Applied Bayesian Nonparametrics

Special Topics in Machine Learning
Brown University CSCI 2950-P, Fall 2011

December 6: Course Review & Outlook
Nonparametric Clustering

- **Large Support:** All partitions of the data, from one giant cluster to N singletons, have positive probability under prior

- **Exchangeable:** Partition probabilities are invariant to permutations of the data

- **Desirable:** Good asymptotics, computational tractability, flexibility and ease of generalization…

Ghahramani,
BNP 2009
Chinese Restaurant Process (CRP)

\[p(z_{N+1} = z \mid z_1, \ldots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^{K} N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right) \]
Distance Dependent CRP

- **Good**: Simple, computationally easy generalization which can make clustering depend on any feature: time, space, …
- **Tricky**: Relationship between local distance and global clustering behavior hard to analyze (no marginal invariance)

Blei & Frazier, JMLR 2011
Finite Dirichlet Mixtures

\[p(\theta) = \frac{\prod_{k=1}^{K} \theta_k^{\alpha_k-1}}{D(\alpha_1, \alpha_2, \ldots, \alpha_K)} \]

\[D(\alpha_1, \alpha_2, \ldots, \alpha_K) = \int_{\Delta_K} \prod_{k=1}^{K} \theta_k^{\alpha_k-1} d\theta = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)} \]

\[D\left(\frac{\alpha}{K}, \frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right) = \frac{\Gamma\left(\frac{\alpha}{K}\right)^{K}}{\Gamma(\alpha)} \]

\[P(c) = \int_{\Delta_K} \prod_{i=1}^{n} P(c_i|\theta)p(\theta) d\theta = \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma\left(\frac{\alpha}{K}\right)^{K}} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

Marginal likelihoods generally expressed as ratios of normalizers
From Assignments to Partitions

\[P(c) = \int_{\Delta_K} \prod_{i=1}^{n} P(c_i|\theta)p(\theta) \, d\theta = \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

\[= \left(\frac{\alpha}{K} \right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K}) \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

\(K_+ \) is the number of classes for which \(m_k > 0 \)

There are \(K^N \) possible values for \(c \)

\(P(c) \to 0 \) as \(K \to \infty \)

Instead look at label equivalence classes:

\[K = K_0 + K_+ \]

\[P([c]) = \sum_{c \in [c]} P(c) = \frac{K!}{K_0!} \left(\frac{\alpha}{K} \right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K}) \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]
An Infinite Limit

\[K = K_0 + K_+ \]

\[P(\{c\}) = \sum_{c \in \{c\}} P(c) = \frac{K!}{K_0!} \left(\frac{\alpha}{K} \right)^{K_+} \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K}) \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

\[\lim_{K \to \infty} \alpha^{K_+} \cdot \frac{K!}{K_0! K^{K_+}} \cdot \left(\prod_{k=1}^{K_+} \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K}) \right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

\[= \alpha^{K_+} \cdot 1 \cdot \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \cdot \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)} \]

• **Good:** Recover the CRP as an infinite limit of a standard, widely studied parametric model.

• **Tricky:** Dealing with equivalence classes in the infinite limit, which becomes harder for more complex models
De Finetti’s Theorem

• Finitely exchangeable random variables satisfy:
 \[p(x_1, \ldots, x_N) = p(x_{\tau(1)}, \ldots, x_{\tau(N)}) \quad \text{for any permutation } \tau(\cdot) \]

• A sequence is infinitely exchangeable if every finite subsequence is exchangeable

• Exchangeable variables need not be independent, but always have a representation with conditional independencies:

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random variables \(\{x_i\}_{i=1}^{\infty}, \; x_i \in \mathcal{X} \), there exists some space \(\Theta \), and corresponding density \(p(\theta) \), such that the joint probability of any \(N \) observations has a mixture representation:

\[
 p(x_1, x_2, \ldots, x_N) = \int_{\Theta} p(\theta) \prod_{i=1}^{N} p(x_i \mid \theta) \, d\theta
\]

(2.77)

When \(\mathcal{X} \) is a \(K \)-dimensional discrete space, \(\Theta \) may be chosen as the \((K - 1)\)-simplex. For Euclidean \(\mathcal{X} \), \(\Theta \) is an infinite-dimensional space of probability measures.

An explicit construction is useful in hierarchical modeling…
De Finetti’s Directed Graph

![Diagram](image)

\[p(x_1, \ldots, x_N, \theta \mid \lambda) = p(\theta \mid \lambda) \prod_{i=1}^{N} p(x_i \mid \theta) \]

What distribution underlies the infinitely exchangeable CRP?
For any finite partition

\[\bigcup_{k=1}^{K} T_k = \Theta \]

\[T_k \cap T_\ell = \emptyset \quad k \neq \ell \]

the distribution of the measure of those cells is Dirichlet:

\[(G(T_1), \ldots, G(T_K)) \sim \text{Dir}(\alpha H(T_1), \ldots, \alpha H(T_K)) \]
Proposition 2.5.1. Let $G \sim \text{DP}(\alpha, H)$ be a random measure distributed according to a Dirichlet process. Given N independent observations $\bar{\theta}_i \sim G$, the posterior measure also follows a Dirichlet process:

$$p(G \mid \bar{\theta}_1, \ldots, \bar{\theta}_N, \alpha, H) = \text{DP}
\left(
\alpha + N, \frac{1}{\alpha + N}
\left(
\alpha H + \sum_{i=1}^{N} \delta_{\bar{\theta}_i}
\right)
\right)$$

(2.169)

Proof Hint: For any finite partition, we have

$$p((G(T_1), \ldots, G(T_K)) \mid \bar{\theta} \in T_k) = \text{Dir}(\alpha H(T_1), \ldots, \alpha H(T_k) + 1, \ldots, \alpha H(T_K))$$

An observation must be of one of the countably infinite atoms which compose the random Dirichlet measure.
My variation on the classical balls in urns analogy:

- Consider an urn containing α pounds of very tiny, colored sand (the space of possible colors is Θ)
- Take out one grain of sand, record its color as $\tilde{\theta}_1$
- Put that grain back, add 1 extra pound of that color
- Repeat this process…

Theorem 2.5.4. Let $G \sim \text{DP}(\alpha, H)$ be distributed according to a Dirichlet process, where the base measure H has corresponding density $h(\theta)$. Consider a set of N observations $\tilde{\theta}_i \sim G$ taking K distinct values $\{\theta_k\}_{k=1}^K$. The predictive distribution of the next observation then equals

$$p(\tilde{\theta}_{N+1} = \theta | \tilde{\theta}_1, \ldots, \tilde{\theta}_N, \alpha, H) = \frac{1}{\alpha + N} \left(\alpha h(\theta) + \sum_{k=1}^{K} N_k \delta(\theta, \theta_k) \right)$$

where N_k is the number of previous observations of θ_k, as in eq. (2.179).
DPs are Neutral: “Almost” independent

The distribution of a random probability measure G is neutral with respect to a finite partition (T_1, \ldots, T_K) iff

$$G(T_k) \quad \text{is independent of} \quad \left\{ \frac{G(T_\ell)}{1 - G(T_k)} \mid \ell \neq k \right\}$$

given that $G(T_k) < 1$.

Theorem 2.5.2. Consider a distribution \mathcal{P} on probability measures G for some space Θ. Assume that \mathcal{P} assigns positive probability to more than one measure G, and that with probability one samples $G \sim \mathcal{P}$ assign positive measure to at least three distinct points $\theta \in \Theta$. The following conditions are then equivalent:

(i) $\mathcal{P} = \text{DP}(\alpha, H)$ is a Dirichlet process for some base measure H on Θ.

(ii) \mathcal{P} is neutral with respect to every finite, measurable partition of Θ.

(iii) For every measurable $T \subset \Theta$, and any N observations $\bar{\theta}_i \sim G$, the posterior distribution $p(G(T) \mid \bar{\theta}_1, \ldots, \bar{\theta}_N)$ depends only on the number of observations that fall within T (and not their particular locations).
The Stick-Breaking Construction: DP Realizations are Discrete

Theorem 2.5.3. Let \(\pi = \{\pi_k\}_{k=1}^{\infty} \) be an infinite sequence of mixture weights derived from the following stick-breaking process, with parameter \(\alpha > 0 \):

\[
\beta_k \sim \text{Beta}(1, \alpha) \quad k = 1, 2, \ldots \tag{2.174}
\]

\[
\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell) = \beta_k \left(1 - \sum_{\ell=1}^{k-1} \pi_\ell \right) \tag{2.175}
\]

Given a base measure \(H \) on \(\Theta \), consider the following discrete random measure:

\[
G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \quad \theta_k \sim H \tag{2.176}
\]

This construction guarantees that \(G \sim \text{DP}(\alpha, H) \). Conversely, samples from a Dirichlet process are discrete with probability one, and have a representation as in eq. (2.176).
DP Stick-Breaking Construction

\[p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k) \]

\[\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell) \]

\[\beta_k \sim \text{Beta}(1, \alpha) \]

Stick-Breaking Construction: Sethuraman, 1994
Dirichlet Stick-Breaking

\[\nu_k \sim \text{Beta}(1, \alpha) \]

\[E[\nu_k] = \frac{1}{1 + \alpha} \]

- \(\alpha = 1 \)
- \(\alpha = 10 \)
DP Mixture Models

\[p(x \mid \pi, \theta_1, \theta_2, \ldots) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k) \]

\[G'(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \]

\[\pi \sim \text{GEM}(\alpha) \]

\[\theta_k \sim H(\lambda) \quad k = 1, 2, \ldots \]

\[\bar{\theta}_i \sim G \]

\[x_i \sim F(\bar{\theta}_i) \]

\[z_i \sim \pi \]

\[x_i \sim F(\theta_{z_i}) \]
Samples from DP Mixture Priors
Samples from DP Mixture Priors
Samples from DP Mixture Priors
Views of the Dirichlet Process

• Implicit stochastic process: Finite Dirichlet marginals
• Implicit stochastic process: Neutrality
• Explicit stochastic process: Normalized gamma process
• Explicit stochastic process: Stick-breaking construction
• Marginalized predictions: Polya urn and the CRP
• Infinite limit of finite Dirichlet mixture model
Pitman-Yor Processes

Generalizing the Dirichlet Process

- Distribution on partitions leads to a generalized *Chinese restaurant process*
- Special cases arise as excursion lengths for Markov chains, Brownian motions, …

Power Law Distributions

<table>
<thead>
<tr>
<th></th>
<th>DP</th>
<th>PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of unique clusters in N observations</td>
<td>$\mathcal{O}(b \log N)$</td>
<td>$\mathcal{O}(bN^a)$</td>
</tr>
<tr>
<td>Size of sorted cluster weight k</td>
<td>$\mathcal{O}\left(\alpha b\left(\frac{1+b}{b}\right)^{-k}\right)$</td>
<td>$\mathcal{O}\left(\alpha_{ab}k^{-\frac{1}{a}}\right)$</td>
</tr>
</tbody>
</table>

Heaps’ Law:

Zipf’s Law:

Natural Language Statistics

Goldwater, Griffiths, & Johnson, 2005

Teh, 2006
Hierarchical and Dependent DP Models

- Hierarchical DP and the Chinese restaurant franchise
- Nested DP and the nested Chinese restaurant process
- Hierarchical DP hidden Markov models, switching LDS
- Hierarchical DP hidden Markov trees
- Gaussian processes and correlated mixture models
- ...
Hierarchical Dirichlet Process

\[G_0(\theta) = \sum_{k=1}^{\infty} \beta_k \delta(\theta, \theta_k) \]

\[\beta \sim \text{GEM}(\gamma) \]

\[\theta_k \sim H(\lambda) \quad k = 1, 2, \ldots \]

\[G_j(\theta) = \sum_{k=1}^{\infty} \pi_{jk} \delta(\theta, \theta_k) \]
Nested Dirichlet Process

HDP

$G_j \sim \text{DP}(\alpha G_0)$

$G_0 \sim \text{DP}(\beta H)$

$G_0(\theta) = \sum_{k=1}^{\infty} \beta_k \delta(\theta, \theta_k)$

$G_j(\theta) = \sum_{k=1}^{\infty} \pi_{jk} \delta(\theta, \theta_k)$

NDP

$G_j \sim Q$

$Q \sim \text{DP}(\alpha \text{DP}(\beta H))$

$G_j(\cdot) \sim Q \equiv \sum_{k=1}^{\infty} \pi_k^* \delta_{G_k^*}(\cdot)$

$G_k^*(\cdot) \equiv \sum_{l=1}^{\infty} w_{lk}^* \delta_{\theta_{lk}^*}(\cdot)$

$\theta_{lk}^* \sim H$
Hierarchical LDA and the Nested CRP

- **Good:** Topics are arranged in a hierarchy of unknown structure, results tend to be more semantically interpretable
- **Limiting:** Each document is generated by a single path through the tree, cannot combine disparate topics
Infinite Markov Models & The Sequence Memoizer

- **Good:** Tractably learn and predict with Markov models of infinite depth: Only finite contexts observed in training
- **Limiting:** Structure of tree depends on assumption that modeling sequences of discrete characters
Hierarchical Dirichlet Process HMM

- **Dirichlet process (DP):**
 - Mode space of unbounded size
 - Model complexity adapts to observations

- **Hierarchical:**
 - Ties mode transition distributions
 - *Shared* sparsity

Infinite HMM: Beal, et.al., NIPS 2002
HDP-HMM: Teh, et. al., JASA 2006
Hierarchical Dirichlet Process HMM

- Global transition distribution:
 \[\beta \sim \text{Stick}(\gamma) \]

- Mode-specific transition distributions:
 \[\pi_j \sim \text{DP}(\alpha \beta) \quad j = 1, 2, 3, \ldots \]

 sparsity of \(\beta \) is shared

\[E[\pi_{jk}] = \beta_k \]
Sticky HDP-HMM

\[\beta \sim \text{Stick}(\gamma) \]
\[\pi_j \sim \text{DP}(\alpha \beta + \kappa \delta_j) \]

mode-specific base measure

\[E[\pi_{jk}] = \beta_k \]
\[E[\pi_{jk}] = \frac{\alpha \beta_k + \kappa \delta(j, k)}{\alpha + \kappa} \]

Increased probability of self-transition

Infinite HMM: Beal, et.al., NIPS 2002
HDP-AR-HMM and HDP-SLDS

\[\theta_k = \{A_1^{(k)}, \Sigma^{(k)}\} \]

\[z_t \sim \pi_{z_{t-1}} \]

\[y_t = \sum_{i=1}^{r} A_i^{(z_t)} y_{t-i} + e_t(z_t) \]

\[\theta_k = \{A^{(k)}, \Sigma^{(k)}, R\} \]

\[z_t \sim \pi_{z_{t-1}} \]

\[x_t = A^{(z_t)} x_{t-1} + e_t(z_t) \]

\[y_t = C x_t + w_t \]

\[C = [I \ 0] \]
HDP Hidden Markov Trees

\[z_{ti} \rightarrow \text{indexes infinite set of hidden states} \]
\[z_{ti} \in \{1, 2, 3, \ldots \} \]

\[\pi_k \rightarrow \text{infinite set of state transition distributions} \]
\[z_{ti} \sim \pi_{z_{\text{Pa}(ti)}}^{d_{ti}} \]

HDP-HMM & HDP-HMT cleanly deal with problem of choosing state space size, but retain other Markov model assumptions
1D Gaussian Processes

Squared exponential kernel or radial basis function (RBF) kernel has a countably *infinite* set of underlying feature functions
2D Gaussian Processes
Correlated Mixtures via GPs

Why the GP? Provides functions which are smooth, allow flexible correlation modeling, and computationally tractable

Paisley 2011
Latent Feature Models

- Latent Feature model: Each group of observations is associated with a subset of the possible latent features.
- Factorial power: There are 2^K combinations of K features.
- Question: What is the analog of the DP for feature modeling?

Distributions on binary matrices indicating feature presence/absence

Depending on application, features can be associated with any parameter value of interest

- Latent Feature model: Each group of observations is associated with a subset of the possible latent features.
- Factorial power: There are 2^K combinations of K features.
- Question: What is the analog of the DP for feature modeling?
From Clustering to Factorial Modeling

Dirichlet Process & Chinese Restaurant Process

- Implicit stochastic process: Finite Dirichlet marginals
- Implicit stochastic process: Neutrality
- Explicit stochastic process: Normalized gamma process
- Explicit stochastic process: Stick-breaking construction
- Marginalized predictions: Polya urn and the CRP
- Infinite limit of finite Dirichlet mixture model

Beta Process & Indian Buffet Process

- Implicit stochastic process: Poisson feature counts
- Implicit stochastic process: Completely random measure
- Explicit stochastic process: Un-normalized beta process
- Explicit stochastic process: Stick-breaking construction(s)
- Marginalized predictions: Indian buffet process
- Infinite limit of finite beta-Bernoulli feature model

Every temporal/spatial/hierarchical DP model should generalize…
Big Challenge: Learning & Inference

Collapsed or marginalize infinite model
- Chinese restaurant process and ddCRP
- Indian buffet process
- Powerful but limited applicability

Fixed truncation of true infinite model
- Truncated stick breaking
- Finite Dirichlet-multinomial
- Finite beta-Bernoulli
- Starting point for most variational methods

Dynamic truncations which avoid approximation
- Slice sampling
- Retrospective MCMC and reversible jump MCMC
- Local search for posterior modes

For the hardest problems, none are satisfactory…