The Gaussian Process Density Sampler

Ryan Prescott Adams*
Cavendish Laboratory
University of Cambridge
Cambridge CB3 0HE, UK
rpa23@cam.ac.uk

Iain Murray
Dept. of Computer Science
University of Toronto
Toronto, Ontario. M5S 3G4
murray@cs.toronto.edu

David J.C. MacKay
Cavendish Laboratory
University of Cambridge
Cambridge CB3 0HE, UK
mackay@mrao.cam.ac.uk

NIPS 2008
as told by Mike Hughes

*some text/figures courtesy of Adams' online presentation
The Density Modeling Problem

The setup:
- Data $\{x_n\}_{n=1}^N$ from an unknown density $f(x)$
- Prior beliefs about $f(x)$
- What is the posterior on $f(x)$?
Motivation

We want a model that:

1) Assigns similar data to similar probabilities for any application-appropriate definition of “similar” kernel functions

2) Complexity of f(x) grows with additional data non-parametric

3) Supports inference tasks
 encode prior beliefs about f(x)
 draw new samples x from f(x)
 evaluate f(x) for any x

Gaussian Process framework = natural answer
Contributions

Naïve Logistic GP Density Model is problematic

\[g(x) \sim \mathcal{GP}(0, K(x, x')) \]
\[f(x) = \frac{\exp\{g(x)\}}{\int dx \exp\{g(x)\}} \]

[Adams et al] is exciting because we can …

- draw exact, exchangable samples from \(f(x) \)
- handle high-dimensional \(X \) in practice
- avoid costly + problematic estimation of norm. constant
Model

\[
f(x) = \frac{1}{Z_{\pi}[g]} \Phi(g(x)) \pi(x)
\]

- \(g(x)\) has a GP prior.
- \(\pi(x)\) is a known “base density.”
- \(\Phi(x)\) is nonnegative and bounded. e.g. logistic \(\Phi(z) = (1 + \exp(-z))^{-1}\)

\[
K(x, x') = \alpha \exp\left(-\frac{1}{2} \sum_i \ell_i^{-2} (x_i - x_i')^2\right)
\]
Sample Densities

\[\ell_x = 1, \; \ell_y = 1, \; \alpha = 1 \]

\[\ell_x = 1, \; \ell_y = 1, \; \alpha = 5 \]

\[K(x, x') = \alpha \exp\left(-\frac{1}{2} \sum_i \ell_i^{-2} (x_i - x_i')^2\right) \]
Sample Densities

\[\ell_x = 0.25, \ \ell_y = 0.25, \ \alpha = 2 \]

\[\ell_x = 0.25, \ \ell_y = 2, \ \alpha = 5 \]

\[K(x, x') = \alpha \exp(-\frac{1}{2} \sum_i \ell_i^{-2} (x_i - x'_i)^2) \]
How to sample from $f(x)$?

$$f(x) = \frac{1}{Z_{\pi}[g]} \Phi(g(x)) \pi(x)$$

What if we knew $g(x)$?

Rejection sampling:

1. Draw \tilde{x} from $\pi(x)$.
2. Draw r from $\text{UNIFORM}(0, 1)$
3. Accept if $r < \Phi(g(\tilde{x}))$
4. Goto 1

when $g(x)$ is unknown, we can still use this idea!
Sampling by discovery

- Samples \(\{x_1, x_2, \ldots, x_N\} \) are exact and exchangeable
- Discovered latent function \(g(x) \) in process
 - well, only \(\{g(x_1), g(x_2), \ldots, g(x_N)\} \)
- Never needed that pesky normalization constant

View this sampling scheme as **generative process**
Inference

Goals:

- obtain estimates of $g(x)$
- generate samples from $f(x)$ or predictive distribution
- (optimize hyperparams)

Machinery:

- retrospective MCMC [see Iain Murray's PhD thesis]

(1) Latent History sampling
 - focus of current work
(2) Exchange sampling
 - requires more evaluations of $g(x)$
 - in practice, worse than (1)
Assume observed X were accepted from generative process, we can recover rejected X and $g(x)$ via MCMC

Sampler state augmented by:
- rejected data points $X = \{x_1, x_2, \ldots x_M\}$
- corresponding $g(x)$ values $G = \{g(x_1), g(x_2), \ldots g(x_M)\}$

MCMC result:
- samples $\{M, G_{\text{accept}}, G_{\text{reject}}, X_{\text{reject}}\}$ from posterior given X
 (can also include hyperparams)
Comparing to alternate methods

Parzen Windows

Infinite Mixture of Gaussians (iMoG)

Dirichlet Diffusion Trees (DFT)
Toy Data
Macaque Skull “Reconstruction”

10 linear distances, 200 training, 28 test, 3 trials

![Graph showing improvement over Parzen (hats) for Mac T1, Mac T2, and Mac T3]
Concerns

Computational Complexity

- requires matrix decomp: $O((N + M)^3)$

 M (# rejections) can be arbitrarily large!

- MCMC sampler efficiency
 no guarantees on convergence time
 poor acceptance rates in high dimensions

Advantages over alternative models?
Discussion Prompts

1) Is the GP Density Sampler worth it?
 - why not just use iMoG?

2) What are the killer apps?

3) What's involved in a data-space other than R?

4) Possible to use alternative inference?
 - other MCMC methods
 - variational Bayes