Fast search for Dirichlet process mixture model

Hal Daume III

Presented by Yun Zhang

Oct 13 2011
Dirichlet Process Mixture Model

\[G \mid \alpha, G_0 \sim \text{DP}(\alpha, G_0) \]
\[\theta_n \mid G \sim G \]
\[x_n \mid \theta_n \sim F(\theta_n) \]
Existing Algorithms

• Sampling methods – MCMC
 – Produce a true representation of the posterior
 – Convergence can be difficult to diagnose

• Variational techniques
 – Deterministic
 – Produce an approximation to the true posterior

 – Both of them run not very fast
Motivation

• Learning posteriors is expensive

• In some cases of DPMM, we only need to know about an approximate MAP cluster assignment for each observation, which lead to a limited search space

• We may need an efficient way of finding a high probability region as initial settings of MCMC
Problem setup

• Input: $x_{1:N}$

• Output: $c_{1:N}$, where:

$$c = \text{argmax } p(c, x)$$
A* Search Algorithm

• A greedy search algorithm which uses a distance-plus-cost heuristic function to determine the order of nodes to visit
 \[g(x) = d(x) + h(x) \]

• An extension of Dijkstra’s algorithm

• One efficient implementation uses a heap (max-queue) to keep track of current searching progress
A* Search Algorithm

A max-heap

A* v.s. Dijkstra’s
Guarantees of global optima

- The heuristic function is “admissible”
 - The estimated cost must always be lower than or equal to the actual cost of reaching the goal state

- Heap size is unlimited
 - Search paths are never cut off
DP Search

- g: distance-plus-cost function
- b: heap size

```plaintext
function DPSearch
input: a scoring function g, beam size b, data x_{1:N}
output: a clustering c
1: initialize max-queue: Q ← [∅]
2: while Q is not empty do
3: remove state c_{1:N^0} from the front of Q
4: if N^0 = N then return c
5: for all clusters d in c and a new cluster do
6: let c^0 = c ⊕ ⟨d⟩
7: compute the score s = g(c^0, x)
8: update queue: Q ← Enqueue(Q, c^0, s)
9: end for
10: if b < ∞ and |Q| > b then
11: Shrink queue: Q ← Q_{1:b}
12: (drop lowest-scoring elements)
13: end if
14: end while
```
Scoring Function

\[g(c^0, x) \geq \max p(c, x) \]
\[g = \max p(c)p(x|c) \]
\[= \max p(c)p(x|c) \]
\[= \max p(c)g_{\text{Trivial}}(x|c^0)heu(x|c^0) \]

• Scoring function \(g() \) is an estimation of the posterior probability \(p(c, x) \)

• Our goal here is to find out a setting of cluster assignments \(c \) that can maximize the posterior probability
Maximize the prior $p(c)$

$$P(m \mid \alpha, N) = \frac{N!}{\alpha^N} \frac{\alpha \sum_{i=1}^{I} m_i}{\prod_{i=1}^{I} i^{m_i}(m_i!)}$$

- Coming from Chinese restaurant process
Trivial Scoring Function

$$g_{\text{Trivial}}(x \mid c^0) \triangleq \prod_{k \in c^0} H(x_{c^0=k})$$

- heuristic function is zero in log space
- A* becomes a Dijkstra’s algorithm, which lead to an inefficient search
Admissible Function

\[
g_{\text{Trivial}}(x \mid c^0) = \prod_{n=N^0+1}^{N} \max_{1 \leq k \leq K^0+1} \max_{\substack{c: \, c\mid N^0=c^0 \, \text{and} \, c_n=k}} H(x_n \mid x_{c_{1:n-1}=c_m})
\]

(11)

- Treat unclustered data point independently

- For each unclustered data point \(x \), choose most like cluster label \(k \) for \(x \), then cluster remaining points as to only whether they fall into \(k \) or not

- Can be considered as admissible when a “replica” trick is used
Inadmissible Heuristic Function

\[g_{\text{Inad}}(x \mid c^0) \triangleq g_{\text{Trivial}}(x \mid c^0) \prod_{n= N^0 + 1}^{N} H(x_n) \]

• Use the marginal likelihood as heuristic, which means for each unclustered data point, assign them a new cluster number

• No longer overestimate the posterior probability, therefore not admissible
Experiment 1: Artificial data (DPGMM)
Experiment 2: Handwritten data

• Dirichlet/Multinomial setting

• Conclusion is our search algorithm runs much faster than Gibbs sampler, and gives better MAP estimation of cluster assignments.
Experiment 3: NIPS documents

- Still Dirichlet/Multinomial setting

- Conclusion is our search algorithm runs much much faster than Gibbs sampler
Advantages & Limitations

- Fast to find a MAP cluster assignment for each data point

- Cannot represent the true posterior

- Applies only to exponential families with conjugate prior (or at least speed will be slowed down when apply to non-conjugate distributions)