Suppose we have two genes on a single chromosome

gene A and gene B

such that each gene has only two alleles

\[\text{Aalleles} : A_1 \text{ and } A_2 \]

\[\text{Balleles} : B_1 \text{ and } B_2 \]
Suppose we have two genes on a single chromosome gene A and gene B such that each gene has only two alleles

\[Aalleles : A_1 \text{ and } A_2 \]

\[Balleles : B_1 \text{ and } B_2 \]

Possible allele combinations:

\[A_1 B_1, A_1 B_2, A_2 B_1 \text{ and } A_2 B_2 \]
Linkage Disequilibrium

- \(p_1 \) = probability of seeing allele \(A_1 \)
- \(p_2 \) = probability of seeing allele \(A_2 \)
- \(p_1 + p_2 = 1 \)

By Hardy-Weinberg principle, the probability of genotype \(A_1A_1 \) is \(p_1^2 \), probability of genotype \(A_1A_2 \) is \(2p_1p_2 \), and probability of genotype \(A_2A_2 \) is \(p_2^2 \).

HW equilibrium is about a single locus (with two alleles). How do we generalize to two loci?
Linkage Disequilibrium

- p_1 = probability of seeing allele A_1
- p_2 = probability of seeing allele A_2
- $p_1 + p_2 = 1$

By Hardy-Weinberg principle,
- probability of genotype A_1A_1 is p_1^2
- probability of genotype A_1A_2 is $2p_1p_2$
- probability of genotype A_2A_2 is p_2^2
Linkage Disequilibrium

- $p_1 = \text{probability of seeing allele } A_1$
- $p_2 = \text{probability of seeing allele } A_2$
- $p_1 + p_2 = 1$

By Hardy-Weinberg principle,
- probability of genotype A_1A_1 is p_1^2
- probability of genotype A_1A_2 is $2p_1p_2$
- probability of genotype A_2A_2 is p_2^2

HW equilibrium is about a single locus (with two alleles). How do we generalize to two loci??
Linkage Disequilibrium: two sites/genes each with two alleles

- Linkage Equilibrium: Random Association
- Linkage Disequilibrium: correlation between two loci

\[p_{11} = \text{probability of seeing the } A_1B_1 \text{ haplotype} \]
\[p_{12} = \text{probability of seeing the } A_1B_2 \text{ haplotype} \]
\[p_{21} = \text{probability of seeing the } A_2B_1 \text{ haplotype} \]
\[p_{22} = \text{probability of seeing the } A_2B_2 \text{ haplotype} \]
Linkage Disequilibrium: two sites/genes each with two alleles

- Linkage Equilibrium: Random Association
- Linkage Disequilibrium: correlation between two loci

\[p_{11} = \text{probability of seeing the } A_1 B_1 \text{ haplotype} \]
\[p_{12} = \text{probability of seeing the } A_1 B_2 \text{ haplotype} \]
\[p_{21} = \text{probability of seeing the } A_2 B_1 \text{ haplotype} \]
\[p_{22} = \text{probability of seeing the } A_2 B_2 \text{ haplotype} \]
Linkage Disequilibrium

Linkage Equilibrium: two sites/genes each with two alleles

- Linkage Equilibrium: Random Association
- Linkage Disequilibrium: correlation between two loci

\[p_{11} = \text{probability of seeing the } A_1 B_1 \text{ haplotype} \]
\[p_{12} = \text{probability of seeing the } A_1 B_2 \text{ haplotype} \]
\[p_{21} = \text{probability of seeing the } A_2 B_1 \text{ haplotype} \]
\[p_{22} = \text{probability of seeing the } A_2 B_2 \text{ haplotype} \]

The sites are in Linkage Equilibrium if \(p_{11} = p_1 q_1 \), \(p_{12} = p_1 q_2 \), etc.
Linkage Disequilibrium is a *deviation* from this equilibrium:

\[D = p_{11} - p_1 q_1 \]

Note that

\[p_{11} = p_1 q_1 + D, \]
\[p_{12} = p_1 q_2 - D, \]
\[p_{21} = p_2 q_1 - D, \]
\[p_{22} = p_2 q_2 + D. \]
Lemma

\[D = p_{11}p_{22} - p_{12}p_{21}. \]
Linkage Disequilibrium

Lemma

\[D = p_{11} p_{22} - p_{12} p_{21}. \]

Proof:

\[
\begin{align*}
 p_{11} p_{22} &= (p_1 q_1 + D)(p_2 q_2 + D) \\
 &= p_1 q_1 p_2 q_2 + p_1 q_1 D + p_2 q_2 D + D^2 \\
 p_{12} p_{21} &= (p_1 q_2 - D)(p_2 q_1 - D) \\
 &= p_1 q_1 p_2 q_2 - p_2 q_1 D - p_1 q_2 D + D^2
\end{align*}
\]
Lemma

\[D = p_{11} p_{22} - p_{12} p_{21}. \]

Proof:

\[p_{11} p_{22} = (p_1 q_1 + D)(p_2 q_2 + D) = p_1 q_1 p_2 q_2 + p_1 q_1 D + p_2 q_2 D + D^2 \]

\[p_{12} p_{21} = (p_1 q_2 - D)(p_2 q_1 - D) = p_1 q_1 p_2 q_2 - p_2 q_1 D - p_1 q_2 D + D^2 \]

And by subtracting these, we obtain

\[p_{11} p_{22} - p_{12} p_{21} = D(p_1 q_1 + p_2 q_1 + p_2 q_2 + p_1 q_2) \]

\[= D \times (1) = D \]
What is the range of D?

Let

$$D_{\text{min}} = \max \left\{ -p_1q_1, -p_2q_2 \right\}$$

$$D_{\text{max}} = \min \left\{ p_1q_2, p_2q_1 \right\}$$

Now define:

$$D' = \begin{cases} D_{\text{max}} & D > 0 \\ D_{\text{min}} & D < 0 \end{cases}$$

Since $p_{11} = p_1q_1 + D$, and $p_1q_1 + D \geq 0$ (since p_{11} is a probability), this implies $D \geq -p_1q_1$ (and similarly $D \geq -p_2q_2$).
What is the range of D?

Let

$$D_{\text{min}} = \max\{-p_1 q_1, -p_2 q_2\}$$

$$D_{\text{max}} = \min\{p_1 q_2, p_2 q_1\}$$
What is the range of D??

Let

$$D_{\text{min}} = \max \{-p_1 q_1, -p_2 q_2\}$$

$$D_{\text{max}} = \min \{p_1 q_2, p_2 q_1\}$$

Now define:

$$D' = \begin{cases} \frac{D}{D_{\text{max}}}, & D > 0 \\ \frac{D}{D_{\text{min}}}, & D < 0 \end{cases}$$

Since $p_{11} = p_1 q_1 + D$, and $p_1 q_1 + D \geq 0$ (since p_{11} is a probability), this implies

$$D \geq -p_1 q_1 \text{ (and similarly } D \geq -p_2 q_2)$$
For both to be satisfied, it must be that

\[D \geq \max\{-p_1 q_1, -p_2 q_2\} \]
For both to be satisfied, it must be that

\[D \geq \max\{-p_1 q_1, -p_2 q_2\} \]

Similarly,

\[D \leq \min\{p_1 q_2, p_2 q_1\} \]
For both to be satisfied, it must be that

\[D \geq \max\{ -p_1 q_1, -p_2 q_2 \} \]

Similarly,

\[D \leq \min\{ p_1 q_2, p_2 q_1 \} \]

For the two loci that we are considering, each loci \textit{individually} is in Hardy-Weinberg equilibrium, but \textit{together} a disequilibrium exists.
Example: Consider two SNPs in the coding region of glycoprotein A and glycoprotein B that change the amino acid sequence. Both of the proteins are on chromosome 4 and are found on the outside of red blood cells.

<table>
<thead>
<tr>
<th>SNP</th>
<th>AminoAcids</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Protein A:</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td>For Protein B:</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
We have 1000 British people in the study (which means that there are 2000 chromosomes). The genotypes for each gene are as follows:

<table>
<thead>
<tr>
<th>Protein A</th>
<th>Protein B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>TT</td>
</tr>
<tr>
<td>298</td>
<td>99</td>
</tr>
<tr>
<td>AG</td>
<td>TC</td>
</tr>
<tr>
<td>489</td>
<td>418</td>
</tr>
<tr>
<td>GG</td>
<td>CC</td>
</tr>
<tr>
<td>213</td>
<td>483</td>
</tr>
</tbody>
</table>

The loci are individually in HW equilibrium.
We have 1000 British people in the study (which means that there are 2000 chromosomes). The genotypes for each gene are as follows:

<table>
<thead>
<tr>
<th>Protein A</th>
<th>298</th>
<th>AA</th>
<th>Protein B</th>
<th>99</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>489</td>
<td>AG</td>
<td></td>
<td>418</td>
<td>TC</td>
</tr>
<tr>
<td></td>
<td>213</td>
<td>GG</td>
<td></td>
<td>483</td>
<td>CC</td>
</tr>
</tbody>
</table>

The loci are individually in HW equilibrium.

Next, we can estimate the allele frequencies:

\[
A : p_A = \frac{2 \times 298 + 489}{2000} = .5425
\]

\[
G : q_a = \frac{489 + 2 \times 213}{2000} = .4575
\]

Similarly, you can find that T: \(p_B = .3080 \) and C: \(q_b = .6920 \).
If the haplotypes are in Linkage Equilibrium, then the probability of each haplotype will be p_Ap_B, p_Aq_b, q_ap_B, and q_aq_b respectively.

<table>
<thead>
<tr>
<th>HAPLOTYPE</th>
<th>OBSERVED</th>
<th>EXPECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>474</td>
<td>(.5425)(.3080)(2000) = 334.2</td>
</tr>
<tr>
<td>AC</td>
<td>611</td>
<td>(.5425)(.6920)(2000) = 750.8</td>
</tr>
<tr>
<td>GT</td>
<td>142</td>
<td>(.4575)(.3080)(2000) = 281.8</td>
</tr>
<tr>
<td>GC</td>
<td>773</td>
<td>(.4575)(.6920)(2000) = 633.2</td>
</tr>
</tbody>
</table>

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$ where the degrees of freedom =

#categories-1-#other dependencies, in this case is 4-1-2 = 1.

$\chi^2 = 184.7$ with 1 d.f., which yields a P-value of $\ll .0001$, so we can safely REJECT Linkage Equilibrium between the two SNPs.
What about the Linkage Disequilibrium??

\[\hat{P}_{AB} = \frac{474}{2000} = 0.2370 \]
\[\hat{P}_{Ab} = \frac{611}{2000} = 0.3055 \]
\[\hat{P}_{aB} = \frac{142}{2000} = 0.0710 \]
\[\hat{P}_{ab} = \frac{773}{2000} = 0.3865 \]

\[D = \hat{P}_{AB} \hat{P}_{ab} - \hat{P}_{aB} \hat{P}_{Ab} = 0.07 \]

\[D_{\text{max}} = \min \{ p_A q_b, q_a p_B \} = \min \{ 0.38, 0.14 \} = 0.14. \]

So \[D' = \frac{D}{D_{\text{max}}} = \frac{0.07}{0.14} = 50\% \]. This means that the LD is 50% of its theoretical maximum!
What about the Linkage Disequilibrium??

How much LD exists between the two loci??

\[
\hat{P}_{AB} = \frac{474}{2000} = .2370 \\
\hat{P}_{Ab} = \frac{611}{2000} = .3055 \\
\hat{P}_{aB} = \frac{142}{2000} = .0710 \\
\hat{P}_{ab} = \frac{773}{2000} = .3865
\]

- \(D = \hat{P}_{AB} \hat{P}_{ab} - \hat{P}_{aB} \hat{P}_{Ab} = .07 \)
- \(D_{max} = \min\{ p_A q_b, q_a p_B \} = \min\{.38, .14\} = .14. \)
- So \(D' = \frac{D}{D_{max}} = \frac{.07}{.14} = 50\% \). This means that the LD is 50% of its theoretical maximum!
Summary: We reject Linkage Equilibrium by the χ^2 test, so that means that LD exists. How much LD? 50% of the theoretical maximum.
\textit{Summary:} We reject Linkage Equilibrium by the χ^2 test, so that means that LD exists. How much LD? 50\% of the theoretical maximum.

\textbf{Other Measures of LD}

\begin{equation*}
D' = \begin{cases}
\frac{D}{D_{\text{max}}}, & D > 0 \\
\frac{D}{D_{\text{min}}}, & D < 0
\end{cases}
\end{equation*}

\begin{equation*}
r^2 = \frac{D}{\rho_A \rho_a \rho_B \rho_b}
\end{equation*}

\begin{itemize}
\item r^2 is the correlation coefficient of the frequencies. It has the convenient property that $\chi^2 = r^2 N$, where N is the number of chromosomes in the sample (see the lecture on Introduction to r^2 for a proof).
\end{itemize}
Summary: We reject Linkage Equilibrium by the χ^2 test, so that means that LD exists. How much LD? 50% of the theoretical maximum.

Other Measures of LD

$$D' = \begin{cases} \frac{D}{D_{\text{max}}}, & D > 0 \\ \frac{D}{D_{\text{min}}}, & D < 0 \end{cases}.$$

$$r^2 = \frac{D}{p_A p_a p_B p_b}$$

- r^2 is the correlation coefficient of the frequencies. It has the convenient property that $\chi^2 = r^2 N$, where N is the number of chromosomes in the sample (see the lecture on Introduction to r^2 for a proof).