Applied Bayesian Nonparametrics

Special Topics in Machine Learning
Brown University CSCI 2950-P, Fall 2011

Instructor: Erik Sudderth
Machine Learning Problems

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>Unsupervised Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td>Clustering</td>
</tr>
<tr>
<td>Classification or Categorization</td>
<td>Regression</td>
</tr>
<tr>
<td>Continuous</td>
<td>Dimensionality Reduction</td>
</tr>
</tbody>
</table>

- Bayesian nonparametric (BNP) models lead to more flexible, data-driven methods for all of these problems
- Primary focus is on unsupervised learning
What do you want to learn about?
Course Prerequisites

- A course in modern statistical machine learning
 - Brown CS 195F: Introduction to Machine Learning
 - Brown APMA 261: Recent Applications of Probability and Statistics
 - Possibly other classes or experience...
- Programming abilities for the course project
- Readings will require “mathematical maturity”
- Insufficient background by themselves:
 - Brown CS 141: Introduction to AI
 - Traditional undergrad statistics (APMA 165/166)
Background Material
Course Format & Readings

• Two 80-minute meetings per week
 \textit{(Tuesdays & Thursdays, 2:30-3:50pm, CIT 506)}

• Each day will have three 25-minute segments:
 \begin{itemize}
 \item Average ML conference paper: 1 segment
 \item Average statistics journal paper: 2 segments
 \item Exceptions to every rule…
 \end{itemize}

• Typical reading for a single class:
 \textcolor{red}{one journal paper & one related conference paper}

• Presentation & discussion of some segments will be led by instructor, others by students
Course Evaluation

Class Participation: 30%

- Attend class and participate in discussions
- Prepare summary overview presentation, and lead class discussion, for 2 segments
 - Most journal papers will be collaboratively presented
 - Prof. Sudderth will lecture for the remaining segments
- Upload brief comments about one assigned reading before each lecture (due at 8am)

Final Project: 70%

- Proposal: 1-2 pages, due in late October (10%)
- Presentation: ~10 minutes, during reading period (20%)
- Conference-style technical report (40%)
Reading Comments

The Good: 1-2 sentences
- What is the most exciting or interesting model, idea, or technique described here? Why is it important?
- Don’t just copy the abstract - what do you think?

The Bad: 1-2 sentences
- No method is perfect, and many are far from it!
- What is the biggest weakness of this model or approach?
- Problems could be a lack of empirical validation, missing theory, unacknowledged assumptions, …

The Ugly: 1-2 sentences
- Poorly written or unclear sections of the paper: terse explanations, steps you didn’t follow, technical errors, etc.
- What would you like to have explained in class?
Final Projects

Best case: Application of course material to your own area of research

Key Requirements: Novelty, use of BNP models

- Identify a family of BNP models suitable for a particular application, try baseline learning algorithms
- Propose, develop, and experimentally test a new type of learning algorithm for some existing BNP model
- Experimentally compare different models or algorithms on an interesting, novel dataset
- Survey the latest advances in an area of BNP theory or application which is not already covered by the course
- **There will not be a list of projects to choose from. You must propose your own (with the instructor’s advice)**
A Quick Poll
Administration

Registration: E-mail sunderth@cs.brown.edu with
• Your name and CS logon
• Your department, major, and year
• Your background in statistical machine learning
 ➢ If you’ve taken CS195-F or APMA261, just say so
 ➢ Otherwise, a few sentences about your background

Readings for Tuesday:
• Rasmussen & Williams, *Gaussian Processes for Machine Learning*, Chap. 2-3 (except 3.5, 3.6, 3.9)
• No comments required for Tuesday’s lecture

Course webpage: Up Friday, linked from my webpage

Paper comments & coordination: Details Tuesday