OUTLINE

① Probability Spaces & Probability Functions
 ① Example: Rolling a Die
 ② Conditional Probability
 ③ Independent Events

② Bayesian Statistics
STATISTICS ≠ PROBABILITY THEORY

Probability theory: mathematical theory that describes uncertainty.

Statistics: set of techniques for extracting useful information from data.
PROBABILITY SPACE

A probability space has three components:

1. A sample space Ω which is the set of all possible outcomes of the random process modeled by the probability space;
2. A family of sets F representing the allowable events, where each set in F is a subset of the sample space Ω;
3. A probability function $\Pr : F \rightarrow \mathbb{R}$ satisfying the definition below:

An element of Ω is a simple event. In a discrete probability space, we use $F = 2^\Omega$
A **probability function** is any \(\Pr : F \rightarrow R \) that satisfies the following conditions:

1. For any event \(E \), \(0 \leq \Pr(E) \leq 1 \);
2. \(\Pr(\Omega) = 1 \);
3. For any finite or countably infinite sequence of pairwise mutually disjoint events \(E_1, E_2, E_3, \ldots \)

\[
\Pr \bigcup_{i=1}^{\infty} E_i = \sum_{i=1}^{\infty} \Pr(E_i)
\]

The probability of an event is the sum of the probabilities of its simple events.
EXAMPLE: TOSSING A (FAIR) COIN

\[F = \{ H, T \} \]

\[F = 2 \times 2 = 4 \text{ Events} \]

\[F = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]

\[\Pr(\emptyset) = 0 \]

\[\Pr(\{ H \}) = 0.5 \]

\[\Pr(\{ T \}) = 0.5 \]

\[\Pr(\{ H, T \}) = 1 \]
EXAMPLE: ROLLING A DIE

\[W = \{1, 2, 3, 4, 5, 6\} \]

\[F = 2^6 \text{ Events} \]

\[\Pr(\{\ \}) = 0 \]

\[\Pr(\{1\}) = \Pr(\{2\}) = \Pr(\{3\}) = \Pr(\{4\}) = \Pr(\{5\}) = \Pr(\{6\}) = \frac{1}{6} \]

\[\Pr(\{1, 2\}) = \Pr(\{1, 3\}) = \Pr(\{1, 4\}) = \Pr(\{1, 5\}) = \Pr(\{1, 6\}) = \frac{2}{6} \]

...
The conditional probability that event E1 occurs given that event E2 occurs is:

$$\Pr(E_1 \mid E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)}$$

The conditional probability is only well-defined if $\Pr(E_2) > 0$

By conditioning on E2 we restrict the sample space to set E2.

Thus we are interested in $\Pr(E_1 \cap E_2)$ normalized by $\Pr(E_2)$.
EXAMPLE: CONDITIONAL PROBABILITY

We have two coins: A is a fair coin, B has probability 2/3 to come up as HEAD. We chose a coin at random and got HEAD.

What is the probability that we chose coin A?

① \(E_1\) = the event “chose coin A”
② \(E_2\) = the event “outcome is HEAD”

Conditional probability that we chose coin A given that the outcome is HEAD is denoted: \(Pr(E_1 | E_2)\)
EXAMPLE: CONDITIONAL PROBABILITY

Define a **sample space** of **ordered** pairs: \((\text{coin}, \text{outcome})\)

The same space has four points:

1. \{\((A, h), (A, t), (B, h), (B, t)\)\}
2. \(\Pr((A, h)) = \Pr((A, t)) = \frac{1}{4}\)
3. \(\Pr((B, h)) = (\frac{1}{2})(\frac{2}{3}) = \frac{1}{3}\)
4. \(\Pr((B, t)) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}\)

Define 2 events:

1. \(E_1 = \text{“chose coin } A\”\)
2. \(E_2 = \text{“outcome is HEAD”}\)

\[
\Pr(E_1 \mid E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{3}} = \frac{3}{7}
\]
Two events E and F are independent if and only if:

$$\Pr(E_1 \cap E_2) = \Pr(E)\Pr(F)$$

More generally, events E_1, E_2, \ldots, E_k are mutually independent if and only if for any subset $I \subseteq [1, k]$:

$$\Pr\left[\bigcap_{i \in I} E_i \right] = \Pr(E_i)$$
EXAMPLE: TOSSING A (FAIR) COIN TWICE

\[= \{HH, HT, TH, TT\} \]

\[F = 2 \quad = 2^4 \text{ Events} \]

\[P(H) = 0.5 \]
\[P(T) = 0.5 \]

\[P(HT) = 0.25 \]
\[P(HH) = 0.25 \]
\[P(TH) = 0.25 \]
\[P(TT) = 0.25 \]

\[P(\{HH, HT\}) = P(\{HT, TT\}) = 0.5 \]
A fair coin was tossed 10 times and always ended up on **HEAD**. What is the likelihood that it will end up **TAIL** next?
A fair coin was tossed 10 times and always ended up on **HEAD**. What is the likelihood that it will end up **TAIL** next?

The prior observations don’t affect the likelihood. → 1/2
Stan has two kids. One of his kids is a boy. What is the likelihood that the other one is also a boy?

\[E_1 = \text{Two Boys (BB)} \]
\[E_2 = \text{At least one kid is a boy (B)} \]
Stan has two kids. One of his kids is a boy. What is the likelihood that the other one is also a boy?

\[E_1 = \text{Two Boys (BB)} \]
\[E_2 = \text{At least one kid is a boy (B)} \]

\[P(BB) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \]

\[P(B) = 1, \quad P(GG) = 1 \quad \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} \]

\[P(BB|B) = \frac{P(BB \cap B)}{P(B)} = \frac{1/4}{3/4} = \frac{1}{3} \]
BAYESIAN STATISTICS
LAW OF TOTAL PROBABILITY

Theorem: Law of Total Probability

Let E_1, E_2, \ldots, E_n be mutually disjoint events in a sample space Ω, and $\bigcup_{i=1}^{n} E_i = \Omega$.

Then: $\Pr(B) = \sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i)$.
BAYES’ LAW

Theorem: Bayes’ Law

Let \(E_1, E_2, \ldots, E_n \) be mutually disjoint events in a sample space \(\Omega \), and

\[
\bigg\{ E_i \bigg\} = \bigcup_{i=1}^{n} E_i
\]

Then:

\[
Pr(E_j \mid B) = \frac{Pr(B \cap E_i)}{Pr(B)} \cdot \frac{Pr(B \mid E_j)Pr(E_j)}{\sum_{i=1}^{n} Pr(B \mid E_i)Pr(E_i)}
\]

Conditional Probability: \(Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)} \)

Law of Total Probability: \(Pr(B) = \sum_{j=1}^{n} Pr(B \mid E_j)Pr(E_j) \)
BAYES’ LAW

Likelihood
Probability of collecting this data when our hypothesis is true

Prior
The probability of the hypothesis being true before collecting data

Posterior
The probability of our hypothesis being true given the data collected

Marginal
What is the probability of collecting this data under all possible hypotheses?

\[
P(H|D) = \frac{P(D|H) P(H)}{P(D)}
\]
APPLICATION: FINDING A BIASED COIN

- We are given three coins. 2 coins are fair, and the 3rd is biased (landing heads with probability \(\frac{2}{3}\)). We need to identify the biased coin.
- We flip each of the coins. The first and second come up heads, and the third comes up tails.
- What is the probability that the first coin was the biased one?
APPLICATION: FINDING A BIASED COIN

Let E_i be the event that the ith coin flip is the biased one and let B be the event that the three coin flips came up HEADS, HEADS, and TAILS. Before we flip the coins we have $\Pr(E_i) = 1/3$ for $i=1,...,3$, thus

$$\Pr(B \mid E_1) = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{6}$$

and

$$\Pr(B \mid E_3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12}$$

Applying Bayes' Law we have...

$$\Pr(E_1 \mid B) = \frac{\Pr(B \mid E_1)(\Pr(E_1)}{\sum_{i=1}^{3} \Pr(B \mid E_i)\Pr(E_i)} = \frac{2}{5}$$

The outcome of the 3 coin flips increases the probability that the first coin is the biased one from $1/3$ to $2/5$.
Stan has two kids. One of his kids is a boy. What is the likelihood that the other one is also a boy?

$E_1 =$ Two Boys (BB)

$E_2 =$ At least one kid is a boy (B)

$P(\text{BB}) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

$P(\text{B}) = 1$ $P(\text{GG}) = 1$ $\frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$

$P(\text{BB}|\text{B}) = \frac{P(\text{BB} \cap \text{B})}{P(\text{B})} = \frac{1/4}{3/4} = \frac{1}{3}$

$P(\text{BB}|\text{B}) = \frac{P(\text{B}|\text{BB}) \cdot P(\text{BB})}{P(\text{B})} = \frac{1 \cdot 1/4}{3/4} = \frac{1}{3}$
IN CLASS EXERCISES: DRUG TEST

0.4% of the Rhode Island population use Marijuana*

Drug Test: The test will produce 99% true positive results for drug users and 99% true negative results for non-drug users.

If a randomly selected individual is tested positive, what is the probability he or she is a user?

\[
P(User|+) = \frac{P(+|User)P(User)}{P(+)}
\]

\[
= \frac{P(+|User)P(User)}{P(+|User)P(User) + P(+|!User)P(!User)}
\]

\[
= \frac{0.99 \times 0.004}{0.99 \times 0.004 + 0.01 \times 0.996}
\]

\[
= 28.4\%
\]
SPAM FILTERING WITH NAÏVE BAYES

\[
P(\text{spam} | \text{words}) = \frac{P(\text{spam}) P(\text{words} | \text{spam})}{P(\text{words})}
\]

\[
P(\text{spam} | \text{viagra, rich, ..., friend}) = \frac{P(\text{spam}) P(\text{viagra, rich, ..., friend} | \text{spam})}{P(\text{viagra, rich, ..., friend})}
\]

\[
P(\text{spam} | \text{words}) \quad \frac{P(\text{spam}) P(\text{viagra} | \text{spam}) P(\text{rich} | \text{spam}) \cdots P(\text{friend} | \text{spam})}{P(\text{viagra, rich, ..., friend})}
\]
WARM UP QUESTION

- Assume a statistical test has a chance of 1% (P=0.01) to be wrong
- How many test can you run before the likelihood of being wrong at least once is 50% or more?

\[
P(T_1) = 1 \quad P(F_1) = 0.99
\]
\[
P(T_1T_2) = 0.99 \quad 0.99 \quad 0.98
\]
\[
P(F_1F_2,F_1T_2,T_1F_2) = 1 \quad P(T_1T_2) = 0.02
\]

\[
P(\text{Being Wrong At Least Once}) =
1 \quad P(T_1T_2 \sqcup T_n \quad T_n) = 1 \quad P(T)^n
\]
\[
n = \log(0.5) / \log(0.99) \quad 68.96 \quad 69
\]