September 18: Exchangeability and the CRP, Infinite Mixtures of GP Experts
DP Mixture Models

\[p(x \mid \pi, \theta_1, \theta_2, \ldots) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k) \]

\[G'(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \]

\[\pi \sim \text{GEM}(\alpha) \]

\[\theta_k \sim H(\lambda) \quad k = 1, 2, \ldots \]

\[\bar{\theta}_i \sim G \]

\[x_i \sim F(\theta_i) \]

\[z_i \sim \pi \]

\[x_i \sim F(\theta_{z_i}) \]
Chinese Restaurant Process

\[p(z_{N+1} = z \mid z_1, \ldots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^{K} N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right) \]
DP Mixture: CRP Sampler

• Conceptually separates cluster allocations and parameters
• Marginalize cluster sizes to give Chinese restaurant process prior on data partitions

Exchangeability
• Under CRP prior, all sequential data orderings give the same distribution on partitions
• Obvious from relationship to underlying DP sampling rule
• Convenient for Gibbs samplers: can think of each observation as the last when resampling

\[
\begin{align*}
\pi & \sim GEM(\alpha) \\
\theta_k & \sim H(\lambda) \quad \text{for } k = 1, 2, \ldots \\
z_i & \sim \pi \\
x_i & \sim F(\theta_{z_i})
\end{align*}
\]
Hierarchical Mixtures of Experts

Jordan & Jacobs, 1994
Infinite Mixture of GP Experts

Rasmussen & Williams, 2002

Standard DP Mixture of Gaussian Processes
(GP correlations within clusters; expert/cluster assignments are not input-dependent)

Derive CRP Gibbs sampler conditional distributions

components where \(n_{-i,j} > 0 \):

\[
p(c_i = j | c_{-i}, \alpha) = \frac{n_{-i,j}}{n - 1 + \alpha}
\]

all other components combined:

\[
p(c_i \neq c_{i'} \text{ for all } i' \neq i | c_{-i}, \alpha) = \frac{\alpha}{n - 1 + \alpha}
\]

\[
p(y_i | y_{-i}, x, \theta) \sim \mathcal{N}(\mu, \sigma^2), \quad \begin{cases}
\mu = Q(x_i, x)^\top Q^{-1} y_{-i} \\
\sigma^2 = Q(x_i, x_i) - Q(x_i, x)^\top Q^{-1} Q(x_i, x)
\end{cases}
\]

\[
Q(x_i, x_{i'}) = v_0 \exp \left(-\frac{1}{2} \sum_d (x_{id} - x_{i'd})^2 / w_d^2 \right) + v_1 \delta(i, i')
\]
Infinite Mixture of GP Experts

Rasmussen & Williams, 2002

Standard DP Mixture of Gaussian Processes

(GP correlations within clusters; expert/cluster assignments are not input-dependent)

Derive CRP Gibbs sampler conditional distributions

Replace by input-dependent pseudo-CRP conditionals

\[n_{-i,j} = (n - 1) \frac{\sum_{i' \neq i} K_\phi(x_i, x_{i'}) \delta(c_{i'}, j)}{\sum_{i' \neq i} K_\phi(x_i, x_{i'})} \]

\[K_\phi(x_i, x_{i'}) = \exp \left(-\frac{1}{2} \sum_d (x_{id} - x_{id'})^2 / \phi_d^2 \right) \]

\[p(y_i | y_{-i}, x, \theta) \sim \mathcal{N}(\mu, \sigma^2), \]

\[\left\{ \begin{array}{l}
\mu = Q(x_i, x) \Sigma^{-1} Q^{-1} y_{-i} \\
\sigma^2 = Q(x_i, x_i) - Q(x_i, x)^\top Q^{-1} Q(x_i, x)
\end{array} \right. \]

\[Q(x_i, x_{i'}) = v_0 \exp \left(-\frac{1}{2} \sum_d (x_{id} - x_{i'd})^2 / \phi_d^2 \right) + v_1 \delta(i, i') \]
Motorcycle Data: Predictions

Data, Mean of Stationary GP, Median of DP mixture of GPs

Confidence intervals for GP, Predictive samples for DP mixture of GPs
Motorcycle Data: Clustering

Probability that observation pairs are assigned to the same expert (avoids label switching problems)
Motorcycle Data: Mixing

To What Equilibrium Distribution???

For most kernels the Markov chain will be irreducible and aperiodic, so...
Fixing the Mixture of GP Experts

components where \(n_{-i,j} > 0 \):

\[
p(c_i = j | c_{-i}, \alpha) = \frac{n_{-i,j}}{n - 1 + \alpha}
\]

all other components combined:

\[
p(c_i \neq c_i' \text{ for all } i' \neq i | c_{-i}, \alpha) = \frac{\alpha}{n - 1 + \alpha}
\]

\[
n_{-i,j} = (n - 1) \frac{\sum_{i' \neq i} K_{\phi}(x_i, x_{i'}) \delta(c_{i'}, j)}{\sum_{i' \neq i} K_{\phi}(x_i, x_{i'})} \quad K_{\phi}(x_i, x_{i'}) = \exp \left(-\frac{1}{2} \sum_d (x_{id} - x_{i'd})^2 / \phi_d^2 \right)
\]

1. Treat kernel-dependent prediction rule as defining a true joint distribution, and derive the corresponding sampler
 - Each choice of data ordering yields a different model
 - Resampling variables in the “middle” of the order may be computationally difficult, due to later observations
2. Model assignments to inputs via a joint distribution
 - Meeds & Osindero 2006, Alternative Infinite Mixture GPs
3. Create input-indexed random measures (dependent DP)
4. Define a local similarity-based way of partitioning observations which retains simple conditional distributions
 - Blei & Frazier 2011, Distance Dependent CRP