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ABSTRACT
The routing of traffic between Internet domains, orAutonomous
Systems(ASes), a task known asinterdomain routing, is currently
handled by the Border Gateway Protocol (BGP) [17]. Using BGP,
autonomous systems can apply semantically rich routing policies
to choose interdomain routes in a distributed fashion. Thisexpres-
siveness in routing-policy choice supports domains’ autonomy in
network operations and in business decisions, but it comes at a
price: The interaction of locally defined routing policies can lead to
unexpected global anomalies, including route oscillations or over-
all protocol divergence (see,e.g., [20]). Networking researchers
have addressed this problem by devising constraints on policies
that guarantee BGP convergence without unduly limiting expres-
siveness and autonomy (see,e.g., [7, 8]).

In addition to taking this engineering or “protocol-design” ap-
proach, researchers have approached interdomain routing from an
economic or “mechanism-design” point of view. It is known that
lowest-cost-path (LCP) routing can be implemented in a truthful,
BGP-compatible manner [3] but that several other natural classes
of routing policies cannot [2, 5]. In this paper, we present anatural
class of interdomain-routing policies that is more realistic than LCP
routing and admits incentive-compatible, BGP-compatibleimple-
mentation. We also present several positive steps toward a general
theory of incentive-compatible interdomain routing.

Categories and Subject Descriptors:C.2.2 [Network Protocols]:
Routing protocols; F.2.2 [Analysis of Nonnumerical Algorithms
and Problems]:Routing and layout
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1. INTRODUCTION
The Internet is comprised of many separate administrative do-

mains known asAutonomous Systems(ASes). Routing occurs on
two levels, intradomain and interdomain, implemented by two dif-
ferent sets of protocols. Intradomain-routing protocols,such as
OSPF [15], route packets within a single AS. Interdomain rout-
ing, currently handled by the Border Gateway Protocol (BGP)[17],
routes packets between ASes. It has been studied by computersci-
entists for many years from an engineering or “protocol-design”
perspective and recently from an economic or “mechanism-design”
perspective as well. Combining algorithmic and economic consid-
erations in the study of interdomain routing is very natural, because
the many separate domains that make up the Internet really are in-
dependent economic agents that must jointly execute a distributed
algorithm in order to choose routes.

In their seminal paper [16], Nisan and Ronen gave the following
formulation of interdomain routing as a mechanism-design prob-
lem: Each AS incurs a per-packetcost for carrying traffic, where
the cost represents the additional load imposed on the internal AS
network by this traffic. To compensate for these incurred costs,
each AS is given apaymentfor carryingtransit traffic, which is traf-
fic neither originating from nor destined for that AS. It is through
these costs and payments that consideration of “incentive com-
patibility” was introduced to the interdomain-routing framework,
which, as currently realized by BGP, does not explicitly consider
incentives. The goal in [16] was to optimize the use of network
bandwidth by routing packets alonglowest-cost paths(LCPs) and
to do so with atruthful mechanismthat can be computed inpoly-
nomial time. Nisan and Ronen observed that the Vickrey-Clarke-
Groves (VCG) mechanism, well known to be truthful, solves the
LCP mechanism-design problem and can be computed in polyno-
mial time. Many researchers have followed up on Nisan and Ro-
nen’s original work, including Feigenbaum, Papadimitriou, Sami,
and Shenker [3], who showed that lowest-cost paths and VCG pay-
ments could be computed in a “BGP-compatible” fashion,i.e., com-
puted by a distributed algorithm that requires only small modifica-
tions to the (already universally deployed) Border GatewayPro-
tocol. In this paper, we continue the study of BGP-compatible,
truthful computation of interdomain routes and payments that was
begun in [3].

Although it was viewed as a step forward in our attempt to under-
stand the interplay of engineering, algorithmics, and economics in
interdomain routing, the work in [3] was by no means a fully satis-
factory solution. In particular, one of the valuable features of BGP



is that it allows ASes to choose interdomain routes according to
semantically rich policies that meet their operational andbusiness
requirements; LCP routing is just one example of a valid policy,
and, in practice, many ASes do not use it [1]. Thus, it is natu-
ral to ask whether more realistic, expressive interdomain-routing
policies admit truthful, BGP-compatible computation of routes and
payments. Previous work on this question has been discouraging:
Negative results have been obtained for general policy routing [5],
for “subjective-cost” policy routing [2], for “forbidden-set” policy
routing [2], and for “next-hop” policy routing [5]. The next-hop
case (defined below) admits a satisfactory centralized-algorithmic
solution, but the stringent requirements put forth in [5] for a satis-
factory distributed-algorithmic solution cannot be met.

In this paper, we provide the first example of a class of policies
that is more realistic than LCP and that admits incentive-compat-
ible, BGP-compatible computation of routes and payments, to wit:
next-hop policies that obey the Gao-Rexford conditions forglobal
stability. We now proceed to describe these policies and then out-
line other contributions of this paper; the latter contribute to a gen-
eral theory of incentive-compatible interdomain routing.

Thenext hopof a route is the source AS’s immediate neighbor
along that route. An AS has anext-hop policyif it decides among
available routes to a destination based solely on the routes’ next
hops. Because ASes do not control packet forwarding beyond the
neighboring AS to which traffic is initially sent, it is realistic to ex-
press route preferences based on next hops alone. However, unco-
ordinated and unconstrained local configuration of next-hop poli-
cies can produce routing instability [10,20].

Gao and Rexford [7] proposed constraints on policies that guar-
antee route stability without global coordination. They assume that
two types of business relationships exist between neighboring pairs
of ASes: customer-provider, in which one AS purchases connec-
tivity from another, andpeering, in which two ASes agree to carry
transit traffic to and from each other’s customers,e.g., to shortcut
routes through providers. (These relationships accurately represent
today’s commercial Internet; see [13].) These relationships natu-
rally induce route preferences. Gao and Rexford formalizedthese
preferences (we review the formalization in Sec. 3.1) and proved
that they induce stable routing if there areno customer-provider
cycles(i.e., no AS is an indirect customer of itself). This require-
ment is realistic, because it is unlikely that a large Internet provider
would purchase connectivity from a smaller ISP in its own cus-
tomer hierarchy.

We show that this realistic class of policies admits incentive-
compatible, BGP-compatible computation of routes and payments.
Furthermore, we are able to give positive results for more gen-
eral classes of policies. We identify three conditions thattogether
form a sufficient constraint on policies to permit the computation
of welfare-maximizing routes by any path-vector protocol (includ-
ing BGP). We show that, if any of these conditions is violated, the
price of anarchy[14]—a measure of how far from optimal the com-
puted routing tree is, with respect to welfare maximization—for
path-vector routing is unbounded. We also exhibit an incentive-
compatible algorithm that, while not space-efficient, computes pay-
ments and routes for any class of routing policies that obeysthe first
two of these three conditions and, through its payments, enforces
that nodes obey the third condition. This general-case algorithm is
not subject to any of the methods of rational manipulation formu-
lated by Shneidman and Parkes [18].

Our space-efficient implementation for the realistic classof poli-
cies discussed above is a special case of the general-case algorithm;
we also discuss another space-efficient special case, that of metric-
based valuations, that is a generalization of lowest-cost routing.

The remainder of the paper is organized as follows. In Sec. 2,
we formally define the interdomain-routing problem and review
some necessary notation. We then, in Sec. 3, give an incentive-
compatible, BGP-compatible algorithm to compute routes and pay-
ments for next-hop policies that obey the Gao-Rexford conditions.
Following that, we discuss the three conditions on policiesthat per-
mit welfare-maximizing route computation in Sec. 4 and givean
algorithm for the general case in Sec. 5. We present open questions
and conclude in Sec. 6. Proofs can be found in the full versionof
this paper [4].

2. PRELIMINARIES
We begin this section by formally defining the interdomain-rout-

ing problem and providing some useful notation. We then review
the Border Gateway Protocol (BGP), the standard protocol used for
interdomain routing today.

2.1 Problem Statement
In the interdomain-routing problem, we are given an AS graph

G = (N, L) that describes the network topology. The set of nodes
N corresponds to the ASes in the graph. Because routes are com-
puted independently for each destination, without loss of general-
ity, we assume thatN consists ofn source nodes{1, . . . , n} and a
destination noded. The set of linksL corresponds to connections
between ASes. LetLi ⊂ 2L be the set of allsimpleroutes (i.e.,
routes with no loops) fromi to d in G.

An instanceI = (G,P ,V) of the interdomain-routing problem
is defined by an AS graphG, a set ofpermitted routesP(i) =
P i ⊂ Li for each nodei ∈ [n], and thevaluation functionV(i) =
vi : P i → R≥0 of each node. Every setP i contains the paths
in Li that are not removed from consideration by eitheri itself or
i’s neighbors. Every valuation functionvi specifies the “monetary
value” of each routeR ∈ P i from nodei. We assume thatvi(∅) =
0, i.e., no route is worth nothing, and that, for all pairs of routesR1

andR2, vi(R1) 6= vi(R2), i.e., there are no ties in valuations.1 The
routing policyof each nodei is thus captured byvi andP i: The
only routes considered fori are those inP i, and preference among
these routes is given by the valuation functionvi.

The goal is to allocate to each source nodei ∈ [n] a route
Ri ∈ P i. The resultingroute allocationTd = {R1, . . . , Rn}
should form a confluent tree to the destinationd. Furthermore, we
are interested in route allocations that maximize the “total social
welfare” of the nodes,i.e., we want to find an allocation satisfying

Td = argmaxT={S1,...,Sn}

n
X

i=1

vi(Si).

Incentive compatibility is introduced into this problem bypaying
nodes for their contribution to the routing tree in the hope of incen-
tivizing truthful behavior. Therefore, in our version of the problem,
we assume, as in [18], thatN contains one more node, calledthe
bank, that is in charge of distributing a paymentsi(Td) to each
source nodei based on the path allocationTd.

We define theutility functionof each nodei, ui :
Q

i P i → R,
to beui(Td) = vi(Ri) + si(Td). Although the global goal is to
maximize the total social welfare, every rational nodei would only
be interested in maximizing its own utility, even if this comes at

1This assumption is consistent with BGP and the model of inter-
domain routing in [10]: Because at most one route can be installed
in a router’s forwarding table to each destination, nodes have some
deterministic way to break ties,e.g., based on the next hop’s IP
address; so, valuations can be adjusted accordingly to match this.
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Figure 1: Route computation using BGP.

the expense of not achieving the global goal. An algorithm (proto-
col) is truthful if it is in the best interest of each node to reveal its
true valuation function to the algorithm. An algorithm isincentive-
compatible(with respect to some notion of equilibrium) if it is in
the best interest of each node to comply with all the algorithm’s
instructions (with respect to the same notion of equilibrium); com-
pliance includes, but is not limited to, providing truthfulinput of
valuation functions.

A distributed setting such as ours poses an inherently differ-
ent challenge for the design of incentive-compatible mechanisms
(see [3,18]) than a centralized one. This is because the computation
is performed by the strategic agents themselves and not by a reliable
third party. In this paper, we focus on achieving incentive compat-
ibility in ex-post Nash equilibrium, which has been argued to be
most appropriate for distributed-mechanism computation [18]; us-
ing this equilibrium concept enables the consideration of several
forms of rational manipulation other than lying about inputs (see
Sec. 5.2 for a detailed discussion).

We are interested in efficient, distributed, and incentive-com-
patible welfare-maximizing algorithms for the interdomain-routing
problem. We require our algorithms to assume no prior knowledge
of the nodes of the topology of the network.

2.2 Notation
First, we present some notation for the representation of routes.

A simple route is a finite sequence of consecutive links from a
source node to the destination node that contains no loops (cycles).
All routes in this paper are simple unless stated otherwise.We say
that nodei is in routeR (or write i ∈ R) if i participates in one of
the links inR.

If R is a route fromj (its source) to the destinationd, andi is
a node that is not inR and is adjacent toj in G, we denote by
(i, j)R the route that has(i, j) as a first link and then followsR to
the destination. Ifj andk are intermediate nodes on a routeR, we
denote byR[j,k] the subpath ofR from j to k.

Throughout this paper, we will consider sub-instances of the
interdomain-routing problem obtained by removing one nodefrom
the AS graphG. For every nodei, we denote byG−i the subgraph
of G that contains all nodes inN excepti and all links inL except
thosei participates in. We can now defineI−i = (G−i,V ′,P ′)
to be a sub-instance of the original interdomain-routing instanceI ,

in which theAS graph isG−i and, for each nodej 6= i, P ′(j) =
{R ∈ P(j) | i 6∈ R}, i.e., any route containingi is removed
from the permitted-route set ofj, andV ′(j) is V(j) restricted to
the sub-domainP ′(j), i.e., the valuation of a permitted route in
I−i is identical to the valuation of that route inI . We denote by
T−i

d a welfare-maximizing route allocation forI−i.

2.3 Routing with BGP
The Border Gateway Protocol (BGP) [17] belongs to the fam-

ily of path-vector protocols, the abstract properties of which were
studied in [9]. A sketch of how BGP computes routes is shown in
Fig. 1. The basic idea is that a routing tree to a given destination
is built, hop-by-hop, as knowledge of how to reach that destination
propagates through the network. Communication between nodes
takes place throughupdate messagesthat announce chosen routes.

The process is initialized when some destination ASd announces
itself to its neighbors by sending update messages. Then, each node
i iteratively establishes routes tod by:

1. importing, via update messages, routes tod chosen by neigh-
bors2 and storing the routes in arouting table;

2. choosing the best route fromi to d (through a neighbor of
i) among those available in the routing table based on local
routing policy; and

3. if there is a change toi’s best route, exporting the newly
selected route to all ofi’s neighbors using update messages.3

At any given time, each node’s (internally stored) routing table con-
tains the route updates received from its neighbors, and each node
is assigned at most one best route based on its policy. (A node
may not have a best route if it has not yet received any updatesor
if its neighbors havewithdrawn their routes,e.g., because of net-
work failures). We assume that the network is asynchronous;so, it
is possible that the network delays the arrival of update messages
along selective links.

Path-vector routing has several advantages. First, because the
only routes considered are those announced by neighbors, the pro-
tocol enforces the requirement that route choices form a confluent
tree. Second, each node is able to maintain its autonomy by making
its route choice based on local, expressive routing policies. Third,
changes in the network due to the addition or subtraction of nodes
or links can be announced through update messages, and routers
can use alternate routes stored in the routing table to adaptquickly.
Fourth, because entire paths are announced, nodes can checkfor
loops and exclude them from routing tables.

Because BGP is currently the standard protocol for Internetin-
terdomain routing, we desire algorithms that areBGP-compatible,
i.e., that can be implemented with only small modifications to BGP.

3. A REALISTIC, INCENTIVE-
COMPATIBLE ROUTING MODEL

In this section, we present an incentive-compatible, BGP-com-
patible algorithm for the interdomain-routing problem (defined in
the previous section) when valuation functions belong to a restricted
but realistic class of policies: next-hop routing that obeys the Gao-
Rexford conditions for global stability. We first define thisclass of
policies. We then present the algorithm and discuss its properties.

2Some neighbors may refuse to send particular routes.
3Again, nodes may not send certain routes to certain neighbors.



3.1 Policies for the Commercial Internet
Packets are forwarded based on destination alone; therefore, it

is sensible for ASes to usenext-hop policies—those that only con-
sider the immediate neighbor along a route—because an AS ac-
tually has no control over packets once they are forwarded toa
neighboring AS. We formally define these policies as follows.

DEFINITION 3.1. If i ∈ [n], defineneighbors(i) = {j ∈ N |
(i, j) ∈ L}, i.e., the set of nodes adjacent toi.

DEFINITION 3.2. If R′ ∈ Lj andR = (i, j)R′, then define the
next hoponR to benext(R) = j. Nodei ∈ [n] has anext-hop val-
uation functionvi iff there exists a functionfi : neighbors(i) →
R≥0 such that, for every routeR ∈ P i, vi(R) = f(next(R)).

If all nodes have next-hop valuation functions, we say that “the
instance uses next-hop policies.” Next-hop policies are semanti-
cally rich enough to permit global routing instability (seeSec. 4.1);
therefore, we require additional constraints on policies.One realis-
tic and well-studied set of constraints, which we discuss inthis sec-
tion, assumes that some business hierarchy underlies the ASgraph
and that policies are based on the economic nature of this hierarchy.

Huston’s study of the commercial Internet [13] suggests two
types of business relationships that characterize AS inter-connec-
tions: Pairs of neighboring nodes have either acustomer-provider
or apeeringrelationship. Customer nodes pay their provider nodes
for connectivity—access to Internet destinations throughthe provi-
der’s links and advertisement of customer destinations to the rest
of the Internet. Peers are nodes that find it mutually advantageous
to exchange traffic for free among their respective customers, e.g.,
to shortcut routes through providers. A node can be in many dif-
ferent relationships simultaneously: It can be a customer of one or
more nodes, a provider to others, and a peer to yet other nodes.
These agreements are assumed to be longer-term contracts that are
formed because of various external factors,e.g., the traffic pattern
between two nodes.

Intuitively, these business relationships naturally induce routing
policies. Gao and Rexford [7] formally modeled these relationships
and policies with the following three conditions.

No customer-provider cycles: Let GCP be the digraph with the
same set of nodes asG and with a directed edge from every cus-
tomer to its provider. We demand that there be no directed cycles
in this graph. If this requirement is met, we say that “the AS graph
contains no customer-provider cycles.” This demand is a natural
economic assumption, because, if there is a cycle inGCP, then a
node is indirectly its own provider.

Prefer customers to peers and peers to providers:A customer
route is a route in which the next-hop AS is a customer.Provider
and peer routesare defined similarly. We require that nodes al-
ways prefer (i.e., assign a higher value to) customer routes over peer
routes, which are in turn preferred to provider routes. Thisalso has
an obvious economic justification given the financial agreement for
each relationship.

Provide transit services only to customers:Nodes do not always
carry transit traffic—traffic whose source and destination lie out-
side the node. Nodes are obligated (by financial agreements)to
carry transit traffic to and from their customers, but nodes do not
carry transit traffic among only providers and peers. Therefore,
nodes should share only customer routes with their providers and
peers but should shareall of their routes with their customers.

It was proven in [6,7] that, if all nodes obey these conditions, en-
forced naturally by Internet economics, BGP predictably converges
to a stable routing tree, even after node and link failures. Later

work [8, 19] showed that the Gao-Rexford conditions are onlyone
class of policies that prevent routing anomalies; we will discuss the
more general characterization in Sec. 4.2 below.

Using the terminology and notation of Sec. 2, we formally define
the Gao-Rexford conditions as follows:

DEFINITION 3.3. TheGao-Rexford conditionshold iff the AS
graph contains no customer-provider cycles, and, for all nodesi ∈
[n], the following hold for all pairs of nodes{j, k} ⊂ neighbors(i)
and for all pairs of routes{Rj , Rk} ⊂ P i such thatnext(Rj) = j
andnext(Rk) = k:

1. If j is a customer andk is not, thenvi(Rj) > vi(Rk). If j
is a peer andk is a provider, thenvi(Rj) > vi(Rk). (The
remaining cases are implied by symmetry.)

2. If neither j nor k is a customer, then(j, i)Rk /∈ P j and
(k, i)Rj /∈ P k, becausei does not shareRk with j or Rj

with k. If j is a customer, then, whateveri’s relationship
to k, Rj is shared withk, and Rk is shared withj. Thus,
(k, i)Rj ∈ P k if permitted byk, and(j, i)Rk ∈ P j if per-
mitted byj.

3.2 A BGP-Compatible Algorithm
The following algorithm is a straightforward extension to BGP

that computes routes and payments for incentive-compatible, wel-
fare-maximizing routing when policies are next-hop based and obey
the Gao-Rexford conditions described above in Sec. 3.1.

The algorithm essentially computes best routes using BGP but
adds extra information to update messages so that nodes can com-
pute the mechanism’s payments. This information is also stored
in nodes’ routing tables, requiring one extra bit of storagefor ev-
ery transit AS on an imported route. These bits are used to deter-
mine the next hop of the bestk-avoiding route—the best route in
I−k—for every transit nodek on the best route for each node inI .
The next hops are used directly in computing payments and canbe
stored using one extra row in the routing table, denotedLi below.

The extra bit per transit node in each row of the routing tableand
the extra row used to store the next hops require a constant-factor
increase in the space complexity of the original BGP; a similar
amount of extra storage was used by the algorithm described in [3]
for lowest-cost-path routing. We use the termBGP-compatibleto
mean that the algorithm has the same basic structure as BGP and
that it is “space-efficient,” in that it requires only a modest increase
to the storage requirement of the original BGP. This is consistent
with use of the term in [3].

Computation of best routes andk-avoiding next hops is triggered
when nodes receive update messages, just as in BGP (see Sec. 2.3).
Update-message processing is divided into two cases: (I) the mes-
sage is from the most valued neighbor that has yet sent a message,
in which case the route contained in the message is chosen as the
best route; and (II) the message is not from the most valued neigh-
bor that has yet sent a message, in which case the extra bits inthe
message are used to update the choices of the bestk-avoiding next
hops. Unlike BGP, if nodex chooses nodey as its next hop, an
update message is still sent fromx back toy; this extra message is
used to send availability toy of k-avoiding routes throughx and is
processed using case (II).

Setting: An instance of the interdomain-routing problem with next-
hop policies obeying the Gao-Rexford conditions. As in Def.3.2,
we assume that there exists at each nodei ∈ [n] a functionfi :
neighbors(i) → R≥0, such thatvi(R) = fi(next(R)).

Outcome: A route allocationTd = {R1, . . . , Rn} that forms a



Destination Lz(2) = 1 Lz(4) = 2 Lz(5) = 1 → Lz : list of bestk-avoiding next-hop ASes for transitk onz’s best route

d AS 2 AS 4 AS 5 → R2, the route chosen by neighbor AS2; z’s current best route
B2(4) = 1 B2(5) = 0 → B2, the bit vector sent with update from neighbor2

d AS 1 AS 3 AS 5 → R1, the route chosen by neighbor AS1
B1(3) = 0 B1(5) = 1 → B1, the bit vector sent with update from neighbor1

Figure 2: An example routing table for source nodez using the algorithm from Sec. 3.2.

confluent tree tod, such that

Td = argmaxT={S1,...,Sn}

n
X

i=1

vi(Si).

Structure of Update Messages:An update messagem sent by
nodei contains a routeRm ∈ P i and, for everyk ∈ Rm (k /∈
{i, d}), a bit Bm(k). Bm(k) = 1 if i has, in its routing table, a
k-avoiding route tod, i.e., some routeR ∈ P i such thatk /∈ R.
These bits are used to correctly populate the listLi, defined below,
that is used to compute the mechanism’s payments.

Storage at Each Node:Each nodei has a routing tableYi indexed
by neighbors ofi. If j ∈ neighbors(i), thenYi(j) is the update
message sent by nodej, so that at most one advertised route is
stored per neighbor. Initially,Yi(j) = ∅ for all j. Each nodei also
has a listLi: Assume the current best route ati is Ri; if k ∈ Ri is
a transit node (k /∈ {i, d}), thenLi(k) = next(R′), whereR′ is
the bestk-avoiding route ini’s routing table.Li(k) will be used, at
the end of the algorithm, to compute the component of the payment
to nodek that is attributable to nodei, denotedsi

k. Fig. 2 shows an
example of the storage at each node.

Start: AS d sends update messagem = (d, ∅) to all neighbors.

Update-Message Processing:Let m = (Rm, Bm) be the update
message received at nodei from j ∈ neighbors(i). If (i, j)Rm /∈
P i and next(Rm) 6= i, then discard the message. Otherwise,
(i, j)Rm ∈ P i or next(Rm) = i, and the update message should
be stored in the routing table so thatYi(j) = (Rm, Bm).

(Case I)If next(Rm) 6= i and

fi(j) = max
{j′∈neighbors(i)|Yi(j) 6=∅}

fi(j
′),

i.e., j is the most valued neighbor that has sent an update message,
thenRm is a new best route tod (i.e., Rm is the newRi). ResetLi

to empty and, for eachk ∈ Rm such thatk 6= d, do the following to
repopulateLi: If Bm(k) = 1, then setLi(k) = j; if Bm(k) = 0
or k = j, then:

1. LetA = neighbors(i) − {j} and let

a = argmax{a′∈A|Yi(a
′) 6=∅}fi(a

′)

be the most valued node inA. Let (Ra, Ba) = Yi(a) be the
routing-table entry fora.

2. If k /∈ Ra, then setLi(k) = a.

3. If not,k ∈ Ra. If Ba(k) = 1, then setLi(k) = a.

4. If Li(k) has still not been set, then repeat at (1) withA =
A − {a}. Discontinue repeat ifA = {a}, i.e., there would
be no nodes left inA.

Finally, setRi = (i, j)Rm.

(Case II)If next(Rm) = i or

fi(j) 6= max
{j′∈neighbors(i)|Yi(j) 6=∅}

fi(j
′),

i.e., j is not the most valued neighbor that has sent an update mes-
sage, then for eachk ∈ Ri (k /∈ {i, d}), setLi(k) = j if:

1. k ∈ Rm;

2. Bm(k) = 1; and

3. fi(j) > fi(Li(k)); i.e., if j has ak-avoiding route for some
transit k on the current best routeRi to d, and j is more
valued thanLi(k), the next hop on the currently-known best
k-avoiding route, then changeLi(k) to j.

If any changes were made toLi in either of the cases above
(including any time Case I was triggered), then send update mes-
sagesm′ = (Ri, B

′
m) to all neighbors ofi, whereB′

m(k) = 1 if
Li(k) 6= ∅ andB′

m(k) = 0 if Li(k) = ∅.

Payment Computation: Once the algorithm converges, the bank
obtains thepayment componentssi

k = fi(next(Ri)) − fi(Li(k))
from each nodei for every k ∈ Ri (k /∈ {i, d}), which is the
component attributable toi of the total payment tok. The bank
then disburses a paymentsk =

P

i6=k si
k to each nodek.

We next investigate the truthfulness and correctness of thealgo-
rithm. We show that the algorithm converges, at which time each
nodei has a valid, utility-maximizing routeRi to d and, for each
k ∈ Ri (k /∈ {i, d}), the next hop of the best route inG−k, Li(k),
that is used in the computation of payment componentssi

k.

3.3 Truthfulness and Correctness
We define the payment to each node to be

sk =
X

i6=k

vi(Ri) −
X

i6=k

vi(R
−k
i ), (1)

in which Ri is the route allocated toi in Td, andR−k
i is the route

allocated toi in T−k
d .

Our mechanism then belongs to the family ofVickrey-Clarke-
Groves(VCG) mechanisms. A classic result of Green and Laf-
font [11] states that a truthful pricing mechanism maximizing a
social-welfare function of the formV (Td) =

Pn
i=1 vi(Ri) must

be a VCG mechanism, with payments expressible as

pk =
X

i6=k

vi(Ri) − hk(T−k
d ), (2)

in which hk(·) is an arbitrary function ofT−k
d . In particular, this

means that every strategic agent’s payment must depend solely on
the other agents. Note that, if

hk(T−k
d ) =

X

i6=k

vi(R
−k
i )

in (2), thenpk = sk.
Intuitively, the payment to each nodei is the increase in the so-

cial welfare of the other nodes caused byi’s participation in the
algorithm. The key observation is that these payments can be“bro-
ken down” into components computed by the different nodes (in a
distributed fashion). Loosely speaking, nodei’s component in the



payment to nodej corresponds toj’s contribution toi’s welfare—
the difference in the valuesi assigns to the paths he gets with and
without j. These components are computed during the algorithm,
and the final payment is the sum of payment components computed
once the algorithm converges.

DEFINITION 3.4. Thepayment componentof i for j is

si
j = vi(Ri) − vi(R

−j
i ),

and thepaymentto each nodek is

sj =
X

i6=j

si
j .

It is easy to verify that the paymentsk in Def. 3.4 is the same
as that in (1). At the end of the algorithm, each nodei has enough
information to computesi

j for all nodesj: Because preferences are
next-hop based,si

j = vi(Ri) − fi (Li(j)), wherefi is the next-
hop valuation as in Def. 3.2, andLi(j) is the next hop of the best
j-avoiding route computed by the algorithm.

THEOREM 3.5. The algorithm in Sec. 3.2 is truthful and BGP-
compatible.

VCG payments guarantee the truthfulness of the algorithm. In
Sec. 5.2, we show that (with minor modifications) our algorithm
is immune to all types of rational manipulation as formulated by
Shneidman and Parkes [18]; this means our algorithm is incentive-
compatible with respect to ex-post Nash equilibrium. The algo-
rithm is BGP-compatible because it has the same structure asBGP
and requires only a constant-factor increase in space complexity.

The following theorem implies the correctness of the algorithm.

THEOREM 3.6. Regarding the algorithm in Sec. 3.2:

(C1) the algorithm converges;

(C2) the outputTd is optimal (welfare-maximizing); and

(C3) the nodesLi(k) are indeed the next hops of the optimal routes
for i in G−k.

The Gao-Rexford conditions imply (C1); adding next-hop valua-
tions implies (C2). Both are special cases of more general results
that are discussed in Sec. 4. The welfare-maximizing routing tree
output by the algorithm with this class of policies has the addi-
tional property that the routes allocated to the nodes are not only
globally optimal, but also locally optimal (best with respect to each
node’s valuation function). Therefore, if nodes comply with the
algorithm’s instructions, they should receive their highest valued
routes. This result is also true for more general classes of policies;
see Sec. 4.5 below. The proof of (C3) is quite involved and is par-
ticular to this algorithm and this class of policies; it can be found in
the full version of this paper [4].

4. TOWARDS A GENERAL THEORY
OF INCENTIVE-COMPATIBLE
INTERDOMAIN ROUTING

In Sec. 3, we presented a realistic class of policies that admits
incentive-compatible, BGP-compatible computation of routes and
payments. However, many of our techniques apply to other classes
of policies. In this section and the next, we present severalpositive
steps toward a general theory of incentive-compatible interdomain
routing.

The algorithm in Sec. 3.2 is able to find a welfare-maximizing,
or globally optimal, route allocation, even though routes are cho-
sen through local decisions. Local decision making cannot always
achieve a globally optimal solution; the class of policies described
in Sec. 3 satisfy specific constraints that allow this. In this section,
we describe three constraints on routing policies. For each, we
give an example in which removing the constraint results in an un-
boundedprice of anarchy, meaning that the result of nodes’ acting
rationally but selfishly is arbitrarily worse than the result of a cen-
tralized, optimal computation. In other words, local decisions us-
ing a BGP-compatible protocol may not find a welfare-maximizing
route allocation if one or more of the constraints are not satisfied.
We then show, however, that these three constraints together form
a sufficient condition for policies to admit distributed, incentive-
compatible computation of welfare-maximizing routes. Later, in
Sec. 5, we present an algorithm that is not space-efficient but com-
putes welfare-maximizing routes and VCG payments for any class
of policies that obeys these three constraints.

4.1 Stability, Robustness, and the
Price of Anarchy

Path-vector protocols like BGP function much like an iterative
game, because, at each step of the protocol, ASes examine the
routes chosen by their neighbors and make local decisions asto
which routes are best. Convergence to some equilibrium is thus
an implicit goal of the protocol. Informally, a route allocation is
stable if no node prefers changing his allocated route to a route
that follows one of its neighbors’ allocated routes. A stable route
allocation can be regarded as a Nash equilibrium.

DEFINITION 4.1. A route allocationTd = {R1, ..., Rn} is sta-
ble iff, for every nodei,

vi(Ri) = argmax{(i,j)Rj∈P i|(i,j)∈L∧i/∈Rj}
vi((i, j)Rj).

However, a stable route allocation that is reached by local,self-
ish decision making may not be welfare maximizing. Theprice of
anarchy[14] measures how bad selfish computation can be.

DEFINITION 4.2. In an instanceI , let

Wselfish = min
stableTd={R1,...,Rn}

n
X

i=1

vi(Ri)

be the minimum total social welfare obtained by a stable routing
tree, and let

Wopt = max
Td={R1,...,Rn}

n
X

i=1

vi(Ri)

be the maximum total social welfare (over all routing trees). The
price of anarchyof path-vector routing onI is

Wopt

Wselfish
.

To design a welfare-maximizing path-vector protocol—a distribu-
ted protocol in which decisions are made locally and selfishly—we
must find conditions under which the price of anarchy is1. We
develop such a condition in the remainder of this section.

In addition to stability, network operators want routing tore-
spond to topology changes due to failures. Stability even inthe
presence of failures is formally defined as follows.

DEFINITION 4.3. An instance of the interdomain-routing prob-
lem isrobustiff, for every sub-instance obtained by removing any
set of nodes and links from the original graph, there exists aunique
stable route allocation to which a path-vector protocol converges
from any initial route allocation.
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Figure 3: A routing instance with a dispute wheel.

4.2 Dispute Wheels
There is an inherent trade-off in achieving the desired auton-

omy and policy expressiveness at a local level and robustness at
the global level [8]. Early work conjectured that only shorest-paths
routing might be provably stable [20]. However, Griffin, Shepherd,
and Wilfong [10] presented a sufficient condition on policies that
guarantees robust convergence while allowing policies broader than
shortest-path routing.

This condition is calledno dispute wheel. A dispute wheel is es-
sentially a representation of a set of nodes and their routing policies
(i.e., ordinal preferences on paths) that induce a routing anomaly. A
network instance on which BGP might oscillate contains a dispute
wheel; thus, the absence of a dispute wheel in an instance guar-
antees that it will never oscillate. More strongly, the absence of a
dispute wheel means that the instance and every sub-instance has a
unique stable route allocation.

The absence of a dispute wheel is, in fact, the broadest-known
sufficient condition for stability and robustness. In the design of an
incentive-compatible routing mechanism, we want to ensurethat
our routing algorithm does reach a stable tree in some equilibrium.
We therefore require that nodes’ valuations, which, in our model,
express routing policies, do not induce a dispute wheel.

The following defines an equivalent sufficient condition using
the language of valuation functions. The equivalence between this
definition and the original definition of a dispute wheel in [10] can
be found in [8,9].

DEFINITION 4.4. Define two relations on permitted routes in
an instanceI :

1. LetR1 ⊖1 R2 iff R1 is a suffix ofR2, i.e., there is somej
such thatR1 = R2[j,d] andR1 ∈ P j .

2. LetR1 ⊖2 R2 iff ∃ i ∈ N : R1, R2 ∈ P i and vi(R1) >
vi(R2).

Let⊘ = (⊖1 ∪⊖2)
∗ be the transitive closure of⊖1,⊖2. Note that

⊘ is inherently reflexive and transitive.
InstanceI hasno dispute wheeliff R1⊘R2 andR2⊘R1 implies

that eitherR1 = R2 or R1, R2 start at the same node. (Informally,
this is antisymmetry of⊘ except that ties are allowed in valuations.)

Fig. 3 shows a routing instance (DISAGREE, from [10]) with
policies that induce a dispute wheel. This instance has two stable
route allocations:{1d, 21d} and{12d, 2d}. Because the network
is asynchronous, the timing of update messages may cause BGPto
converge to either of these solutions or oscillate between them [10].
This anomaly is manifested by the following dispute wheel:

1d ⊖2 21d ⊖1 2d ⊖1 12d ⊖2 1d.

The price of anarchy in this example is(1 + α), which can be
arbitrarily bad given the choice ofα > 0.

1

d

2

4

3

v1(132d) = 0

v2(2d) = 100

v2(231d) = 0

v3(31d) = 100

v3(32d) = 99

v4(432d) = 100 + α

v4(431d) = 99

v1(1d) = 100

Figure 4: A routing instance without policy consistency.

4.3 Policy Consistency
Our interdomain-routing problem is an optimization problem in

which each node assignscardinal values to the different routes.
Even without dispute wheels, finding a stable route allocation based
on ordinal preferences does not suffice, because that allocation’s
value can be much lower than that of the optimal route allocation.

Fig. 4 shows an instance without a dispute wheel; assumeα > 0.
The unique stable route allocation is{1d, 2d, 31d, 431d}. How-
ever, the optimal route allocation is{1d, 2d, 32d, 432d}. This al-
location will never be chosen by local decisions, because node 3
would much prefer routing through node1, a route that is always
available for it to choose. Therefore, the price of anarchy in this
example,1 + 1

399
α, is also unbounded.

To overcome this problem, we formally introduce thepolicy-
consistencyproperty. This property helps to ensure that the optimal
route allocation is stable and, when combined with dispute-wheel
freeness andconsistent filtering(defined in the next subsection),
means that any path-vector protocol converges to an optimalroute
allocation. (We explore the interesting connections between the
three conditions in Thm. 4.10, first studied in a modified formby
Sobrinho in [19].)

Informally, a nodei is policy-consistent with an adjacent nodej
if there are no two routes fromi to d with next hopj, such thatj
prefers one to the other, buti disagrees.

DEFINITION 4.5. Let i and j be two adjacent nodes inG. We
say thati is policy-consistentwith j iff for every two routes{Q, R}
⊂ P j such thati /∈ Q, i /∈ R, and{(i, j)Q, (i, j)R} ⊂ P i,

if vj(Q) > vj(R), thenvi((i, j)Q) > vi((i, j)R).

DEFINITION 4.6. An instance is policy-consistent (or “policy
consistency holds”) iff, for every two adjacent nodesi and j, i is
policy-consistent withj.

Assuming policy consistency in a network is natural for the same
reason that next-hop preferences are: Nodes have little control over
forwarding paths beyond the next hop. Note that next-hop valua-
tions are, in fact, policy-consistent.

Other examples of valuations for which policy consistency holds
aremetric-based valuations(defined in [9]).

DEFINITION 4.7. Let δ : L → R>0 be a positive real-valued
function that specifies the “length” of each link (a “metric”func-
tion). A valuation functionv that is based onδ is one in which
v(Q) > v(R) iff

P

l∈Q δ(l) <
P

l∈R δ(l).

It is easy to see that, if all nodes’ valuations are based on the same
underlying metric functionδ, then the network is policy-consistent.
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Figure 5: Next-hop policies without consistent filtering.

In particular, ifδ(l) = 1 for every link l, then this is precisely the
well known shortest-path-routing problem.

4.4 Consistent Filtering
In traditional formulations of interdomain routing, nodesare al-

lowed tofilter routes arbitrarily when exporting updates to or im-
porting updates from neighbors,i.e., nodes can arbitrarily remove
paths from consideration (restrictingP i).

In the welfare-maximizing formulation of interdomain routing,
arbitrary filtering is often disallowed. Arbitrary filtering, like the
lack of policy consistency, can make the price of anarchy unbound-
ed, because a node may value a route that is filtered by a neigh-
bor much more than any other route available. This is the case
in Fig. 5, an instance with next-hop policies (which are policy-
consistent) and no dispute wheel. (Again, assumeα > 0.) Al-
though node5 generally prefers routing through node4, the path
543d is filtered. If node4 chooses to route through node2, node
5 can route through node4, and this leads to the optimal route al-
location,{1d, 2d, 3d, 42d, 542d}. However, this allocation is not
stable, because node4 prefers routing through node3, which pre-
vents node5 from routing through node4, leading to the unique
stable route allocation{1d, 2d, 3d, 43d, 541d}. The price of anar-
chy in this example is1 + 1

6
α, which can grow arbitarily large as

α → ∞.
In order to achieve our objective of welfare maximization, we re-

quire that nodes not filter routes arbitrarily. If a node filters a route,
it must value that route less than any route that is not filtered—this
is calledconsistent filtering.

DEFINITION 4.8. Nodei filters consistentlywith respect to (ad-
jacent) nodej iff, for any routeR ∈ P i such that(j, i)R /∈ P j and
(j, i)R is simple,vi(R) < vi(Q) for all routesQ ∈ P i such that
(j, i)Q ∈ P j .

We say that an instance “filters consistently” if every node filters
consistently with respect to every other adjacent node.

REMARK 4.9. The isotonicityproperty studied by Sobrinho in
[19] for its relationship to optimal routing essentially combines
policy consistency and consistent filtering.

4.5 Local and Global Optimality
We now turn to the interesting relationship among the three prop-

erties presented in this section: no dispute wheel, policy consis-
tency, and consistent filtering. Recall that, if an instancehas no

dispute wheel, then it has a unique stable route allocation.The
following theorem states that, if all three properties hold, then this
unique route allocation is globally optimal (i.e., it maximizes the
total social welfare).

THEOREM 4.10. If the valuation functions do not induce a dis-
pute wheel, and nodes filter consistently and are policy-consistent,
then there exists a unique stable route allocationTd, and

Td = argmaxT={S1,...,Sn}

n
X

i=1

vi(Si).

A locally optimal route allocation is one in which nodes are as-
signed their most valued routes.

DEFINITION 4.11. A route allocationTd = {R1, . . . , Rn} is
locally optimal iff, for every nodei, Ri = argmaxR∈P ivi(R),
i.e., every nodei is allocated its highest-valued route.

The following theorem shows that the combination of no dispute
wheel, policy consistency, and consistent filtering ensures not only
global optimality but local optimality as well.

THEOREM 4.12. If an instance has no dispute wheel and is pol-
icy consistent, then any globally optimal, stable route allocation is
also locally optimal.

REMARK 4.13. (C2) in Thm. 3.6 is a special case of this result,
because the Gao-Rexford conditions imply no dispute and consis-
tent filtering, and next-hop valuations imply policy consistency.

REMARK 4.14. Global and local optimality also hold for sub-
instances, because if all three properties hold in an instance, they
hold for all sub-instances.

5. AN ALGORITHM FOR GENERAL
CLASSES OF POLICIES

The no-dispute-wheel property guarantees that any path-vector
protocol converges to the unique stable route allocation. When
combined with policy consistency and consistent filtering,this route
allocation is globally optimal. Therefore, if these three proper-
ties hold, we can use a path-vector protocol to compute welfare-
maximizing routes. However, there is still the matter of ensuring
that the ASes have no motivation to rationally manipulate the pro-
tocol in order to better their outcome.

We now present an incentive-compatible, distributed algorithm
for interdomain routing on instances that are dispute-wheel-free
and policy-consistent. We investigate its incentive-compatiblity
properties in detail; its payment structure naturally enforces con-
sistent filtering and truthful participation, and the algorithm is also
not subject to other forms of rational manipulation as formulated
by Shneidman and Parkes in [18].

The BGP-compatible algorithm in Sec. 3 is a specific case of this
algorithm; we conclude this section by presenting another BGP-
compatible special case, that of metric-based valuations.Note that
the general-case algorithm is not BGP-compatible, becauseits im-
plementation requires more than a modest increase to the storage
space at each node.

5.1 Algorithm Specification
This algorithm can be thought of as a “meta-algorithm” in the

sense that it ignores implementation aspects (including those re-
lated to internal memory considerations and message passing). We
prove the correctness of our algorithm for the case in which policies
do not induce a dispute wheel and nodes are policy-consistent.



Setting: An instanceI = (G,P ,V) of the interdomain-routing
problem that is dispute-wheel-free and policy-consistent.

Outcome: A route allocationTd ={R1, . . . , Rn} that forms a con-
fluent tree tod, such thatTd = argmaxT={S1,...,Sn}

Pn
i=1 vi(Si).

The Algorithm:
The algorithm runsn + 1 copies of a path-vector protocol (see

Sec. 2.3) to find the optimal route allocationT−i
d for eachI−i, 1 ≤

i ≤ n, and the optimal route allocationTd for I . It can therefore
be regarded as composed of many similar “sub-algorithms” that are
executed simultaneously.

Once all sub-algorithms reach a stable route allocation, every
nodej is assigned its route inTd. Its payment is computed as fol-
lows: Every nodei computes apayment componentfor j, si

j =

vi(Ri) − vi(R
−j
i ), in whichRi andR−j

i are the routes allocated
to i in Td andT−j

d , respectively. The total payment to nodej is de-
fined to be the sum of these payment components,sj =

P

i6=j si
j .

THEOREM 5.1. If policies do not induce a dispute wheel and
are policy-consistent, this algorithm converges to a routeallocation
that maximizes total social welfare.

In Sec. 4.5, we showed that, if an instance is dispute-free, is
policy-consistent, and filters consistently, then every path-vector
protocol converges to a route allocation that is both globally and lo-
cally optimal. However, notice that Thm. 5.1 only requires no dis-
pute wheel and policy consistency. In Sec. 5.2, we show that these
two properties suffice—if both properties hold, then nodes have no
incentive, given the payments computed, to filter any routes.

The local optimality of the route allocation reached by the algo-
rithm leads to two important observations regarding the computa-
tion of payments: First, all payment components calculatedby the
nodes are nonnegative; so, the payment to each node is nonneg-
ative. Hence, we are guaranteed that nodes will not have to pay
the bank for their participation in the algorithm. Second, nodei’s
payment componentsi

j for every nodej /∈ Ri (Ri is i’s optimal
route) is always0, becauseRi = R−j

i . Therefore, every nodei
only needs to store in its memory alternate routes and payment-
component values for the transit nodes on its best route.

5.2 Incentive Compatibility
To prove that our mechanism is incentive compatible, we first

consider the restricted case in which the only form of rational ma-
nipulation available to the nodes is not revealing their true prefer-
ences. In particular, nodes can lie about what routes are available
by filtering routes arbitrarily.

THEOREM 5.2. The paymentssi =
P

j 6=i sj have the form of
VCG payments.

VCG payments guarantee the strongest possible result for the
restricted case: truthful behavior of all nodes leads to adominant-
strategy equilibrium. That is, a rational node’s best strategy is con-
veying its true preferences no matter what the preferences of the
other nodes are. Hence, a node need not make any kind of as-
sumptions on the other nodes’ behavior or have anya priori knowl-
edge about their preferences. Thus, incentives naturally enforce the
consistent-filtering condition, because nodes have no motivation to
filter routes beyond what is necessary to enforce no dispute wheel
(e.g., the third Gao-Rexford condition; see Sec. 3.1).

As pointed out by Shneidman and Parkes [18], in a distributed
setting, there are many other forms of rational manipulation avail-
able to the strategic agents. This is because the computation is exe-
cuted by the strategic agents themselves (and not by some reliable

third party, as is the case in a centralized setting). In our model, for
example, nodes may refuse to pass messages or choose to alterthe
contents of messages that go through them.

Let us consider the more general case in which nodes have many
ways of rationally manipulating the algorithm. We prove incen-
tive compatibility by showing that a node cannot benefit by deviat-
ing from the information revelation, communication, and computa-
tional actions it is instructed to perform by the protocol.4 We make
use of the techniques in [18] to show that, with a minor adjustment,
our algorithm obtains incentive compatibility inex-post Nash equi-
librium. The only modification needed is requiring, as in [18], that
all communication between the bank and the nodes be signed and
receive signed acknowledgments. (The bank has the power to in-
vestigate when receipts are not received.)

An ex-post Nash equilibrium is a robust solution concept: In
such an equilibrium, no single node would deviate from the algo-
rithm even if it knew the other nodes’ private valuations. Ifwe aim
at an ex-post Nash equilibrium, we must assume only that all nodes
are rational and wish to maximize their utilities.5 Shneidman and
Parkes view the need to settle for an ex-post Nash equilibrium in
the general case (instead of an equilibrium in dominant strategies
in the restricted case) as “the cost of distributing mechanism com-
putation across a network” [18].

THEOREM 5.3. The modified algorithm is incentive compatible
in ex-post Nash equilibrium.

REMARK 5.4. Because dispute-free policies imply robustness,
the problem has a unique stable solution; this solution is also op-
timal. Since every such stable solution is an ex-post Nash equilib-
rium, we have only one ex-post Nash equilibrium. Therefore,we
avoid the problem that arises when multiple equilibria exist, i.e.,
making sure that the nodes select the same equilibrium.

REMARK 5.5. As in [18], we too assume that nodes arebenev-
olent in the sense that they will implement the algorithm’s instruc-
tions as long as they do not strictly prefer choosing anotherstrat-
egy. Therefore, we only require a weak ex-post Nash equilibrium.

5.3 Metric-Based Valuations
The algorithm in Sec. 3.2 is a special case of the general algo-

rithm in Sec. 5.1; the class of policies used in the former allows the
algorithm to be more space-efficient than runningn+1 copies of a
path-vector protocol. We now briefly present another special case,
that ofmetric-based valuations, defined in Sec. 4.3.

Metric-based valuations are inherently dispute-wheel free [8, 9,
19]; they are also policy-consistent. Thus, if nodes do not filter
routes arbitrarily, metric-based valuations permit incentive-compat-
ible, distributed computation of welfare-maximizing routes.

The important observation regarding metric-based valuations is
that, just as with next-hop policies, when running a path-vector
protocol on an instance with metric-based valuations, an ASneed
not store in its memory and communicate in each time step en-
tire paths. This is because the value an AS assigns a route de-
pends solely on the route’slength, and so merely storing and com-
municating routes’ lengths is sufficient. Thus, to computesi

k =
vi(Ri) − vi(R

−k
i ), nodei only needs the lengths ofRi andR−k

i ,
4These three properties are what Shneidman and Parkes [18] refer
to as IC-, CC-, and AC-compatibility.
5The ex-post Nash equilibrium concept is strictly stronger than
the well known Nash-equilibrium concept. A Nash-equilibrium-
oriented implementation of our algorithm would have to assume
that every node is familiar with the preferences of all othernodes.
This assumption is unrealistic in interdomain routing.



as these determine the valuation; furthermore, because of local op-
timality, nodei need only do this for transit nodes on its best (and
chosen) route to the destination (si

k = 0 for non-transit nodes).
A straightforward extension of BGP can be used to propagate

this information. Update messages fromj will include, in addi-
tion to j’s best routeRj , the length ofRj and, for everyk ∈ Rj

(k /∈ {j, d}), the length of the best known route atj that avoidsk.
Update messages are sent whenever this information changesat j.
The BGP routing table is extended to store this extra information,
requiringO(1) extra space per node, per route, stored in the table.

When a node receives an update message, it checks the provided
lengths to determine whether a shorterk-avoiding route is known
(for each transit nodek on the current best route). This process
mirrors that in [3]. At the end of the algorithm, nodes have enough
information to compute the payment componentssi

k.

REMARK 5.6. We note that, because routes with shorter lengths
are chosen as best, routes are forced to be simple. If a node knows
of a k-avoiding route with a loop, it must also know of the route
without the loop. If all lengths are positive, then the simple path
will be strictly shorter.

6. CONCLUSIONS AND
OPEN QUESTIONS

In this paper, we addressed the problem of incentive-compatible
interdomain routing. Our main result is a BGP-compatible, incent-
ive-compatible mechanism for a realistic class of routing policies,
thus answering an open question posed in [3]. Additionally,we
stated general conditions that are sufficient for designingincentive-
compatible, welfare-maximizing protocols for more general classes
of routing policies. Using this general characterization,we pre-
sented a BGP-compatible mechanism for yet another class of valu-
ations, namely metric-based valuations. It would be interesting to
find other natural classes of valuations for which BGP-compatible
mechanisms exist.

There are many other issues that remain unresolved and call for
further research. One such issue is that of designing distributed
(preferably BGP-compatible) mechanisms that obtaingood approx-
imationsto the total social welfare. Very little is known about the
approximability of the interdomain-routing problem. Feigenbaum,
Sami, and Shenker [5] show that, if we impose no restrictionson
the routing policies, then no good approximation ratio is attainable.
A first step towards the design of BGP-compatible approximation
mechanisms is finding a nontrivial characterization of routing poli-
cies for which the price of anarchy is low.

Introducing incentive compatibility into the interdomain-routing
setting involves paying ASes for their participation in thealgo-
rithm. The way these payments are computed leads to many inter-
esting questions: How can we make sure that the ASes are not over-
paid for the transit services they provide? (VCG mechanismsare
often criticized in the literature for overpaying the strategic agents.)
In our formulation, the ASes do not pay each other but are paidby
the bank(as in [18]). Is it possible to get rid of the bank and have
ASes pay other ASes directly for transit services rendered?

A distributed setting such as ours poses an inherently differ-
ent challenge for the design of incentive-compatible mechanisms
(see [3, 18]) than a centralized one. This is because the computa-
tion is performed by the strategic agents themselves and notby a
reliable third party. We reconcile the strategic model and the dis-
tributed computational model by using techniques similar to those
in [18]. In particular, we use cryptographic signing. Is it possible to
reconcile the two models without having to resort to this technique?

Finally, the question of optimal communication complexityfor
the computation of routes and payments remains open. We have
stressed space complexity in this paper, but there may be an in-
crease over BGP in the number of update messages sent by our
algorithms. This is because our algorithms have an additional con-
dition that triggers sending an update message, namely, anychange
to the best knownk-avoiding route (or next hop), for any transit
nodek on the current best path. Update messages are not sent for
this reason in the original BGP. Although the message complex-
ity of our algorithms is not unreasonable with respect to BGP’s
worst-case performance, the optimal number of messages needed
to compute payments in addition to routes is currently unknown.
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