Applied Bayesian Nonparametrics

Special Topics in Machine Learning
Brown University CSCI 2950-P, Fall 2011

October 11: Variational Methods
Convexity & Jensen’s Inequality

\[f(x) \]

chord

\[\lambda \]

\[a \]

\[b \]
Lower Bounds on Marginal Likelihood

\[\text{KL}(q||p) \]

\[\mathcal{L}(q, \theta) \]

\[\ln p(X|\theta) \]

C. Bishop, Pattern Recognition & Machine Learning
Expectation Maximization Algorithm

\[\ln p(X | \theta^{\text{old}}) \]

\[L(q, \theta^{\text{old}}) \]

\[KL(q || p) = 0 \]

\[\ln p(X | \theta^{\text{new}}) \]

\[L(q, \theta^{\text{new}}) \]

E Step: Optimize distribution on hidden variables given parameters

M Step: Optimize parameters given distribution on hidden variables

C. Bishop, Pattern Recognition & Machine Learning
EM: A Sequence of Lower Bounds

\[\ln p(X | \theta) \]

\[\mathcal{L}(q, \theta) \]

C. Bishop, Pattern Recognition & Machine Learning
Fitting Gaussian Mixtures

(a) Complete Data Labeled by True Cluster Assignments

(b) Incomplete Data: Points to be Clustered

C. Bishop, Pattern Recognition & Machine Learning
Posterior Assignment Probabilities

Posterior Probabilities of Assignment to Each Cluster

Incomplete Data: Points to be Clustered

C. Bishop, Pattern Recognition & Machine Learning
EM Algorithm
EM Algorithm

$L = 1$

C. Bishop, Pattern Recognition & Machine Learning
EM Algorithm

\[L = 2 \]
EM Algorithm

$L = 5$

C. Bishop, Pattern Recognition & Machine Learning
EM Algorithm

$L = 20$

C. Bishop, Pattern Recognition & Machine Learning
Pairwise Markov Random Fields

\[p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y) \]

\(\mathcal{V} \rightarrow \) set of \(N \) nodes \(\{1, 2, \ldots, N\} \)

\(\mathcal{E} \rightarrow \) set of edges \((s, t)\) connecting nodes \(s, t \in \mathcal{V} \)

\(Z \rightarrow \) normalization constant (partition function)

- Product of arbitrary positive *clique potential* functions
- Guaranteed Markov with respect to corresponding graph
Markov Chain Factorizations

\[
p(x | y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y)
\]
Energy Functions

\[p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y) \]

\[= \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) - \sum_{s \in \mathcal{V}} \phi_s(x_s, y) \right\} \]

\[= \frac{1}{Z} \exp \{ -E(x) \} \]

\[\phi_{st}(x_s, x_t) = - \log \psi_{st}(x_s, x_t) \quad \phi_s(x_s) = - \log \psi_s(x_s) \]

Interpretation and terminology from statistical physics
Approximate Inference Framework

\[p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y) \]

• Choose a family of approximating distributions which is tractable. The simplest example:

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \]

• Define a distance to measure the quality of different approximations. Two possibilities:

\[D(p \parallel q) = \sum_x p(x \mid y) \log \frac{p(x \mid y)}{q(x)} \]

\[D(q \parallel p) = \sum_x q(x) \log \frac{q(x)}{p(x \mid y)} \]

• Find the approximation minimizing this distance
Fully Factored Approximations

\[
p(x \mid y) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s, y)
\]

\[
q(x) = \prod_{s \in \mathcal{V}} q_s(x_s)
\]

\[
D(p \mid\mid q) = \sum_x p(x \mid y) \log \frac{p(x \mid y)}{q(x)}
\]

\[
= \left[\sum_{s \in \mathcal{V}} H_s(p_s) - H(p) \right] + \sum_{s \in \mathcal{V}} D(p_s \mid\mid q_s)
\]

- **Marginal Entropies**
- **Joint Entropy**

• Trivially minimized by setting \(q_s(x_s) = p_s(x_s \mid y) \)

• Doesn’t provide a computational method…
Variational Approximations

\[D(q(x) \| p(x \mid y)) = \sum_x q(x) \log \frac{q(x)}{p(x \mid y)} \]

\[\log p(y) = \log \sum_x p(x, y) \]

\[= \log \sum_x q(x) \frac{p(x, y)}{q(x)} \]

\[\geq \sum_x q(x) \log \frac{p(x, y)}{q(x)} \]

\[= -D(q(x) \| p(x \mid y)) + \log p(y) \]

- Minimizing KL divergence maximizes a lower bound on the data likelihood
Free Energies

\[p(x \mid y) = \frac{1}{Z} \exp \{-E(x)\} \]

\[D(q \parallel p) = \sum_x q(x) \log q(x) - \sum_x q(x) \log p(x \mid y) \]
\[= -H(q) + \sum_x q(x)E(x) + \log Z \]

- Negative Entropy
- Average Energy
- Normalization

Gibbs Free Energy

• Free energies equivalent to KL divergence, up to a normalization constant
Mean Field Free Energy

\[p(x \mid y) = \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) - \sum_{s \in \mathcal{V}} \phi_s(x_s, y) \right\} \]

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \]

\[D(q \mid \mid p) = -H(q) + \sum_x q(x)E(x) + \log Z \]

\[= -\sum_{s \in \mathcal{V}} H_s(q_s) + \sum_{(s,t) \in \mathcal{E}} q_s(x_s)q_t(x_t)\phi_{st}(x_s, x_t) \]

\[\cdots + \sum_{s \in \mathcal{V}} q_s(x_s)\phi_s(x_s) + \log Z \]
Mean Field Equations

\[D(q \parallel p) = - \sum_{s \in \mathcal{V}} H_s(q_s) + \sum_{(s,t) \in \mathcal{E}} q_s(x_s)q_t(x_t)\phi_{st}(x_s, x_t) \]
\[\cdots + \sum_{s \in \mathcal{V}} q_s(x_s)\phi_s(x_s) + \log Z \]

- Add Lagrange multipliers to enforce \(\sum_{x_s} q_s(x_s) = 1 \)
- Taking derivatives and simplifying, we find a set of fixed point equations:

\[q_s(x_s) = \alpha \psi_s(x_s) \prod_{t \in \Gamma(s)} \prod_{x_t} \psi_{st}(x_s, x_t)q_t(x_t) \]

- Updating one marginal at a time gives convergent coordinate descent
Mean Field Message Passing

欲使消息的乘积简单

欲使对数潜在函数的期望值简单

$q_i(x_i) \propto \psi_i(x_i, y) \prod_{j \in \Gamma(i)} m_{ji}(x_i)$

$m_{ij}(x_j) \propto \exp \left\{ - \int_{x_i} \phi_{ji}(x_j, x_i) q_i(x_i) \, dx_i \right\}$

欲使消息的乘积简单

欲使对数潜在函数的期望值简单
Exponential Families

• Natural or canonical parameters determine log-linear combination of sufficient statistics:

\[p(x \mid \theta) = \nu(x) \exp \left\{ \sum_{a \in \mathcal{A}} \theta_a \phi_a(x) - \Phi(\theta) \right\} \]

• Log partition function normalizes to produce valid probability distribution:

\[\Phi(\theta) = \log \int_{\chi} \nu(x) \exp \left\{ \sum_{a \in \mathcal{A}} \theta_a \phi_a(x) \right\} \, dx \]

\[\Theta \triangleq \left\{ \theta \in \mathbb{R}^{|\mathcal{A}|} \mid \Phi(\theta) < \infty \right\} \]
Directed Mean Field

- Can derive updates using exponential family form of the conditional distribution of each variable, given its parents
- Can also just take derivatives, collect terms, simplify...

\[\text{cp}^{(j)}_k \equiv \text{pa}_k \setminus H_j \]

Variational Message Passing, Winn & Bishop, JMLR 2005
Structured Mean Field

- Any subgraph for which inference is tractable leads to a mean field style approximation for which the update equations are tractable.