The Wright-Fisher and the Infinite Allele Models: Two Urns Models

Sorin Istrail

Department of Computer Science
Brown University, Providence
sorin@cs.brown.edu

October 22, 2013
Outline

1. Outline
2. Urn Models
3. Wright-Fisher Urn Model
4. Mutation, Random Genetic Drift and Selection
 - Mutation
 - Mutation: typical values for parameters
 - Equilibrium
 - Random Genetic Drift
 - Probability of fixation
 - Selection
4. Wright-Fisher Model and Markov chains
5. The Infinite Allele Model and the Ewing Sampling Lemma
 - Ewens Sampling Lemma - first formulas
We will use Urn Models that capture the essence of the Wright-Fisher Model for a Mendelian theory of evolution. They are Polya Urn Models.

In the standard Polya urn schemes there is a fixed set of admissible colors that can appear in the urn. A new species (new color) may appear at some point. In such a model we must allow the number of colors to increase with time, and consider an infinite set of admissible colors (Infinite Allele Model).
The hereditary process can be represented by balls in an urn. The balls undergo a rebirth process and produce balls in subsequent urn.

Let us start with two colors representing two genes.

The model was introduced by Fisher in 1922 and by Wright in 1930.

Suppose that there are m balls in the urn, of which i are white (a first gene) and $m - i$ are blue (a second different gene).

Balls are sampled with replacement, m times, to give a chance for each ball to appear once on average.

If a sampled ball is white, we deposit a white ball in the new urn; if the sampled ball is blue we put a blue ball in the new urn.
Wright-Fisher Urn Model

- The number of white balls that appear in the size m sample is $Bin(m, \frac{1}{m})$ distributed.
- On average, there are $m \times \frac{i}{m} = i$ white balls in the new urn, and on average there is change in the proportion of the white balls.
- After the new urn has been filled with m balls, a new urn is created next, and so on.
- There is a positive probability that the urn becomes monochromatic. Once this is achieved the urn remains the same forever.
- This can be seen from a Markov model.
Mutant alleles that have little effect on the phenotype of the organism may remain in the population until either became fixed or lost due to stochastic forces.

The simplest mathematical model is **Random Mating Model** in monoecious population. Changes in allele frequencies are caused by mutation, random genetic drift, and selection.
Consider a locus with two alleles A_1 and A_2 and let $p(n)$ and $q(n) = 1 - p(n)$ the frequencies of A_1 and A_2, respectively in generation n. Suppose non-overlapping generations. And suppose that u is the rate of A_1 mutating to A_2 and v the rate of A_2 mutating to A_1. Alleles can mutate only once per generation. Assuming no other forces but mutation, we have the following recurrence:

$$p(n + 1) = (1 - u)p(n) + v(1 - p(n))$$
An A_1 allele in generation $n+1$ could have been either an allele A_1 in generation n that did not mutate, this with probability $(1-u)$ or an allele A_2 that mutated into A_1 with probability v.

The above recurrence equation can be solved in terms of the initial frequency of A_1, say, $p(0)$:

$$p(n) = \frac{v}{u+v} + (p(0) - \frac{v}{u+v})(1-u-v)^n$$
Mutation: typical values for parameters

- The mutation probabilities u and v are typically quite small or the order of 10^{-6}.

- For large n the term $(1 - u - v)^n$ goes to 0. E.g., for $n = 10^6$ and $u = v = 10^{-6}$ the terms $(1 - u - v)^n = 0.13$ and for $n = 10^7$ it gets to $(1 - u - v)^n = 2.06 \times 10^{-9}$.

- So mutation alone can be slow changing frequencies. Although mutations are the source of variation, their role in evolution may be limited.
In the limit, assuming the population is infinite, $p(n)$ becomes $\frac{v}{u+v}$. This value is called equilibrium, it happens when $p(n+1) - p(n) = 0$ which means that the allele frequencies do not change over time.

If we denote the equilibrium frequency by $
\hat{p} = p(n) = p(n+1)$ and solve for \hat{p} we get $\hat{p} = \frac{v}{u+v}$ and $\hat{q} = 1 - \hat{p} = \frac{u}{u+v}$.

If both u and v are positive, it follows that mutation allows for the maintenance of both alleles in the population.
Random Genetic Drift

- The assumption of an infinite population allowed us to use the deterministic formulation when we modeled mutation.
- In **finite populations** the random sampling of gametes alone causes changes in gene frequencies. This process is known as **random genetic drift**.
Let us look at a single locus with two alleles A_1 and A_2.

Assume a randomly mating diploid population of size N (or, which is the same in this case, a haploid population of size $2N$) with non overlapping generations.
Wright-Fisher Model

- In each generation, $2N$ gametes are sampled at random from the parent generation. If the $Y(n)$ denotes the number of gametes of type A_1 at generation n then in the absence of mutation and selection, the number of A_1 alleles at time $n + 1$ is given by a binomial distribution. This is the Wright-Fisher Model.

- Namely, the probability that there are j gametes of type A_1 at generation $n + 1$, given that there were i gametes of type A_1 at generation n is

$$P(Y(n + 1) = j \mid Y(n) = i) = \binom{2N}{j} p^i (1 - p)^{2N-j}$$

where $p = \frac{i}{2N}$.
Evolution is quite unpredictable due to stochastic nature of the model

- The discrete time stochastic process is an example of Markov chain
- Since there are no mutations in the model, eventually one of the two alleles will be lost (and the other fixed).
- The larger the population size, the longer this process of fixation takes.
If the frequency of allele A_1 was π_1, then one can show that the probability of fixation of allele A_1 is π_1, and consequently, the probability of fixation of A_2 is $1 - \pi_1$.

Ewens’s argument: After a long enough time, all individuals in the population must have descended from just one of the individuals present at generation 0. The probability that this common ancestor was of type A_1 is equal to the relative frequency of A_1 at generation 0 which is p_i.
Selection can act on different parts of life history of an organism: differential fecundity and viability are such examples. The simplest model of viability selection assumes that selection affects survival between the zygote and adult stage of a diploid organism in a randomly mating population of infinite size, in which generations do not overlap.

It is assumed that each genotype has a fixed specified fitness. Since the population is infinite changes in allele frequencies can be described by deterministic equations.

For a site with two alleles A_1 and A_2 there are three genotypes: A_1A_1, A_1A_2, A_2A_2. We denote their fitnesses by w_{11}, w_{12}, w_{21}. In the case of viability selection the fitness w_{ij} reflects the relative survival of zygotes of genotype A_iA_j.
If the population is in Hardy-Weinberg equilibrium and the frequencies of A_1 and A_2 are $p(n)$ and $q(n) = 1 - p(n)$ respectively, then ignoring mutations then the next generation allele frequencies are

$$p(n + 1) = \frac{p(n)(p(n)w_{11} + q(n)w_{12})}{\bar{w}}$$

and

$$q(n + 1) = \frac{q(n)(q(n)w_{22} + p(n)w_{12})}{\bar{w}}$$

and \bar{w} is defined by

$$p(n + 1) + q(n + 1) = 1$$

It follows that

$$\bar{w} = p^2(n)w_{11} + 2p(n)q(n)w_{12} + q^2(n)w_{22}$$
The predictions are as follows

- **Directional Selection:**
 - If $w_{11} > w_{12} > w_{22}$ then A_1 becomes fixed in the population.
 - If $w_{11} < w_{12} < w_{22}$ then A_2 becomes fixed in the population.

- **Overdominance:** If $w_{11}, w_{22} < w_{12}$ then a **stable polymorphism** results.

- **Underdominance:** If $w_{12} < w_{11}, w_{22}$ then the polymorphism is **unstable** and depending of the initial allele frequencies either A_1 or A_2 become fixed.
Suppose we have only two balls in the urn initially. One white and one blue.

We represent the evolution by the states of a Markov chain with three states, where a state is described by the number of white balls in it. So we have the states S_0, S_1, S_2.

We choose to start in state S_1. From state S_1 we can move into state S_0, if no white balls appear in the next urn; from state S_1 it can remain in state S_1 if the next urn has the one white ball; or from state S_1 it can move to state S_2 if the next urn has two white balls. The corresponding probabilities are $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$. These numbers are $P(X = k)$ for $k = 0, 1, 2$ for a Binomial random variable distributed line $Bin(2, \frac{1}{2})$. These three numbers correspond to the row 1 of a Markov chain transition matrix M.
Markov chain

\[M = \begin{pmatrix}
1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & 1
\end{pmatrix} \]

In \(n \) steps, we obtain

\[M^n = \begin{pmatrix}
1 & 0 & 0 \\
\frac{2^n - 1}{2^{n+1}} & \frac{2}{2^{n+1}} & \frac{2^n - 1}{2^{n+1}} \\
0 & 0 & 1
\end{pmatrix} \]
Let us start in state \((S_1, i.e., the state with number of white balls = 1).\)

It follows that after \(n\) steps the probability state vector is:

\[
\pi_n = (0, 1, 0) M^n = \left(\frac{2^n - 1}{2^{n+1}}, \frac{2}{2^{n+1}}, \frac{2^n - 1}{2^{n+1}}\right)
\]

\[
= \left(\frac{1}{2}, 0, \frac{1}{2}\right) + \left(-\frac{1}{2^{n+1}}, \frac{1}{2^n}, -\frac{1}{2^{n+1}}\right) \rightarrow \left(\frac{1}{2}, 0, \frac{1}{2}\right)
\]

this vector converges to \(\left(\frac{1}{2}, 0, \frac{1}{2}\right)\)

The uniformity of color comes randomly at an exponential rate. Rather quickly, the urn is in either a state of all white or all blue. Ultimately, there is 0 probability of a split. And probability is \(\frac{1}{2}\) of an ultimate all white urn. And same for an all blue urn.
In urns balls of new colors occur by mutation. So through the stochastic process, old colors may disappear and new colors may appear. So the concept of stationarity in the Markov chain context is no longer available.

Alternatively we can think of the stationarity of partitions among the existing and ever changing colors.

A partition of m species (genes) describes how many colors there are that are presented by i balls, for various values of i. For example if the number of balls is 4 and there are one black, two red and two green and four blue balls the partition would be $(1, 2, 0, 1)$. $m = 1 \times 1 + 2 \times 2 + 0 \times 3 + 1 \times 4$.

If in time one we observe that there are in the urn, one black, two pink and two yellow, and four red balls the partition is again $(1, 2, 0, 1)$.

Sorin Istrail

The Wright-Fisher and the Infinite Allele Models: Two Urns Models
Suppose we are drawing m balls with replacement from an urn, and we are filling a new urn with balls of colors determined by the sample.

When we draw a ball of a given color from the current urn we return it in the ball and we placed a ball with the same color in the new urn with probability $1 - \alpha$ and a new color with probability α. Mutation always creates a new color.
Consider the stationary probability Q_2 of two balls of the same color in the new urn.

We have two situations to consider:

1. the two balls arrived by drawing the same ball twice in the current urn assumed in stationary state and no mutation occurred;
2. the two balls arrived by drawing two balls of same color in the current urn, assumed stationary and no mutation occurred.
Computing Q_2

- The probability of choosing the same ball (the same parent) is
 \[
 \sum_{k=1}^{m} \frac{1}{m^2} = \frac{1}{m}
 \]

- The probability of being children of two different balls of same color chosen with probability Q_2 from the stationary parent urn is computed as follows.
- First, the probability of choosing two different balls is $1 - \frac{1}{m}$.
- Two balls of the same color in a stationary urn cannot be mutations from the parent urn, because necessarily all mutations are of different colors.
- The stationary probability satisfies the equation:
 \[
 Q_2 = \frac{1}{m} (1 - \alpha)^2 + \left(1 - \frac{1}{m}\right)Q_2(1 - \alpha)^2
 \]
Computing Q_2

- The solution of the above equation is

$$Q_2 = \frac{(1 - \alpha)^2}{(1 - \alpha)^2 + m\alpha(2 - \alpha)}$$

- as $\alpha = 10^{-5}$ typically we obtain a good approximation;

$$Q_2 = \frac{1}{1 + 2m\alpha} = \frac{1}{1 + \theta}$$

- where

$$\theta = 2m\alpha$$
Formulas for $Q_3, Q_4, \ldots Q_i$

\[Q_3 = \frac{2}{(\theta + 1)(\theta + 2)} \]

\[Q_4 = \frac{6}{(\theta + 1)(\theta + 2)(\theta + 3)} \]

\[Q_i = \frac{(i - 1)^2}{(\theta + 1)(\theta + 2)\ldots(\theta + i - 1)} \]
Theorem (Ewens 1972)

Let $A_n = (A_1, A_2, ..., A_n)$. A_i is the number of colors represented by exactly i balls in the sample. The size of the sample is $m = \sum_{i}^{n} A_i$. Then:

$$P(A_n = a_n) = \frac{n! \theta (\sum_{i}^{n} a_i)}{\prod_{i}^{n} i^{a_i} \prod_{i}^{n} a_i! \prod_{i=0}^{n-1} \theta + i}$$