t)e& seV

* Choose a family of approximating distributions
which is tractable. The simplest example:
q(x) = H gs(xs)
sey
« Define a distance to measure the quality of different
approximations. One possibility:

. . q(x)
D(q ||l p) = ;Q( ) log oz | )

* Find the approximation minimizing this distance



Advanced Variational Methods

« Exponential families

* Mean field methods: naive and structured
 Variational EM for parameter estimation

* Loopy belief propagation (BP)

* Bethe and Kikuchi entropies

» Generalized BP, fractional BP

» Convex relaxations and bounds

 MAP estimation and linear programming



Markov Chain Monte Carlo

- (0) o (1) (2) 2D gz | 2

At each time point, state 21 s a configuration of all the
variables in the model: parameters, hidden varlables etc.

+ We design the transition distribution ¢(z | 2*)) so that
the chain is irreducible and ergodic, with a unique
stationary distribution p*(2)

P ()= [ ale | () d

* For learning, the target equilibrium distribution is usually the
posterior distribution given data x: p*(z) = p(z | x)
« Popular recipes: Metropolis-Hastings and Gibbs samplers



Sequential Monte Carlo

Particle Filters, Condensation, Survival of the Fittest,...

* Nonparametric approximation

to optimal BP estimates — O

* Represent messages and Lt—1 Tt Y141
posteriors using a set of
samples, found by simulation

Samp/e-ba; density estimate H m I m Mﬂﬂ I T

my_1 ()
l -1t

Weight by observation likelihood M
l /P50 A S ENNICD
@mple & propagate by dynamics [ m ]I H "m H T

me 141 ($t+1)




Course Evaluation

Homeworks: 60%

* Four equally weighted assignments
« Each assignment available for two weeks before due date

« Combine mathematical derivations, algorithm design,
programming, and analysis of real datasets
» Multiscale models of images, objects, visual scenes
» Particle filters for localization and tracking

» Topic models of text document collections
> ...

Final Project: 40%

* Proposal: 1-3 pages, due on March 22 (5%)
* Presentation: ~10 minutes, on May 7 (10%)
« Conference-style technical report, due on May 13 (25%)



Final Projects

Best case: Application of course
material to your own area of research

Key Requirements: Novel use of graphical models

* |dentify a family of graphical models suitable for a
particular application, try baseline learning algorithms

* Propose, develop, and experimentally test a new type of
graphical learning or inference algorithm

« Experimentally compare different models or algorithms on
an interesting, novel dataset

* There will not be a list of projects to choose from.
You must propose your own (with the instructor’s advice).
We will include pointers to many research papers with
relevant applications.



Changes from Previous Years

Readings from books & in-depth tutorials,
not recent research papers. More accessible.

No reading comments or student presentation
of research papers. Course staff will lecture.

Homework assignments require mathematical
derivations and algorithm implementation.

Subject matter: Probabilistic Graphical Models

»Fall 2011 topic was Applied Bayesian
Nonparametrics, may repeat for credit

»Spring 2010 topics similar. You are welcome to
(officially) audit, but see me about taking for credit.



Textbook & Readings

An Introduction to Probabilistic Graphical Models

Michael I. Jordan
Unwwversity of California, Berkeley

Draft textbook by Michael |. Jordan, available as a printed
course reader, more details soon...

Variational tutorial by Wainwright and Jordan (2008)
Background chapter of Prof. Sudderth’ s thesis

Tutorial articles on Markov chain Monte Carlo, particle filters
A few other papers for advanced topics...



Course Prerequisites

A course in modern statistical machine learning
» Brown CSCI| 1950F: Intro to Machine Learning

» Brown APMA 1690: Computational Probability
and Statistics (also APMA 2690)

» Possibly other classes or experience...
Programming experience (Matlab, Java, ...)

Readings will require “mathematical maturity”

Insufficient background by themselves:
» Brown CSCI 1410: Introduction to Al
» Traditional undergrad statistics (APMA 1650/1660)



Prereq: Intro Machine Learning

Supervised Learning  Unsupervised Learning

reduction

S assificati

g classification or clustering
& categorization

Q

)

S

S di onalit
2 regression imensionality
e

S

S,

O

« Bayesian and frequentist estimation
* Model selection, cross-validation, overfitting
« Expectation-Maximization (EM) algorithm



4 PATTERN RECOGNITION fg
o MACHINE LEARNING §
CHRISTOPHER M. BISHOP F

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

You will probably want a copy of one of these books...



Shading & Plate Notation

Plates denote
AX} replication of

random variables

p(z;ly)

Naive Bayes Inference:

||’,:]®

Convention: Shaded nodes are observed, open nodes are latent/hidden



Supervised Learning

Generative ML or MAP Learning: Naive Bayes
N

max logp(m) 4 log p(6 +Z logp(yi | ™) +logp(x; | yi,0)]

6.
&

Train Test Train Test

Discriminative ML or MAP Learning: Logistic regression

max log p(f) + ;logp(yi | 2, 0)



Learning via Optimization

ML Estimate: W = arg min — Zlogp Yi | i, w)

MAP Estimate: w = arg mm — logp Zlogp Yi | x5, w)
Gradient vectors:
f:RM 5 R Vo £ () = 8 f(w)
V,f:RM - RM dwy
Hessian matrices:
0% f(w
VR RM RN (Vuf ()= gt

Optimization of Smooth Functions:

* Closed form: Find zero gradient points, check curvature
» [terative: Initialize somewhere, use gradients to take steps
towards better (by convention, smaller) values



Clustering:

1 1 1 VA 7 19
max log p() + log p(0 Zog[ZPNW (i | 2 )]

Dimensionality Reduction:

ma@x log p(m) + log p(0) + Zlog [/ (zi | m)p(x; | 24, 0) dzz-] N

Unsupervised Learning

No notion of training and test data: labels are never observed
As before, maximize posterior probability of model parameters
For hidden variables associated with each observation, we
marginalize over possible values rather than estimating

* Fully accounts for uncertainty in these variables

* There is one hidden variable per observation, so cannot

perfectly estimate even with infinite data
Must use generative model (discriminative degenerates)



Expectation Maximization (EM)

ON

N

Supervised

Training
mw,0 —— parameters (define low-dimensional manifold)
., RN = hidden data (locate observations on manifold)

ARERE

Supervised
Testing

ON

Unsupervised
Learning

Initialization: Randomly select starting parameters
E-Step: Given parameters, find posterior of hidden data

« Equivalent to test inference of full posterior distribution
M-Step: Given posterior distributions, find likely parameters

« Similar to supervised ML/MAP training

Iteration: Alternate E-step & M-step until convergence



Gaussian Mixture Models vs. HMMs

Mixture @ ze{l, ..., K}
Model

Hidden @ (22 Z3) 24 Zo)y---»
Markov

Model

p(Zt ‘ T, L, 27 Rt—1y 2At—2, - - ) — Cat(zt | 7-‘-Zt—l)
p(CE’t | Zty Ty [y E) — NOI’IIl(CIZ‘t ‘ Fozy s Zzt)

Recover mixture model when all rows of state transition matrix are equal.



Probabilistic PCA & Factor Analysis

 Both Models: Data is a linear function of low-dimensional
latent coordinates, plus Gaussian noise

pos 5,0 = NGos | Wei+,9) (s 0) = Nz 0.1
p(oe | 0) = N | m WWT +9) - it

« Factor analysis: VW is a general diagonal matrix
- Probabilistic PCA: U = ¢“] is a multiple of identity matrix

7
P4
,I
y\\/
//
/
/
/
/
} >

> >
z X1 X1

C. Bishop, Pattern Recognition & Machine Learning

Z2

)



A Quick Poll



Administration

Registration: E-mail sudderth@cs.brown.edu with

* Your name and CS logon
* Your department, major, and year

* Your background in statistical machine learning
» If you've taken Brown courses, just say which ones
» Otherwise, a few sentences about your experience

Course webpage: Up now, watch for more information

http.://cs.brown.edu/courses/csci2950-p/index.html

Readings for Tuesday:

* Graphical Models, M. Jordan, Stat. Science 2004.
« Chapter 2 from textbook (available soon)



